
Numerical Analysis
Instructor: Professor Steven Dong

Course Number: MA 51400
Credits: Three

Time: 3:30–4:20 PM MWF

Catalog Description

(CS 51400) Iterative methods for solving nonlinear; linear difference equa-
tions, applications to solution of polynomial equations; differentiation and
integration formulas; numerical solution of ordinary differential equations;
roundoff error bounds.

Introduction To Probability
Instructor: Professor Yuan Gao
Course Number: MA 51900

Credits: Three
Time: 12:30–1:20 PM MWF

Catalog Description

(STAT 51900) Algebra of sets, sample spaces, combinatorial problems, inde-
pendence, random variables, distribution functions, moment generating func-
tions, special continuous and discrete distributions, distribution of a function
of a random variable, limit theorems.

Introduction To Partial Differential Equations
Instructor: Professor Plamen Stefanov

Course Number: MA 52300
Credits: Three

Time: 10:30–11:20 AM MWF

Description
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This is an introductory course in partial differential equations. I will use the
book by McOwen: Partial Differential Equations: Methods and Applications,
2-nd edition, because I find it easy going but still well written and covering
the needed material. We will start with first order PDEs, showing that they
essentially reduce to ordinary differential equations (ODEs). Next, we will
concentrate on second order PDEs. I will provide my own notes on character-
istics, which extend what is in the book, and present a bit more modern view.
The Cauchy–Kovalevskaya theorem will be proven and explained. Next, we
will study the three basic (types of) PDEs: the wave equation, the Laplace
equation, and the heat equation; all with constant coefficients, naturally, at
this stage. The goal is not just to derive explicit or semi-explicit formulas
for the solutions when possible but to understand the qualitive behavior of
each one of them.

I will emphasize on the intuitive and on the geometric nature of the the-
ory. Some functional analysis tools would be discussed as well to the extend
possible since MA546 is not a required prerequisite. Separation of variables
(leading to Fourier series or special functions expansions) will be discussed
briefly but is not the main focus of the course.

Functions Of A Complex Variable I
Instructor: Professor Steven Bell

Course Number: MA 53000
Credits: Three

Time: 1:30–2:20 PM MWF

Catalog Description

Complex numbers and complex-valued functions of one complex variable; dif-
ferentiation and contour integration; Cauchy’s theorem; Taylor and Laurent
series; residues; conformal mapping; special topics. More mathematically
rigorous than MA 52500.
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Probability Theory II
Instructor: Professor Christopher Janjigian

Course Number: MA 53900
Credits: Three

Time: 9:00–10:15 AM TTh

Catalog Description

(STAT 53900) Convergence of probability laws; characteristic functions; con-
vergence to the normal law; infinitely divisible and stable laws; Brownian
motion and the invariance principle.

Real Analysis And Measure Theory
Instructor: Professor Matthew Novack

Course Number: MA 54400
Credits: Three

Time: 9:30–10:20 AM MWF

Description

Sigma algebras, measures, Lebesgue integration, convergence theorems, outer
measures and Caratheodory’s construction, Hausdorff measure, modes of
convergence, Egorov’s theorem, Littlewood’s three principles, Lusin’s the-
orem, product measures, Fubini-Tonelli theorems, Lebesgue differentation
theorem, Hardy-Littlewood maximal function, bounded variation, absolute
continuity, elements of functional analysis (Lp spaces, Hilbert, Banach, and
normed spaces), Fourier series and Parseval’s theorem. Additional topics as
time permits.
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Functions Of Several Variables And Related Topics
Instructor: Professor Rodrigo Bañuelos

Course Number: MA 54500
Credits: Three

Time: 1:30–2:45 PM TTh

Description

PREREQUISITES: Math 544. However, depending on need, some topics
from 544 may be reviewed.

DESCRIPTION: This course will cover some of the basic tools of analysis
that are extremely useful in many areas of mathematics, including PDE’s,
stochastic analysis, harmonic analysis and complex analysis. Specific topics
covered in the course include: “Geometric lemmas” (Vitali, Wiener, etc.)
and “geometric decomposition theorems” (Whitney, etc.) and their applica-
tions to differentiation theory and to the Hardy–Littlewood maximal func-
tion; convolutions; approximations to the identity and their applications to
boundary value problems in Rd with Lp-data; the Fourier transform and its
basic properties on L1 and L2 (including Plancherel’s theorem); interpola-
tion theorems for linear operators (Marcinkiewicz, Riesz–Thorin); the basic
(extremely elegant and useful) Calderón-Zygmund singular integral theory
and some of its applications; the Hardy-Littlewood-Sobolev inequalities for
fractional integration and powers of the Laplacian and other elliptic opera-
tors; the inequalities of Nash and Sobolev viewed from the point of the heat
semigroup in Rd, Littlewood-Paley theory and applications to the Hörmader
multiplier theorem

TEXT BOOKS: No text book is required. The course follows my Lec-
ture Notes (“Book”) “Lectures in Analysis.” Recommended are: (1) E. M.
Stein, “Singular Integrals and Differentiability Properties of Functions”, (2),
L. Grafakos “Modern Fourier Analysis”.
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Introduction To Abstract Algebra
Instructor: Professor Freydoon Shahidi

Course Number: MA 55300
Credits: Three

Time: 10:30–11:20 AM MWF

Catalog Description

Group theory: Sylow theorems, Jordan-Holder theorem, solvable groups.
Ring theory: unique factorization in polynomial rings and principal ideal
domains. Field theory: ruler and compass constructions, roots of unity,
finite fields, Galois theory, solvability of equations by radicals.

Linear Algebra
Instructor: Professor Saugata Basu

Course Number: MA 55400
Credits: Three

Time: 2:30–3:20 PM MWF

Catalog Description

Review of basics: vector spaces, dimension, linear maps, matrices determi-
nants, linear equations. Bilinear forms; inner product spaces; spectral theory;
eigenvalues. Modules over a principal ideal domain; finitely generated abelian
groups; Jordan and rational canonical forms for a linear transformation.

Commutative Algebra
Instructor: Professor Takumi Murayama

Course Number: MA 55700
Credits: Three

Time: 3:30–4:20 PM MWF

Description

5



This course is an introduction to commutative algebra. Commutative al-
gebra is the study of commutative rings and modules and has interactions
with various fields of mathematics, including algebraic geometry, number
theory, and several complex variables. Planned topics include the following:
A review of commutative rings and modules. Spec and the Zariski topology.
Localization. Integral extensions and integral closure. Noether normaliza-
tion. Hilbert’s Nullstellensatz and connections to affine algebraic geometry.
Chain conditions, Noetherian and Artinian rings and modules. Tensor prod-
ucts and flatness. Primary decomposition. Normal rings, discrete valuations
rings, and Dedekind domains. Completions.

Prerequisites: MA 55300 and 55400. MA 57100 is helpful but not neces-
sary.

Text: Course notes will be provided. The notes will largely draw from
Melvin Hochster’s lecture notes on commutative algebra (available at https:
//dept.math.lsa.umich.edu/~hochster/614F17/614.html).

Optional texts: All texts listed below have free access options for Purdue
students.

• A term of commutative algebra by Allen B. Altman and Steven L.
Kleiman (available at https://doi.org/10.13140/RG.2.2.31866.62400).

• Introduction to commutative algebra by Michael F. Atiyah and Ian G.
Macdonald (available at https://doi.org10.1201/9780429493638 via
the Purdue library).

• Undergraduate commutative algebra by Miles Reid (available for short
term loan at https://n2t.net/ark:/13960/s27c54tjnc0).

Introduction To Differential Geometry And Topology
Instructor: Professor Eric Samperton

Course Number: MA 56200
Credits: Three

Time: 8:30–9:20 AM MWF
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Catalog Description

Smooth manifolds; tangent vectors; inverse and implicit function theorems;
submanifolds; vector fields; integral curves; differential forms; the exterior
derivative; DeRham cohomology groups; surfaces in E3., Gaussian curva-
ture; two dimensional Riemannian geometry; Gauss-Bonnet and Poincare
theorems on vector fields.

Elementary Topology
Instructor: Professor Jeremy Miller

Course Number: MA 57100
Credits: Three

Time: 12:30–1:20 PM MWF

Description

In this course, we will cover basic notions from point-set topology (open sets,
closed sets, compact sets, bases for topologies, Hausdorff spaces, connected-
ness, etc.) and then discuss the fundamental group and related topics. We
will use “Topology” by James R. Munkres, 2nd Edition.

Numerical Optimization
Instructor: Professor Xiangxiong Zhang

Course Number: MA 57400
Credits: Three

Time: 9:30–10:20 AM MWF

Description

This is a graduate level course focusing on introducing and analyzing practi-
cal numerical optimization algorithms which are often used in contemporary
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large scale machine learning problems, with a heavy emphasis on conver-
gence analysis by monotone operator, fixed point iteration, duality in split-
ting methods, etc. The course will cover the following four parts with 3 4
weeks lecture time on each part:

Part I (smooth optimization): convergence and convergence rates of gradient
descent, Nesterov’s accelerated gradient descent, Newton, quasi-Newton and
conjugate gradient methods under smoothness and convexity assumptions.

Part II (nonsmooth convex optimization): convergence and convergence rates
of subgradient method, proximal gradient, and accelerated proximal gradient
method, first order splitting methods including PDHG (primal dual hybrid
gradient), ADMM (alternating direction method of mulipliers) and Dougas-
Rachford splitting.

Part III (stochastic algorithms): convergence of randomized coordinate de-
scent, stochastic gradient descent and Langevin dynamics.

Part IV (Riemannian optimization): this will be a brief introduction to opti-
mization algorithms on matrix manifolds, e.g., Riemannian gradient descent
and Riemannian conjugate gradient methods.

Reference books are “Introduction to Nonlinear Optimization” by Beck,
“Large-Scale Convex Optimization: Algorithms & Analyses via · Monotone
Operators” by Ryu and Yin, and “Optimization Algorithms on Matrix Man-
ifolds” by Absil et al. Prerequisites are MA 511 and MA 504 (or equiva-
lent/similar courses). Past lecture notes on the first three parts can be found
on a 2023 topics course (MA 598 by Zhang in Spring 2023) webpage https:
//www.math.purdue.edu/~zhan1966/teaching/598/598_2023S.html

Graph Theory
Instructor: Professor Giulio Caviglia

Course Number: MA 57500
Credits: Three

Time: 2:30–3:20 PM MWF

Description
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This is an introductory graduate–level course on Graph Theory with some
emphasis on topics related to extremal combinatorics.

The texbook is GRAPH THEORY, Graduate Texts in Mathematics, Volume
244 by J. A. Bondy and U. S. R. Murty (we have a free online copy via Purdue
University Libraries, for instance by using ProQuest E-book central).

We will discuss in detail the first 7 chapters, plus some other topics scattered
across the book (including parts of chapters 11, 12 and 16). See the textbook
for details.

Mathematical Logic I
Instructor: Professor Margaret Thomas

Course Number: MA 58500
Credits: Three

Time: 1:30–2:20 PM MWF

Description

A first course in mathematical logic, oriented towards model theory, the study
of mathematical structures in terms of their logical properties. The goal is to
introduce the most central ideas of mathematical logic as well as certain tools
needed to explore a variety of classical and modern subjects, in particular
motivated by applications of model theory (such as the Ax–Kochen–Ershov
Theorem; or applications of o-minimal structures to diophantine geometry,
Hodge theory, and dynamical systems; or the role of NIP and related tame
structures in combinatorics; or the interaction between continuous logic and
functional analysis; or connections between model theory and machine learn-
ing; etc.). Students are encouraged to participate if they are interested in
possible research involving model theory, or if they are keen to learn a per-
spective from logic that might be applicable to other areas of mathematics.

The course will start with an introduction to predicate calculus (first-order
logic), covering languages, structures, theories, formal proof, Gödel’s Com-
pleteness Theorem and the Compactness Theorem of first-order logic. There-
after, the focus will shift to central concepts in model theory, which could
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include definable sets, model completeness, quantifier elimination, elemen-
tary extensions, types, categoricity, saturation and ultraproducts. Set theory
concepts would be introduced as needed. The emphasis will be on certain key
examples, such as algebraically closed fields and o-minimal structures, with a
view to some of the applications of model theory mentioned above. If there is
time and interest, further topics from the foundations of mathematical logic
could also be surveyed, such as a formalization of elementary number theory
and the beginnings of computability, leading to the Gödel incompleteness
theorems and the undecidability of arithmetic (however, given the intended
focus of this course, these would not be covered in depth here).

Prerequisites: Graduate level algebra and real analysis would be advisable.
(No requirement to have taken a course in logic previously.)

Analytic Theory of Function Fields
Instructor: Professor Trevor Wooley
Course Number: MA 59500AFF

Credits: Three
Time: 12:30–1:20 PM MWF

Description

Prerequisites: Elementary number theory, abstract algebra and basic anal-
ysis.

This course serves as an introduction to analytic number theory and the
circle method in function fields. As such, its goal is to develop the analytic
machinery designed to investigate the arithmetic properties of the polynomial
ring Fq[t] (polynomials with coefficients from a finite field Fq). Background
results from number theory and harmonic analysis will be reviewed as needed.
Students already familiar with the basic elements of analytic number theory
and the circle method will acquire knowledge of more advanced topics that
are part of the modern repertoire of practising researchers in these subjects.

The area of analytic number theory devoted to function field arithmetic lies
at the intersection of analytic number theory, harmonic analysis and alge-
braic number theory. Many classical problems in analytic number theory
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have analogues in function fields which are more accessible to progress than
in the classical setting of the rational integers. Progress in function fields mo-
tivates conjectures and new approaches in the classical setting. Meanwhile,
analytic tools from the classical setting have analogues over function fields
that yield progress on problems of seemingly algebraic flavour. For example,
the circle method has been applied in function fields to yield new conclusions
concerning the geometry of spaces of morphisms between varieties.

Our basic aims in this course are twofold: (i) to introduce the basic re-
sults on arithmetic functions and prime polynomials (i.e. monic irreducible
polynomials) in function fields, and (ii) to develop the circle method in func-
tion fields using tools from harmonic analysis in this setting. Following this
basic material, we will explore as many topics using these tools as time per-
mits (distribution and properties of prime polynomials, equidistribution in
function fields, Waring’s problem and Vinogradov’s mean value theorem in
function fields, connections with geometry).

Assessment: Six problem sets will be offered through the semester, and class
participants can demonstrate engagement with the course by any written
and/or in-class presentations featuring a reasonable subset of these problems
– three levels of difficulty: short problems testing basic skill-sets, extended
problems integrating the essential methods of the course, and more challeng-
ing problems for enthusiasts with detailed hints available on request.

The course will be based on the instructor’s lecture notes. Good texts for
background reading and support are:

M. Rosen, Number theory in function fields, Springer, 2002 G. Effinger and
D. Hayes, Additive number theory of polynomials over a finite field, Oxford,
1991

Algebraic Geometry I
Instructor: Professor Takumi Murayama

Course Number: MA 59500AG
Credits: Three

Time: 4:30–5:20 PM MWF
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Description

This course is the first course in a (planned) two semester introductory se-
quence in algebraic geometry. Algebraic geometry is the geometric study
of solutions to systems of polynomial equations. Algebraic geometry has
interactions with many other fields of mathematics, including commutative
algebra, algebraic topology, number theory, several complex variables, and
complex geometry. This first course will mainly focus on the theory of al-
gebraic varieties over algebraically closed fields but I plan to transition to
the theory of schemes by the end of the semester. Planned topics include
the following: Affine varieties. Projective varieties. Morphisms. Rational
maps. Nonsingular varieties and the Jacobian criterion. Nonsingular curves.
Intersections in projective space, Hilbert polynomials, and Bézout’s theo-
rem. Sheaves. Locally ringed spaces and schemes. Properties of schemes
and morphisms of schemes. Sheaves of modules.

Prerequisites: MA 55300, 55400, and 57100. MA 56200 and 57200 are
helpful but not necessary. Commutative algebra (similar to this semester’s
MA 55700) is strongly recommended (and can be taken concurrently) for
Algebraic Geometry I in the fall semester. Commutative algebra will be
required for Algebraic Geometry II in the spring semester.

Text: Course notes will be provided. The notes will largely draw from
Algebraic geometry by Robin Hartshorne (available at https://doi.org/

10.1007/978-1-4757-3849-0 via the Purdue library).

Optional texts: All texts listed below have free access options for Purdue
students. For algebraic varieties:

• Algebraic geometry: A first course by Joe Harris (available at https:
//doi.org/10.1007/978-1-4757-2189-8 via the Purdue library).

• Basic algebraic geometry 1 (third edition) by Igor R. Shafarevich (avail-
able at https://doi.org/10.1007/978-3-642-37956-7 via the Pur-
due library). For schemes:

• Éléments de géométrie algébrique by Alexander Grothendieck and Jean
Dieudonné (available at http://www.numdam.org/).
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• Eléments de géométrie algébrique I (second edition) by Alexander Grothendieck
and Jean Dieudonné (available for short term loan at https://n2t.

net/ark:/13960/t42s6kw4b).

Geometry and Learning for Manifold-structured Data
Instructor: Professor Rongjie Lai
Course Number: MA 59500DA

Credits: Three
Time: 10:30–11:45 AM TTh

Description

Processing and analyzing data in 3D and higher dimensions are crucial top-
ics in many fields, such as computer vision, 3D modeling, and medical image
analysis. The topics of this course include fundamental concepts of differen-
tial manifolds, computation of basic geometric quantities, numerical meth-
ods for solving variational PDEs on Riemannian manifolds, geometric deep
learning-based methods for manifold-structured data, as well as their appli-
cations in shape classification, recognition, and generation.

Prerequisites: Multivariable calculus, Numerical linear algebra

Mathematical Modeling
Instructor: Professor Alexandria Volkening

Course Number: MA 59500MM
Credits: Three

Time: 9:00–10:15 AM TTh

Description

Whether predicting disease spread, helping experimentalists uncover how
organisms grow and develop, determining how to reduce the frequency of
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traffic jams, or shedding light on climate dynamics, mathematical models
are used to describe and predict systems across the natural and social world.
In this class, students will gain experience building mathematical models.
Modeling involves many choices, and we will discuss how to choose model
complexity appropriately, identify modeling assumptions, find and handle
data ethically, and present model results accessibly. This course will also in-
volve practice problems drawn from the Mathematical Contest in Modeling
(https://www.comap.com/contests/mcm-icm) database. For graduate stu-
dents who take this course as MA59500MM, the modeling projects will be
more involved.

Pre-requisite: Ordinary differential equations (i.e., MA 266, 366, or 303)
and linear algebra. Some experience with programming is encouraged.

Textbook: No textbook is required for this course, and course material will
include instructor notes.

Quantum Computing
Instructor: Professor Ralph Kaufmann

Course Number: MA 59500QC
Credits: Three

Time: 9:00–10:15 PM TTh

Description

This course will be an introduction to the theory underlying quantum com-
puting and topological quantum computing. The course is designed to be
self-contained. We will start with the basics of boolean logic and its quantum
generalization in terms of gates and U(n) actions. The quantum mechanical
background from physics will also be given and a deeper discussion of spins
and their representation theoretic description is planned. Starting from this
paradigmatic example, the course will move to aspects needed for topological
quantum computing or field theoretical formulations. The last part of the
course will be dedicated to additional topics from the list below which best
fit the audience.
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The course is open to anyone in mathematics, physics, computer science,
chemistry, science or engineering, but a good understanding of linear algebra,
e.g. MA 511, will be very helpful in understanding the concepts.

The basic outline is as follows:

1. Boolean logic.

2. Complex vector spaces.

3. U(2), SU(2), U(n) and representation theory of these (see also 9)

4. Tensor products

5. Quantum gates I

6. Basic quantum mechanics/phases (projective representations)

7. Bloch Sphere

8. Quantum gates II (projective version)

9. Spin and Spin coupling, Clebsch Gordan coefficients, 6j symbols

10. Representation categories

11. Monoidal, symmetric monoidal, braided monoidal categories, spherical,
pivotal etc.

12. Examples via representations of Hopf algebras. (maybe Drinfel’d dou-
bles)

Additional topics (depending on the audience)

A) Quantum program examples, eg. Shor’s algorithm.

B) Nearest neighbor actions

C) Spin chain Hamiltonians

D) Lattices and Toric code.
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E) D-branes and boundary conditions.

F) Categorical actions and Hochschild complexes for E).

G) Quantum error correction

An introduction to the sum-product phenomenon
Instructor: Professor Ilia Shkredov
Course Number: MA 59500SP

Credits: Three
Time: 3:00–4:15 PM TTh

Description

The sum-product phenomenon is a relatively young area of additive combi-
natorics, based on the following simple observation, namely: additive and
multiplicative set structures are often incompatible in the sense that addi-
tively rich sets have poor multiplicative structure, and vice versa. We will
talk about the current situation in sum-product theory after the “second
wave” of results in this area and describe the transformation of this area
into “non-commutative arithmetic combinatorics”. In addition to the ob-
vious connection of the sum-product phenomenon with various problems of
additive combinatorics, we will discuss some applications to number theory,
classical analysis, incidence geometry, growth in groups, dynamical systems,
cryptography.

In this course we plan to introduce you to the fundamental results of the area
and describe some relationships and connections of additive combinatorics
with number theory, combinatorics, ergodic theory, graph theory, geometry
and other branches of mathematics.

Extended Programm:

1. Introduction. Connection of the sum–product phenomenon with num-
ber theory, classical analysis, incidence geometry, growth in groups,
dynamical systems, cryptography.
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2. Incidence geometry, trivial estimates. Elekes’ theorem, Solymosi’s the-
orem.

3. The Szemerédi–Trotter theorem, higher incidences for Cartesian prod-
ucts.

4. Connection with convex maps, sums and differences of convex sets,
acquaintance with higher energies.

5. Modern bounds in the real field.

6. The Erdős problem on distinct distances and Guth–Katz’s theorem.

7. The sum-product in the prime field, general scheme of the proof.

8. The Rudnev theorem, modern bounds in the prime field, general rings.

9. Various forms of the sum–product phenomenon in the prime field:
Stevens–de Zeeuw’s theorem, decompositions results, connection with
expanders, connection with some restriction problems.

10. Additive problems for general fields and the sum–product phenomenon.
Elements of the Stepanov method.

11. Estimates for exponential sums over subgroups and higher sums for
sets with small multiplicative doubling.

12. Connection with the multiplicative characters. The Burgess theorem
on minimal quadratic residue (if time permits).

13. An application of the sum–product phenomenon and the structural the-
ory of sets addition to estimates of sums with multiplicative characters.

14. Proof of the Rudnev theorem.

15. The sum–product and growth in groups. The affine group.

16. Growth in the modular group, Kloosterman sums and Zaremba’s con-
jecture (if time permits).
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Book: Terence Tao and Van H. Vu, Additive combinatorics

Prerequisites: 16*** (first year calculus).

Level 595, graduate.

Modern Differential Geometry
Instructor: Professor Lvzhou Chen

Course Number: MA 66100
Credits: Three

Time: 11:30 AM–12:20 PM MWF

Description

In the first part of the course, we will cover some standard materials in Rie-
mannian geometry. This includes the notion of Riemannian metric (allowing
us to measure lengths and angles of curves) on differentiable manifolds, con-
nection, geodesic, curvature, parallel transportation, etc. We will discuss
how geometry (especially curvature) interacts with topology of the manifold.

In the second part of the course, we will focus on Riemannian manifolds with
nice symmetries, for which we can understand the geometry based on the
isometry group. We will discuss hyperbolic geometry in detail and explain
the important role it plays in understanding manifolds in low dimensions
(two and three).

Prerequisites: include (1) MA 562, especially familiarity with differentiable
manifolds, tangent space, vector fields, differential forms, (2) some materials
from MA 571 and 572, such as compactness, completeness, covering spaces,
and fundamental groups.

Topics in Commutative Algebra: Positive characteristic methods
Instructor: Professor Linquan Ma
Course Number: MA 69000PC
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Credits: Three
Time: 9:30–10:20 AM MWF

Description

We will give an introduction to singularities in positive characteristic, defined
and studied via the Frobenius map. Specific topics include Kunz’s theorem,
F -purity and Frobenius splitting, F -regularity, Frobenius structure on local
cohomology, F -injectivity and F-rationality, numerical invariants such as F -
signature, and if time permitting, connections to singularities in birational
geometry.

The main reference is https://www.math.purdue.edu/~ma326/F-singularitiesBook.
pdf (though we might add some additional topics). The prerequisites are ba-
sic commutative algebra and chapters 1–3 of Bruns and Herzog.

Matrix Methods for Data Science
Instructor: Professor Jianlin Xia
Course Number: MA 69200MM

Credits: Three
Time: 1:30–2:45 PM TTh

Description

Matrix methods play a key computational role in modern data analysis, sci-
entific computing, and engineering simulations. The course will cover some
useful matrix methods for several data science topics. We will focus on fast
and efficient matrix computations that can benefit machine learning, data
analysis, and also other numerical computations. Selected topics include:

1. Matrix models of neural networks and machine learning.

2. Data matrices and matrix decompositions.

3. Randomized data probing, compression, and approximation.
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4. Stochastic/randomized solvers for linear algebra and optimization.

5. Kernel matrix methods and fast transformations.

6. Fast multipole methods and structured matrices.

7. Fast direct solvers and eigenvalue solvers with applications to data
analysis.

8. Applications to PDE solutions and approximations.

Knowledge in basic numerical analysis and linear algebra is strongly sug-
gested. There will be no comprehensive final exam. Reference books/papers,
lecture notes, test codes, and other resources will be provided.

Bounded Cohomology
Instructor: Professors Lvzhou Chen; Sam Nariman

Course Number: MA 69700BC
Credits: Three

Time: 1:30–2:20 PM MWF

Description

Bounded cohomology gives invariants of spaces or groups that capture ge-
ometric, topological, and dynamical information. It provides a useful set
of tools and points of views for the study of (hyperbolic) geometry, (low-
dimensional) topology, and group actions on manifolds. It is different from
the ordinary cohomology group in many ways: There is a natural sup norm
on bounded cohomology groups; It often captures more refined data; It is
frequently infinite dimensional and harder to compute.

We plan to cover basic definitions and properties, low degree examples, the
dual notion of Gromov norm of homology classes, the simplicial volume of
manifolds and why it is proportional to the hyperbolic volume for hyperbolic
manifolds, how bounded cohomology helps us understand the Gromov norm
and simplicial volume. We will also discuss various applications, such as
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the Mostow rigidity, classification of group actions on the circle, the Milnor–
Wood inequality, and rigidity of actions on low-dimensional manifolds (e.g.
the circle and surfaces).

We assume some basic knowledge in algebraic topology, differential geometry,
manifolds, and group actions.
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