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Want to study:

properties of the functions:

Φm(x ,D) = Px{Bt1 ∈ D,Bt2 ∈ D, . . . ,Btm ∈ D}
Bt = Brownian motion (twice the speed) in Rd , D ⊂ Rd open connected
(referred to as ”domains”), x ∈ D,

0 < t1 < t2 · · · < tm

Same as studying Multiple Integrals:

Φm(x ,D) =

∫
D

· · ·
∫

D

m∏
j=1

p
(2)
tj−tj−1

(xj − xj−1)dx1 . . . dxm,

x0 = x and p
(2)
t (y) =

1

(4πt)d/2
e−|y |

2/4t

More general, study for any times:

Φm(x ,D) =

∫
D

· · ·
∫

D

m∏
j=1

p
(2)
tj (xj − xj−1)dx1 . . . dxm, 0 < tj <∞
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But Why? Not Terribly Exciting, you may say. I agree!

Question
What is the smallest Dirichelt eigenvalue λ1,α for the rotationally invariant stable
processes of order 0 < α < 2 for the interval (−1, 1)?

Note: I learned this from Davar Khoshnevisan about 8 years ago.
Has been investigated by

Investigated by: M.Kac-H. Pollar (1950). H. Widom (1961), J. Taylor
(1967), B. Fristedt (1974), J. Bertoin (1996), Khosnevisan–Z. Shi (1998).

I don’t know the answer and, to be perfectly honest, don’t care.

In the process of investigating this “simple” question we ”discovered” that
little is known about the ”fine” spectral theoretic properties of stables.

More Exciting: The techniques give new Theorem for the Laplacian (BM).
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But, what is it known?

R.B.and R. Latala and P. Méndez (2001) and R.B.and T. Kulczycki (2004)

Cα,d =
Γ( d

2 )

2αΓ(1 + d
2 )Γ( d+α

2 )

B(0, 1) = unit ball in Rd .

1

Cα,d
≤ λ1,α(B(0, 1)) ≤ 1

Cα,d

B(d/2, α/2 + 1)

B(α/2, α + 1)

For α = 1 (Cauchy processes), B(0, 1) = (−1, 1) (as in Davar’s question)

1 ≤ λ1,1 ≤
3π

8
≈ 1.178

Note:
3π

8
<
π

2
=

√
π2

4

That is, eigenvalue for Cauchy is not the square root of the one for

Brownian motion!
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Variational Formula: For any D ⊂ Rd

The Dirichlet form, (E, F), for stables processes, 0 < α < 2, in Rd is:

E(f , g) = Aα,d

∫
Rd

∫
Rd

(f (x)− f (y))(g(x)− g(y))

|x − y |α+d
dx dy

and

F =

{
f ∈ L2(Rd) :

∫
Rd

∫
Rd

|f (x)− f (y)|2

|x − y |α+d
dx dy <∞

}
with

Aα,d =
αΓ( d+α

2 )

21−απd/2Γ(1− α
2 )
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From this we have for any region D ⊂ Rd :

λ1,α(D) = inf

{
Aα,d

∫
D

∫
D

|u(x)− u(y)|2

|x − y |α+d
dx dy + 2Aα,d

∫
D

|u(x)|2kD(x)dx

}
where “inf” is over all u ∈ C∞0 with∫

D

|u(y)|2dy = 1.

KD(x) =

∫
Dc

dy

|x − y |α+d
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Eigenvalues and eigenfunctions enter into path properties of BM

Theorem (Chungs’s LIL. Set B∗t = sup0≤s≤t |Bs |)

lim inf
t→∞

(
log log t

t

)1/2

B∗t =
π

2
, a.s. (1)

But, is π
2 really just our “good-old-friend” π

2 or is it something else?
(1) comes from Borel–Cantelli arguments and the “small balls” probability
estimate.

P0 {B∗1 < ε} ≈ e−
π2

4ε2 , ε→ 0

P0 {B∗1 < ε} = P0

{
1

ε
B∗t < 1

}
= P0

{
B∗1
ε2
< 1
}

= P0

{
τ(−1,1) >

1

ε2

}

τ(−1,1) = inf{t > 0 : Bt 6∈ (−1, 1)} = first exit time from the interval
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As we shall see,

P0

{
τ(−1,1) > t

}
≈ e−λ1tϕ1(0)

∫ 1

1

ϕ1(y) dy , t →∞,

where λ1 is the smallest eigenvalue for one half of the Laplacian in the interval
(−1,−1) with Dirichlet boundary conditions and ϕ1 is the corresponding
eigenfunction. That is, π2/4 and the “ sin ” function.

For any 0 < α < 2, let Xα
t be the rotationally invariant stable process of order α.

A similar statement holds for the “small ball” probabilities and there is

Theorem (J. Taylor 1967)

lim inf
t→∞

(
log log t

t

)1/α

X ∗t = (λ1,α)1/α
, a.s. (2)

For several other occurrences of the eigenvalue in “sample path behavior,” see
Erkan Nane: “Higher order PDE’s and iterated Processes” and “Iterated
Brownian motion in bounded domains in Rn ”
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Recall

A Lévy Process is a stochastic process X = (Xt), t ≥ 0 with

X has independent and stationary increments

X0 = 0 (with probability 1)

X is stochastically continuous: For all ε > 0,

lim
t→s

P{|Xt − Xs | > ε} = 0

Note: Not the same as a.s. continuous paths. However, it gives
“cadlag” paths: Right continuous with left limits.
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Stationary increments: 0 < s < t <∞, A ∈ Rd Borel

P{Xt − Xs ∈ A} = P{Xt−s ∈ A}

Independent increments: For any given sequence of ordered times

0 < t1 < t2 < · · · < tm <∞,

the random variables

Xt1 − X0, Xt2 − Xt1 , . . . ,Xtm − Xtm−1

are independent.

The characteristic function of Xt is

ϕt(ξ) = E
(
e iξ·Xt

)
=

∫
Rd

e iξ·xpt(dx) = (2π)d/2p̂t(ξ)

where pt is the distribution of Xt . Notation (same with measures)

f̂ (ξ) =
1

(2π)d/2

∫
Rd

e ix·ξf (x)dx , f (x =
1

(2π)d/2

∫
Rd

e−ix·ξf (ξ)dξ
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The Lévy–Khintchine Formula

The characteristic function has the form ϕt(ξ) = etρ(ξ), where

ρ(ξ) = ib · ξ − 1

2
ξ · Aξ +

∫
Rd

(
e iξ·x − 1− iξ · x1{|x|<1}(x)

)
ν(dx)

for some b ∈ Rd , a non–negative definite symmetric n × n matrix A and a Borel
measure ν on Rd with ν{0} = 0 and∫

Rd

min
(
|x |2, 1

)
ν(dx) <∞

ρ(ξ) is called the symbol of the process or the characteristic exponent. The
triple (b,A, ν) is called the characteristics of the process.

Converse also true. Given such a triple we can construct a Lévy process.
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7. The rotationally invariant stable processes: These are self–similar
processes, denoted by Xα

t , in Rd with symbol

ρ(ξ) = −|ξ|α, 0 < α ≤ 2.

That is,

ϕt(ξ) = E
(

e iξ·Xαt
)

= e−t|ξ|α

α = 2 is Brownian motion. α = 1 is the Cauchy processes.

Transition probabilities:

Px{Xα
t ∈ A} =

∫
A

pαt (x − y)dy , any Borel A ⊂ Rd

pαt (x) =
1

(2π)d

∫
Rd

e−iξ·xe−t|ξ|αdξ

p2
t (x) =

1

(4πt)d/2
e−
|x|2
4t , (log-concave) α = 2, Brownian motion

p1
t (x) =

Cd t

(|x |2 + t2)
d+1

2

, (NOT log-concave) α = 1, Cauchy Process
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Subordinators

A subordinator is a one-dimensional Lévy process {Tt} such that

(i) Tt ≥ 0 a.s. for each t > 0, (ii) Tt1 ≤ Tt2 a.s. whenever t1 ≤ t2

Theorem (Bertoin, p.73: Laplace transforms)

E (e−λTt ) = e−tψ(λ), λ > 0,

ψ(λ) = bλ+

∫ ∞
0

(
1− e−λs

)
ν(ds)

b ≥ 0 and the Lévy measure satisfies ν(−∞, 0) = 0 and
∫∞
0

min(s, 1)ν(ds) <∞.
ψ is called the Laplace exponent of the subordinator.

Theorem (Applebaum, p. 53)

If X is an arbitrary Lévy process and T is a subordinator independent of X ,
then Zt = XTt is a Lévy process. For any Borel A ⊂ Rd ,

pZt (A) =

∫ ∞
0

pXs (A)pTt (ds)

When Xt = Bt Brownian motion, Zt is called subordinate Brownian motion.
When Tt is the α/2 stable subordinator and X is BM, Z is the α rotationally
invariant stable process of Example 8.
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Lévy semigroup

For the Lévy process {X (t); t ≥ 0}, define

Tt f (x) = E [f (X (t))|X0 = x ] = E0[f (X (t) + x)], f ∈ S(Rd).

This is a Feller semigroup (takes C0(Rd) into itself). Setting

pt(A) = P0 {Xt ∈ A} (the distribution of Xt)

we see that (by Fourier inversion formula)

Tt f (x) =

∫
Rd

f (x + y)pt(dy) = pt ∗ f (x) =
1

(2π)d

∫
Rd

e−ix·ξetρ(ξ) f̂ (ξ)dξ

with generator

Af (x) =
∂Tt f (x)

∂t

∣∣∣
t=0

= lim
t→0

1

t

(
Ex [f (X (t)]− f (x)

)
=

1

(2π)d

∫
Rd

e−ix·ξρ(ξ)f̂ (ξ)dξ = a pseudo diff operator, in general
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Many questions on the “fine” potential theoretic properties of solutions for
(−∆)α/2 and more general Lévy processes, especially subordinations of Brownian
motion, have been studied by many authors in recent years. Examples:

Regularity of heat kernels, general solutions of “heat equation”, Sobolev,
log-Sobolev inequalities, “intrinsic ultracontractivity,” . . .

“Boundary” regularity of solutions, including boundary Harnack principle,
“gauge theorems,” Fatou theorems, Martin boundary, . . .

I am interested in the “fine” spectral theoretic properties of these processes

Estimates on eigenvalues, including the ground state λ1,α and the spectral
gap λ2,α − λ1,α, Number of “nodal” domains (Courant–Hilbert Nodal
domain Theorem), geometric properties of eigenfunctions, including a
“Brascamp–Lieb” log–concavity type theorem for ϕ1,α, . . .
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The semigroup for regions D ⊂ Rd

From now on Xt = Xα
t is rotationally invariant stable with symbol

ρ(ξ) = −|ξ|α, 0 < α ≤ 2.

Let D be a bounded connected subset of Rd . The first exit time of Xα
t from D is

τD = inf{t > 0 : Xα
t /∈ D}

Heat Semigroup in D is the self-adjoint operator

T D
t f (x) = Ex

[
f (Xα

t ); τD > t
]
, f ∈ L2(D)

=

∫
D

pD,α
t (x , y)f (y)dy ,

pD,α
t (x , y) = pαt (x − y)− E x(τD < t; pαt−τD

(Xα
τD
, y)).
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pD,α
t (x , y) is called the Heat Kernel for the stable process in D.

pD,α
t (x , y) ≤ pαt (x − y) ≤ pα1 (0)t−d/α =

(
1

(2π)d

∫
Rd

e−|ξ|
α

dξ

)
t−d/α

= t−d/α ωd

(2π)dα

∫ ∞
0

e−ss( n
α−1)ds

= t−d/α ωdΓ(d/α)

(2π)dα

The general theory of heat semigroups gives an orthonormal basis of
eigenfunctions

{ϕm,α}∞m=1 on L2(D)

with eigenvalues {λm,α} satisfying

0 < λ1,α < λ2,α ≤ λ3,α ≤ · · · → ∞

That is,

T D
t ϕm,α(x) = e−λm,αtϕm,α(x), x ∈ D.
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pD,α
t (x , y) = e−λ1,αtϕ1,α(x)ϕ1,α(y) +

∞∑
m=2

e−λm,αtϕm,α(x)ϕm,α(y)

Theorem (From “Intrinsic Ultracontractivity”)

e−(λ2,α−λ1,α)t ≤ sup
x,y∈D

∣∣∣∣∣eλ1,αtpD,α
t (x , y)

ϕ1,α(x)ϕ1,α(y)
− 1

∣∣∣∣∣ ≤ C (D, α)e−(λ2,α−λ1,α)t , t ≥ 1.

For α = 2 this is valid for “many” domains but not all. For 0 < α < 2, valid
for any bounded domain.

Theorem (Implied by the Intrinsic Ultracontractivity result)

lim
t→∞

etλ1,αPx{τD > t} = ϕ1,α(x)

∫
D

ϕ1,α(y)dy , (3)

lim
t→∞

1

t
log Px{τD > t} = −λ1,α, (4)

uniformly for x ∈ D.
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The Long and Twisted Conclusion

If I want to study the eigenfunction ϕ1,α and λ1,α and how these are affected by
the geometry of the domain D, I should (better, must, . . . ) study the distribution
of the exit time τD of the process. That is, study

Px{τD > t}

as a function of D, x ∈ D, t > 0.

But (modulo a technical point):

Px{τD > t} = Pz{Xα
s ∈ D; ∀s, 0 < s ≤ t}

= lim
m→∞

Pz{Xα
jt/m ∈ D, j = 1, 2, . . . ,m}

= lim
m→∞

∫
D

· · ·
∫

D

pαt/m(x − x1) · · · pαt/m(xm − xm−1)dx1 . . . dxm
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Px{Xα
t1 ∈ D, . . . ,Xα

tm ∈ D}

=

∫
D

· · ·
∫

D

m∏
i=1

pαti−ti−1
(xi − xi−1) dx1 . . . dxn

=

∫ ∞
0

. . .

∫ ∞
0

(∫
D

· · ·
∫

D

m∏
i=1

p2
si

(xi − xi−1) dx1 . . . dxn

)

×
n∏

i=1

gα/2(ti − ti−1, si ) ds1 . . . dsm

=

∫ ∞
0

. . .

∫ ∞
0

Px{B2s1 ∈ D,B2(s1+s2) ∈ D, . . . ,B2(s1+s2+···+sn) ∈ D}

×
m∏

i=1

gα/2(ti − ti−1, si ) ds1 . . . dsm.

Must study the function

Φm(x ,D) =

∫
D

· · ·
∫

D

m∏
i=1

p2
ti (xi − xi−1) dx1 . . . dxm, x0 = x

No order on ti .
Rodrigo Bañuelos (Purdue University) F.D.D May, 2008/Seoul 20 / 34



For A ⊂ Rd , A∗ =ball centered at the origin and same volume as A. χ∗A = χA∗

f : Rd → R,

f ∗(x) =

∫ ∞
0

χ∗{|f |>t}(x)dt

(Compare this with)

|f (x)| =

∫ ∞
0

χ{|f |>t}(x)dt

Properties:

f ∗(x) = f ∗(y), |x | = |y |, f ∗(x) ≥ f ∗(y), |x | ≤ |y |

{x : f ∗(x) > t} = {x : |f (x)| > t}∗ (same level sets)

⇒ m{x : f ∗(x) > λ} = m{x : |f (x)| > λ}
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Theorem (Luttinger 1973)

Let f1, . . . , fm be nonnegative functions in Rd and let f ∗1 , . . . , f
∗
m be their

symmetric decreasing rearrangement. Then for any x0 ∈ D we have∫
Dm

m∏
j=1

fj(xj − xj−1)dx1 · · · dxm ≤
∫
{D∗}m

f ∗1 (x1)
m∏

j=2

f ∗j (xj − xj−1)dx1 · · · dxm.

D∗=ball center at zero and and same volume as D

Theorem (R. B. Latala, Méndez, 2001 (d = 2), Méndez 2003, d ≥ 3)

D ⊂ Rd convex of finite inradius rD and S infinite strip of inradius rD Let
f1, . . . , fm be nonnegative radially symmetric decreasing on Rd . For any z0 ∈ Rd ,∫

D

· · ·
∫

D

m∏
j=1

fj(zj − zj−1) dz1 · · · dzm ≤

∫
S

. . .

∫
S

f1(z1)
m∏

j=2

fj(zj − zj−1) dz1 · · · dzm.

Theorem

fj : Rd → [0, 1], hj : Rd → [0,∞), 1 ≤ j ≤ m, radial symmetric decreasing. Then∫
· · ·
∫

[1−
m∏

j=1

(1− fj(zj))]
m∏

j=1

hj(zj − zj−1)dz0 . . . dzm

≥
∫
· · ·
∫

[1−
m∏

j=1

(1− f ∗j (zj))]
m∏

j=1

hj(zj − zj−1)dz0 . . . dzm
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Corollary (Isoperimetric property for stable and “all” symmetric Lévy Processes)

Φm(x ,D) ≤ Φm(0,D∗)

Px{ταD > t} ≤ P0{ταD∗ > t}

sup
x∈D

Ex(ταD ) ≤ E0(ταD∗)

λ1,α(D∗) ≤ λ1,α(D) The Faber-Krahn Theorem

Capα(A) ≥ Capα(A∗),

(α-capacity version of a theorem of Polya–Szego. Proved by Watanabe 1984,
conjectured by Mattila 1990, Proved by Betsakos 2003, P. Méndez 2006)

Corollary (Same for the Trace)

Zα
t (D) =

∞∑
m=1

e−tλm,α(D) =

∫
D

pα,Dt (x , x)dx

≤
∫

D∗
pα,D

∗

t (x , x)dx ≤
∞∑

m=1

e−tλm,α(D∗) = Zα
t (D∗)
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Classical Isoperimetric Inequality

Amongst all regions of equal volume the ball minimizes surface area. It
follows from “trace inequality” and

Theorem (M. Kac, “Can one hear the shape of a drum?”)

With α = 2, |∂D|=surface area of boundary of D,

Z 2
t (D) ∼ Cd t−d/2vol(D)− C ′d t−(d−1)/2|∂D|+ o(t−(d−1)/2, t → 0

The first term is trivial from

P2,D
t (x , y) =

1

(4πt)d/2
e
−|x−y|2

4t Px{τD > t|Bt = y}

= free motion times Brownian bridge in D
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A detour into Weyl’s asymptotics

lim
t→0

tγ
∫ ∞

0

e−tλdµ(λ) = A⇒ lim
a→∞

a−γµ[0, a) =
A

Γ(γ + 1)

Theorem (Weyl’s Formula, α = 2. ND(λ) = #{j ≥ 1 : λj ≤ λ})

ND(λ) ∼ Cdvol(D)λd/2, λ→∞

More difficult (and no probabilistic treatment exists):

ND(λ) ∼ Cdvol(D)λd/2 − C ′d |∂D|λ(d−1)/2 + o(λ(d−1)/2)

Theorem (R.B. and T. Kulczycki (2007). 0 < α ≤ 2)∫
D

pα,Dt (x , x)dx ∼ Cd,αt−d/αvol(D)− C ′d t−(d−1)/α|∂D|+ o(t−(d−1)/α

as t → 0. This gives Weyl’s version for all 0 < α ≤ 2.
The $$ Question: Is there an α–version of the more general Weyl?
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Back on main road: Fixing other parameters besides volume

Question

Amongst all convex domains D ⊂ Rd of inradius 1, which one has the largest exit
time for Brownian motion? Also, lowest eigenvalue? Answer:The infinite strip:

S = Rd−1 × (−1, 1)

Theorem (For D convex with inradius 1.)

Φm(x ,D) ≤ Φm(0,S), x ∈ D

R.B. Méndez-Latala (2001), d = 2 and (2003), d ≥ 3. (Convexity is essential
here!)

Corollary (For D convex with inradius 1 and 0 < α ≤ 2.)

Px{τD > t} ≤ P0{τS > t} = P0{τ(−1,1) > t} (5)

λ1,α(−1, 1) ≤ λ1,α(D) (6)
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The Brascamp–Lieb log–concavity result

Definition: F : Rd → R is said to be log-concave if

log F (βx + (1− β)y) ≥ β log F (x) + (1− β) log F (y), x , y ∈ Rd

or
F (βx + (1− β)y) ≥ F (x)βF (y)1−β

Examples:

F (x) =
1

(4π)d/2
e−|x|

2/4

and
F (x) = χD(x),

D ⊂ Rd is convex, are log–concave.

Theorem (Prékopa (1971))

Convolutions of log-concave functions are log-concave.

Corollary (D ⊂ Rd convex)

For Brownian motion, the function Φm(x ,D) is log-concave.
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Corollary (Brascamp-Lieb (1979))

For any bounded convex domain D ⊂ Rd and for Brownian motion, the
function Px{τD > t} is log-concave and therefore so is the “ground state”
eigenfunction ϕ1,2(x). In fact, this holds for the “ground state”
eigenfunction for the Scrödinger operator −∆ + V where V : D → [0,∞) is
convex.

Note: Unfortunately we cannot conclude the same for 0 < α < 2. Why?

Question (D ⊂ Rd convex, 0 < α < 2)

Are the functions Px{τD > t} and/or ϕ1,α(x) log-convex?

Known only for α = 1, D = (−1, 1). In fact, in this case the functions are
concave, just like for α = 2.

Several other partial results are known for special doubly symmetric
domains in the plane.
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Definition

D ⊂ Rd be a convex symmetric relative to each coordinate axes. J any line
segment in D parallel to the x1-axis intersecting ∂D only at the two points.
F : D → R, is mid–concave on J if it is concave on mid half of J. F mid–concave
along the x1–axis if it is mid–concave on every such segment contained in D
parallel to the x1–axis. Same for mid–concavity along the x2-axis, · · · . F
mid–concave on D if it is mid–concave along each coordinate axes.

Theorem (R.B.-Méndez-Kulczycki, 2006)

Q ⊂ Rd a rectangle. Φm(x ,Q) = Px{Xα
t1 ∈ Q, . . . ,Xα

tm ∈ Q} is mid–concave in
Q for any 0 < α ≤ 2. In addition, if x = (x1, . . . , xn) ∈ Q, then

∂

∂xi
F (x) ≥ 0, if xi < 0, and

∂

∂xi
F (x) ≤ 0, if xi > 0.

But (recall, x0 = x)

Φm(x) =

∫ 1

−1

· · ·
∫ 1

−1

m∏
i=1

p
(2)
ti (xi−1−xi ) dx1 . . . dxm, not concave on (−1, 1) for all ti .
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“Hot–spots” conjecture of Jeff Rauch (University of Michigan)–1973

The maximum (and the minimum) of the “first” non-constant Neumann
eigenfunction for bounded convex domains are attained on the boundary
and only on the boundary of the domain.

Many partial results: R.B.-K.Burdzy (1999), D.Jerison-N.Darishavilli
(2000), M. Pascu (2001), R. Bass–K. Burdzy (2000), R.B.-M. Pang
(2003), R.B. M.Pang-Pascu (2004), R.Atar K.Burdzy (2005)

Counterexample: K. Burdzy-W. Werner (2000), K. Burdzy (2005)

Believed to be true for any simply connected domain, conjectured to be
true for any convex domain.

Unknown even for an arbitrary triangle in the plane!
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“Hot–spots” Conjecture for conditioned Brownian motion

Conjecture: The maximum and minimum for the first nonconstant eigenfunction
for the semigroup of Brownian motion conditioned to remain forever in a convex
domain are attained on the boundary and only on the boundary of the domain.

That is, the function ϕ2/ϕ1 attains its maximum and minimum on the boundary
and only on the boundary of D.

  

Nodal line either:   a)    

b)
or
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Theorem

Let D be a bounded domain in R2 which is symmetric and convex with respect to
both axes.

(i) If z1 = (x , y1) ∈ D+, z2 = (x , y2) ∈ D+ and y1 < y2, then

Pz1{τD+ > t}
Pz1{τD > t}

<
Pz2{τD+ > t}
Pz2{τD > t}

,

for any t > 0. In particular, the function

Ψ(z , t) =
Pz{τD+ > t}
Pz{τD > t}

,

for each t > 0 arbitrarily fixed, cannot have a maximum at an interior point
of D+.

(ii) If z1 = (x1, y) ∈ D+ and z2 = (x2, y) ∈ D+ with |x2| ≤ |x1|, then

Pz1{τD+ > t}
Pz1{τD > t}

≤ Pz2{τD+ > t}
Pz2{τD > t}

,

for any t > 0.
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Corollary

D ⊂ R2 as in Theorem ϕ2 be such that its nodal line is the intersection of the
x-axis with the domain. Without LOG, ϕ2 > 0 in D+ and ϕ2 < 0 in D−. Set
Ψ = ϕ2/ϕ1.

(i) If z1 = (x , y1) ∈ D+ and z2 = (x , y2) ∈ D+ with y1 < y2, then

Ψ(z1) < Ψ(z2).

(ii) If z1 = (x , y1) ∈ D− and z2 = (x , y2) ∈ D− with y2 < y1, then

Ψ(z1) < Ψ(z2).

In particular, Ψ cannot attain a maximum nor a minimum in the interior of
D.

(iii) If z1 = (x1, y) ∈ D+ and z2 = (x2, y) ∈ D+ with |x2| < |x1|, then

Ψ(z1) ≤ Ψ(z2). (7)
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Corollary (Exact analogue of D. Jerison and N. Nadirashvili (2000) for classical
“hot–spots”)

Suppose D ⊂ R2 is a bounded domain with piecewise smooth boundary which is
symmetric and convex with respect to both coordinate axes and that ϕ2 is as in
Theorem 1.2. Then strict inequality holds in (7) unless D is a rectangle. The
maximum and minimum of Ψ on D are achieved at the points where the y-axis
meets ∂D and, except for the rectangle, at no other points.

  

Nodal line either:   a)    

b)
or
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