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Abstract. This paper constructs a collection of discrete operators on the d-dimensional
lattice Zd, d ≥ 1, which result from the conditional expectation of martingale
transform in the upper half-space Rd+1

+ constructed from Doob h-processes. Spe-
cial cases of these operators are what we call the probabilistic discrete Riesz
transforms. When d = 1, they reduce to the probabilistic discrete Hilbert trans-
form used by the first and third authors to resolve the long-standing open problem
concerning the `p norm, 1 < p <∞, of the discrete Hilbert transform on the inte-
gers Z. The construction for d > 1 is motivated by a similar problem, Conjecture
5.5, concerning the norm of the discrete Riesz transforms arising from discretiz-
ing singular integrals on Rd as in the original paper of A. P. Calderón and A. Zyg-
mund, and subsequent works of A. Magyar, E. M. Stein, S. Wainger, L. B. Pierce
and many others, concerning operator norms in discrete harmonic analysis. For
any d ≥ 1, it is shown that the probabilistic discrete Riesz transforms have the
same `p norm as the continuous Riesz transforms on Rd which is dimension inde-
pendent and equals the norm of the classical Hilbert transform on R. Along the
way we give a different proof, based on Fourier transform techniques, of the key
estimate used to identify the norm of the discrete Hilbert transform.
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1. Introduction

The probabilistic representation à la Gundy–Varopoulos [36] of the classical
Riesz transforms and other singular integrals and Fourier multipliers as condi-
tional expectations (projections) of stochastic integrals, in combination with the
sharp martingale inequalities of Burkholder [19] and their versions for orthogo-
nal martingales [14] and non-symmetric transforms [11, 24], have proven to be
powerful tools in obtaining sharp, or near sharp, Lp-bounds for these operators
in a variety of geometric settings. A particular feature of these techniques is that
they give Lp-bounds independent of the geometry of the ambient space, including
dimension. For example, such representation was used to show that the Lp-norm,
1 < p < ∞, of the Riesz transforms on Rd, d > 1, is the same as that of the
Hilbert transform on R found by S. Pichorides [55] and to obtain the first explicit
bounds for the Beurling–Ahlfors transform, see [14]. The former was first proved
using the method of rotations in [42]. For some history on norm estimates for
the Beurling–Ahlfors transform motivated by the celebrated 1982 conjecture of T.
Iwaniec [41], and the current best known bound, see [8] and the overview article
[4].

One advantage of the martingale approach in obtaining explicit bounds is that
it immediately extends to geometric and analytic settings well beyond Rd, includ-
ing Wiener space, quite general semigroups including those of Lévy processes
and discrete Laplacian on groups. The interest on dimension free estimates for
Riesz transforms and other operators in harmonic analysis was sparked by the
results and questions raised in Stein [64] and Meyer [51]. For some of the now
vast literature on dimension free, and sharp bounds, for Riesz transforms and
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Fourier multipliers in a variety of geometric and analytic settings, we refer the
reader to [2, 4–7, 10–13, 15, 21, 22, 25–32, 34, 37, 47–49, 52–54, 61, 69] and refer-
ences contained therein.

In his celebrated 1928 paper [62], M. Riesz solved a problem of considerable
interest at the time by showing that the Hilbert transform

(1.1) Hf(x) = p.v.
1

π

∫
R

f(x− y)

y
dy, f ∈ Lp(R),

is a bounded operator on Lp(R), 1 < p < ∞. For some history of this problem
and Riesz’s solution in 1925 before its publication in 1928, we refer the reader
to M. Cartwright’s article “Manuscripts of Hardy, Littlewood, Marcel Riesz and
Titchmarsh,” [23]. In his paper Riesz also showed that the boundedness of H on
Lp(R) implies the boundedness of the discrete version Hdis on `p(Z), where the
latter is defined by

(1.2) Hdisf(n) =
1

π

∑
m∈Z\{0}

f(n−m)

m
, f ∈ `p(Z).

In fact, Riesz showed that the operator norms satisfy

(1.3) ‖H‖Lp→Lp ≤ ‖Hdis‖`p→`p , ‖Hdis‖`p→`p ≤ C‖H‖Lp→Lp ,

where C is a constant independent of p.
The discrete Hilbert transform was introduced by D. Hilbert in 1909 who also

verified its boundedness on `2(Z). Proving that the operator norms of H and Hdis,
1 < p < ∞, are the same has been a long-standing open problem motivated in
part by an erroneous proof of E. C. Titchmarsh in 1926, [67, 68]. In [55], S. Pi-
chorides showed that ‖H‖Lp→Lp = cot(π/(2p∗)), where p∗ = max(p, p/(p − 1)). In
[45], the same is shown for Hdis when p is of the form 2k or 2k/(2k − 1), k = 1, 2, . . .
The proof is attributed to I. Verbitsky. For further history and references related
to this problem, see [2,25–28,38,45]. In [9], the equality of the norms was proved
for all 1 < p <∞ by extending the Gundy–Varopoulos construction for Riesz trans-
forms to martingale transforms of Doob h-processes where the harmonic function
h corresponds to the periodic Poisson kernel. It was shown there that the discrete
Hilbert transform arises as the convolution of the projection of one of these Doob
martingale transforms, which has the desired bound, with a probability kernel.
Hence although this more general construction à la Gundy–Varopoulos does not
lead to an exact representation of the discrete Hilbert transform, unlike the situ-
ation of the continuous version of the Hilbert transform and the Riesz transforms
on Rd, the extra step of convolving with a probability kernel preserves the norm
and resolves the equality of the norms of H and Hdis for all 1 < p <∞.

Given the successful use of the probabilistic techniques in deriving sharp and
dimension free estimates for singular integrals and Fourier multipliers as dis-
cussed above, and the interest on discrete analogues of many classical operators
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in harmonic analysis as studied in [18, 50, 56–60, 65, 66] (and many other refer-
ences contained therein), the following questions naturally arise.

Question 1.1. Can the construction of the probabilisitic operators in [9] be car-
ried out in higher dimension to obtain a collection of operators on Zd, d > 1, which
are closely related to the Riesz transforms and that have `p(Zd)-norms indepen-
dent of d? Are the extension of these operators to Rd obtained simply by replacing
the discrete variable n ∈ Zd by the continuous variable z ∈ Rd in their kernels with
the appropriate modification for the singularity at z = 0, also bounded on Lp(Rd)?
Are they Calderón–Zygmund operators?

Question 1.2. Is it possible to extend the sharp result in [9] for the discrete
Hilbert transform in Z to the case of the discrete Riesz transforms in Zd where
the latter are defined as discrete convolutions with the corresponding Calderón–
Zygmund kernels, i.e., as defined in the classical paper of Calderón and Zygmund
[20, pg. 138]? The precise formulation of this question, which we state as a
conjecture, is found in Section 5.2.

In this paper we show that there is a natural collection of discrete operators on
Zd which have norms independent of the dimension and with the same constants
as those in the martingale transform inequalities of [19] and [14]. From these
operators we define what we call the probabilistic discrete Riesz transforms, de-
noted by TH(k), k = 1, 2, . . . , d, and show that for all d and all k,

‖TH(k)‖`p→`p = cot(π/(2p∗)), 1 < p <∞.(1.4)

These operators are closely related to the discrete Calderón–Zygmund Riesz trans-
forms. When d = 1, they reduce to what we call the probabilistic discrete Hilbert
transform, denoted by TH, for which, with the additional step that Hdis is the
convolution of TH with a probability kernel, gives

(1.5) ‖TH‖`p→`p = ‖Hdis‖`p→`p = ‖H‖Lp→Lp = cot

(
π

2p∗

)
, 1 < p <∞.

2. Organization and summary of results

The paper is organized as follows.

• Section 3.1 introduces the periodic Poisson kernel h on Rd, d ≥ 1, from which
we will define the Doob h-process used throughout the paper and derives some
of its basic properties. An important difference between d = 1 and d > 1 is
that in the first case we can write a simple explicit expression for h from which
many explicit computations are possible. A similar formula is not available for
d > 1.
• Section 3.2 defines the h-harmonic extension of the function f : Zd → R and

discusses a connection to an interesting problem of Magyar, Stein, and Wainger
in [50], see Remark 3.4.
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• Section 3.3 defines the Doob h-process associated with the function h, their
martingale transforms and recalls the relevant martingale inequalities.
• Section 4.1 defines the projection operators, denoted by TA, as the conditional

expectations of the martingale transforms. Theorems 4.1 and 4.4 compute
their kernels and prove their boundedness on `p(Zd) with the same constants
as those in the martingale inequalities.
• Section 5.1 considers the discrete Calderón–Zygmund operators given by (5.4)

and proves their boundedness properties, see Propositions 5.1 and 5.2. Con-
jecture 5.5, and the weaker Problem 5.6, on the norm of the discrete Riesz
transforms à la Calderón–Zygmund are formulated in this section.
• Section 6.1 defines the probabilistic discrete Riesz transforms on Zd and shows

that their `p(Zd)-norms are the same as the norms of the classical Riesz trans-
forms on Lp(Rd), 1 < p < ∞, see Theorem 6.6. From this it follows that the
p-norms of the classical Riesz transforms on Lp(Rd), the classical Hilbert trans-
form on Lp(R), the discrete Hilbert transform on `p(Z), and probabilistic dis-
crete Riesz transforms on `p(Zd) are all equal to cot(π/(2p∗)). This gives further
evidence of the validity of Conjecture 5.5.
• Section 7 computes the Fourier transform of the probabilistic discrete Hilbert

transform. This allows for a new proof of the key Lemma 1.3 in [9] which
shows that the discrete Hilbert transform Hdis is the convolution of the prob-
abilistic discrete Hilbert transform with a probability kernel, see Theorem
7.1. The proof here, based on the Fourier transform and Bochner’s theorem
on positive-definite functions (Lemma 7.6), is computationally much simpler
than the one given in [9]. From this, the sharp `p-bound for Hdis follows. The
natural question for Zd, d ≥ 2, is stated at the end of this section, see Question
7.7.
• Section 8 shows that replacing the discrete variable n ∈ Zd by the continuous

variable z ∈ Rd in the kernel for the probabilistic discrete Riesz transforms, and
after a modification which does not affect the discrete operator, gives operators
that are bounded on Lp(Rd), 1 < p < ∞, and except for discontinuity on the
sphere they satisfy (5.3) in the definition of Calderón–Zygmund kernels, see
Theorem 8.1 and Corollaries 8.3 and 8.4.
• Section 9 discusses a “method of rotation” by constructing certain discrete

Riesz transforms on Zd motivated by the classical ones and verifying that these
Riesz transforms have the same norms as the discrete Hilbert transform Hdis

and the probabilistic discrete Riesz transforms TH(k), see Theorem 9.5. This
section ends with Theorem 9.6 summarizing the `p-norms for the various dis-
crete versions of Hilbert and Riesz transforms studied in this paper.
• Section 10 presents some numerical calculations comparing the relative sizes

of the kernels for the discrete Riesz transforms, the probabilistic discrete Riesz
transforms and the discrete Riesz transforms constructed in the method of ro-
tations.
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Notation. The Fourier transform of a function f on Rd is denoted by f̂ , where

f̂(ξ) =

∫
Rd
f(x)e−2πix·ξdξ for x ∈ Rd.

For a function f : Zd → R, the Fourier transform is denoted by F(f), where

F(f)(ξ) =
∑
n∈Zd

f(n)e−2πin·ξ for ξ ∈ Q := [−1
2
, 1

2
)d.

Here, Q is often called the fundamental cube.
The standard notations ‖f‖Lp and ‖f‖`p are used for the p-norm of functions

in Lp(Rd) and `p(Zd), respectively. ‖T‖Lp→Lp will denote the operator norm of
T : Lp(Rd)→ Lp(Rd), and similarly ‖T‖`p→`p for the operator norm of T : `p(Zd)→
`p(Zd).

The gradient and Laplacian of functions u(x, y) on the upper half-space Rd ×
R+ = {(x, y) : x ∈ Rd, y > 0} are denoted by

∇u =

(
∂u

∂x1

, · · · , ∂u
∂xd

,
∂u

∂y

)
=

(
∇xu,

∂u

∂y

)
and

∆u =
d∑
i=1

∂2u

∂xi2
+
∂2u

∂y2
= ∆xu+

∂u2

∂y2
,

respectively. By abuse of notation, for f : Rd → R we will still use ∆f =
∑d

i=1
∂2f
∂xi2

to denote its Laplacian on Rd.
Throughout the paper,

p∗ = max

{
p,

p

p− 1

}
, 1 < p <∞.

C, C1, C2, . . . , Cd will denote constants that depend only on d and whose value may
change from line to line.

3. Preliminaries

3.1. The periodic Poisson kernel. Let d ≥ 1. The Poisson kernel for the upper
half-space Rd × R+ is given by

p(x, y) =
cdy

(|x|2 + y2)
d+1
2

, (x, y) ∈ Rd × R+, cd = Γ

(
d+ 1

2

)
π−

d+1
2 .(3.1)

For x, z ∈ Rd and y ∈ R+, we set pz(x, y) = p(x − z, y). Since ∆pz(x, y) = 0 and
pz(x, y) > 0 for all (x, y) ∈ Rd × R+ and z ∈ Rd, we see that the function h defined
by

(3.2) h(x, y) =
∑
n∈Zd

pn(x, y)

is also positive and harmonic. In addition, it is periodic in x in a sense that
h(x + m, y) = h(x, y) for all m ∈ Zd. We call the function h(x, y) the periodic
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Poisson kernel. The following properties of h(x, y) will be used frequently in the
sequel.

Lemma 3.1. We have limy→∞ h(x, y) = 1 uniformly in x ∈ Rd. In particular, for
each y0 > 0, there exist constants C1, C2 > 0 such that C1 ≤ h(x, y) ≤ C2, for all
x ∈ Rd and y ≥ y0.

Proof. Recall that Q = [−1
2
, 1

2
)d. For x ∈ Rd and y > 0, we have

1 =

∫
Rd
p(x− z, y) dz =

∑
n∈Zd

∫
n+Q

p(x− z, y) dz =
∑
n∈Zd

∫
Q

pn(x− z, y) dz.

We will estimate the quantity

pn(x, y)−
∫
Q

pn(x− z, y) dz =

∫
Q

(pn(x, y)− pn(x− z, y)) dz.

All constants C1, C2, . . . below are positive and depend only on d. Observe that we
have

|∇xp(x, y)| ≤ C1
y

(|x|2 + y2)
d
2

+1

for all (x, y) ∈ Rd × R+. Furthermore, if x ∈ Rd, y ≥ 1, z ∈ Q and n ∈ Zd, then

|x− n− z|2 + y2 ≥ C2|x− n|2 + y2.

It follows that

|∇xpn(x− z, y)| ≤ C1
y

(|x− n− z|2 + y2)
d
2

+1

≤ C3
y

(|x− n|2 + y2)
d
2

+1

≤ C4
pn(x, y)

(|x− n|2 + y2)
1
2

≤ C4
pn(x, y)

y
.

Thus,

|pn(x, y)dz − pn(x− z, y)| ≤ C4
pn(x, y)

y
× |z| ≤ C5

pn(x, y)

y
.

We conclude that

|h(x, y)− 1| =

∣∣∣∣∣∑
n∈Zd

∫
Q

(pn(x, y)dz − pn(x− z, y))dz

∣∣∣∣∣
≤
∑
n∈Zd

∫
Q

|pn(x, y)dz − pn(x− z, y)|dz

≤
∑
n∈Zd

∫
Q

C5
pn(x, y)

y
dz =

C5

y
.

This proves the first statement of the lemma. The second assertion (ii) follows
from (i) and the fact that h(x, y) is positive, continuous, and periodic in x. �
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Clearly, h(x, y) ≥ p(x, y), and thus for some constant C1 depending only on d
we have h(x, y) ≥ C1y whenever x ∈ Q and y ∈ (0, 1). Since h(x, y) is periodic in
x with period 1, the same estimate holds for all x ∈ Rd, and by combining this
inequality with Lemma 3.1, we find that

(3.3) h(x, y) ≥ C2 min{1, y}
for all (x, y) ∈ Rd × R+. Similarly, we have h(x, y) ≥ p(x, y) ≥ C3

y√
x2+y2

when

x2 + y2 < 1 and y ∈ (0, 1). For all other (x, y) the last estimate is weaker than (3.3)
(up to a constant factor), so we conclude that

(3.4) h(x, y) ≥ C4
y√

x2 + y2

holds for all (x, y) ∈ Rd × R+.
We recall the Poisson summation formula.

Proposition 3.2 ([35, Theorem 3.1.17]). Suppose that f, f̂ ∈ L1(Rd) and

|f(x)|+ |f̂(x)| ≤ C(1 + |x|)−n−δ

for some C, δ > 0. Then f and f̂ are continuous and

(3.5)
∑
n∈Zd

f(x+ n) =
∑
n∈Zd

f̂(n)e2πin·x

for all x ∈ Rd.

Applying to the function f(x) = p(x, y) for which f̂(n) = e−2π|n|y, we obtain that

h(x, y) =
∑
n∈Zd

p0(x+ n, y) =
∑
n∈Zd

e−2π|n|ye2πin·x.(3.6)

From the fact that the Poisson kernel for the unit disc Pr(θ) is given by

Pr(θ) =
∑
n∈Z

r|n|einθ =
1− r2

1 + r2 − 2r cos θ
, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π,

we see that for d = 1,

h(x, y) =
1

2π
Pe−2πy(2πx) =

sinh(2πy)

cosh(2πy)− cos(2πx)
.(3.7)

This explicit expression for h when d = 1 is well known, see for example [40,
pg.70]. It was derived in [9, Lemma 3.1] by a different argument and used there
for many calculations. In particular, for d = 1, such formula permits explicit
calculations for various quantities involving the function 1

h(x,y)
, see [9]. In Section

7 we will use this in the calculation of the Fourier transform of the kernel KH
for the probabilistic discrete Hilbert transform. For d ≥ 2, while we can express
h(x, y) in various other forms besides (3.2) and (3.6), it does not seem possible to
write such a convenient closed formula that will facilitate calculations with 1

h(x,y)

in a similar manner.
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3.2. h-harmonic extension. Let f : Zd → R be a function of compact support,
that is, f(n) = 0 all but finitely many n ∈ Zd. Define

uf (x, y) =
∑
n∈Zd

f(n)
pn(x, y)

h(x, y)
.(3.8)

Note that uf is h-harmonic. That is, ∆(huf ) = 0. Equivalently, uf (x, y) is harmonic
in the upper half-space relative to the operator

1

2
∆ +

∇h(x, y) · ∇
h(x, y)

.

The following proposition provides information on the boundary values of uf .

Proposition 3.3. For each x ∈ Rd, pn(x, y)/h(x, y) converges as y → 0. Let
Ψ(x) be the limit, and f ∈ `p(Zd) be compactly supported. Define fext(x) :=∑

n∈Zd f(n)Ψ(x− n). Then, fext(n) = f(n) for all n ∈ Zd and ‖fext‖Lp ≤ ‖f‖`p.

Proof. Suppose x = 0. Note that pn(0, y)/h(0, y) ≤ 1 and

h(0, y) = p(0, y) +
∑
n6=0

p(n, y) = p(0, y) +
∑
n6=0

cdy

(|n|2 + y2)
d+1)

2

≤ p(0, y) + cdy
∑
n6=0

|n|−(d+1).

Since the sum on the left hand side is finite, we have

1

1 + Cdyd+1
≤ p(0, y)

h(0, y)
≤ 1.

Thus, if x = 0, the limit exists and Ψ(0) = 1.
Suppose x = n ∈ Zd \ {0}. Then, limy→0 p(n, y) = 0 and

1

h(n, y)
≤ 1

p(0, y)
=

1

cd
yd → 0.

Thus, the limit exists and Ψ(n) = 0. For x ∈ Rd \ Zd, we have limy→0 p(x, y)/y =
cd|x|−d−1 and

lim
y→0

h(x, y)

y
= cd

∑
n∈Zd
|x− n|−(d+1).

Since the sum is finite for each x ∈ Rd \Zd, we conclude that Ψ(x) is well-defined.
Note that ∫

Rd

p(x, y)

h(x, y)
dx =

∑
n∈Zd

∫
Q

pn(x, y)

h(x, y)
dx = 1

and ∑
n∈Zd

p(x− n, y)

h(x− n, y)
=
∑
n∈Zd

pn(x, y)

h(x, y)
= 1.



10 DISCRETE SINGULAR INTEGRALS

By Fatou’s lemma, we have∫
Rd

Ψ(x) dx ≤ 1,
∑
n∈Zd

Ψ(x− n) ≤ 1.

Thus, it follows from Hölder’s inequality that

‖fext‖pLp =

∫
Rd
|fext(x)|p dx ≤

(∑
n∈Zd
|f(n)|p

∫
Rd

Ψ(x− n) dx

)(∑
n∈Zd

Ψ(x− n)

)p−1

≤ ‖f‖p`p .

�

Remark 3.4. Due to this Proposition, we call uf the discrete harmonic extension
of f .

When d = 1, we can use (3.7) to compute that

Ψ1(x) :=Ψ(x) =

{
sin2(πx)
π2x2

, x 6= 0,

1, x = 0.

For an arbitrary d = 1, 2, . . . , set Ψd(x) =
∏d

i=1 Ψ1(xi) and consider the function

f̃ext(x) =
∑
n∈Zd

f(n)Ψd(x− n).

It was proved in [50] that for all d ≥ 1, there exists a dimensional constant Ad ≥ 1
such that

1

Ad
‖f‖`p ≤ ‖f̃ext‖Lp ≤ Ad‖f‖`p .(3.9)

The compact support of the Fourier transform of Ψd(x), which we are not able to
verify in our case for Ψ(x) when d > 1, is crucial for the first inequality in (3.9).
The bounds in (3.9) were used in [50, Proposition 2.1] to show that the Lp-norm of
a continuous Fourier multiplier operator T , when the multiplier is bounded and of
compact support, controls the `p-norm of its discrete version Tdis with a constant
depending on d. More precisely, suppose

K̂(ξ) =

∫
Rd
K(x)e−2πix·ξdx

is bounded and supported on the fundamental cube Q = [−1
2
, 1

2
)d. Define the

Fourier multiplier T̂ f(ξ) = K̂(ξ)f̂(ξ) and its discrete version by

Tdisf(n) =
∑
m∈Zd

K(m)f(n−m).

Fix 1 ≤ p ≤ ∞. If T is bounded on Lp(Rd), then Tdis is bounded on `p(Zd) and

‖Tdis‖`p→`p ≤ Cd‖T‖Lp→Lp ,(3.10)

where Cd = 3dA2
d.

Remark 3.5. The problem raised in [50, Remark (1), pg. 193],
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“it would be interesting to know if Cd can be taken to be indepen-
dent of d, or for that matter if Cd = 1,”

has been shown not to be the case, at least for p near 1. See [44] for details.

3.3. The Doob h-process and martingale transforms. For the function h(x, y)
defined in (3.2), let Zt be a solution of the stochastic differential equation

dZt = dBt +
∇h(Zt)

h(Zt)
dt,

where (Bt)t≥0 is the (d + 1)-dimensional Brownian motion starting from (x0, y0) ∈
Rd × R+. The lifetime of Zt in the upper half-space is defined by τ = inf{t ≥ 0 :
Yt = 0}. The lifetime τ is finite with probability one and the process Zt only exits
the upper half-space on Zd × {0}. Indeed, at its lifetime Zt approaches the point

n ∈ Zd with probability pn(x,y)
h(x,y)

, where (x, y) is the starting point of Zt. For the basic
properties and stochastic calculus for the Doob h-processes we refer the reader
to [16, Chapter 3].

We denote by `pc(Zd) the space of all compactly supported functions in `p(Zd).
For f ∈ `pc(Zd), we define

Mt = M f
t = uf (Zt), for t ∈ (0, τ).

By Itô’s formula, M f
t is a martingale and satisfies

M f
t = M f

0 +

∫ t

0

∇uf (Zs) · dZs +
1

2

∫ t

0

∆uf (Zs) ds(3.11)

= M f
0 +

∫ t

0

∇uf (Zs) · dZs −
∫ t

0

∇h(Zs) · ∇uf (Zs)
h(Zs)

ds

= M f
0 +

∫ t

0

∇uf (Zs) · dBs,

where (Bt)t≥0 is the (d+ 1)-dimensional Brownian motion.
Let M(d+1)(R) be the space of all (d + 1) × (d + 1) real matrices and denote its

norm by

‖A‖ = sup{‖Av‖ : v ∈ Rd+1, ‖v‖ ≤ 1}.

By abuse of notation, for a matrix-valued function A : Rd × R+ →M(d+1)(R), that
is, A(x, y) = (Aij(x, y))1≤i,j≤d+1 for all x ∈ Rd and y > 0, we define

‖A‖ = sup
(x,y)∈Rd×R+

‖A(x, y)‖ = sup{‖A(x, y)v‖ : v ∈ Rd+1, ‖v‖ ≤ 1, (x, y) ∈ Rd × R+}.

We say a matrix A(x, y) = (Aij(x, y)) ∈ M(d+1)(R) is orthogonal if 〈A(x, y)v, v〉 =∑
ij Aijvivj = 0 for all (x, y) ∈ Rd × R+ and all v ∈ Rd+1. Let A(x, y) be a matrix-

valued function on Rd × R+ and f ∈ `pc(Zd). The martingale transform of (M f
t )t≥0
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with respect to A(x, y) is defined by

(A ?M f )t :=

∫ t

0

A(Zs)∇uf (Zs) · dBs

=

∫ t

0

A(Zs)∇uf (Zs) · dZs −
∫ t

0

A(Zs)∇uf (Zs) · ∇h(Zs)

h(Zs)
ds.

From the martingale inequalities in [19] (general A) and [14] (orthogonal A),
respectively, we have the following

Theorem 3.6. Let 1 < p <∞ and recall that p∗ = max{p, p
p−1
}.

(i) Let A be a matrix-valued function with ‖A‖ <∞. Then we have

‖A ?M f‖p ≤ (p∗ − 1)‖A‖‖M f‖p.

(ii) If A is orthogonal, then

‖A ?M f‖p ≤ cot

(
π

2p∗

)
‖A‖‖M f‖p.

4. Discrete operators arising from martingale transforms

4.1. The projection operators TA and their `p boundedness. For the rest of
this paper we fix our starting point (x0, y0) to be (0, w), w > 0. For A : Rd × R+ →
M(d+1)(R) with ‖A‖ <∞, f ∈ `pc(Zd) and n ∈ Zd, we define

TwA (f)(n) = E(0,w)

[
(A ?M f )τ

∣∣∣Xτ = n
]
.(4.1)

We call these operators “projections of martingale transforms.” Our next goal
is two fold. Firstly, we show that when w → ∞, they give rise to a family of op-
erators, denoted as TA, which are bounded on `pc(Zd), 1 < p < ∞, with the same
`p-bounds as those given in Theorem 3.6. In particular, these bounds are indepen-
dent of d. Secondly, we compute their kernels. Although these constructions are
in the style of Gundy–Varopoulos [36], we follow the approach in [3, Section 2]
using the occupation time formula in terms of the Green’s functions to compute
their kernels.

For each n ∈ Zd, we consider the processes (Zt)t≥0 starting at (0, w) and con-
ditioned to exit the upper half-space at (n, 0) and denote it by Zn

t . Then Zn
t is

just Brownian in the upper half-space with drift ∇pn
pn
. Let us denote the Brownian

motion which arises as the martingale part of Zn
t by Bn

t , and the expectation of
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(Zn
t )t≥0 by En

(0,w). Then TwA (f) can be written as

TwA (f)(n) = E(0,w)

[
(A ?M f )τ

∣∣∣Xτ = n
]

= E(0,w)

[ ∫ τ

0

A(Zs)∇uf (Zs) · dZs −
∫ τ

0

A(Zs)∇uf (Zs) · ∇h(Zs)

h(Zs)
ds
∣∣∣Xτ = n

]
= En

(0,w)

[ ∫ τ

0

A(Zn
s )∇uf (Zn

s ) · dZn
s −

∫ τ

0

A(Zn
s )∇uf (Zn

s ) · ∇h(Zn
s )

h(Zn
s )

ds
]

= En
(0,w)

[ ∫ τ

0

A(Zn
s )∇uf (Zn

s ) · dBn
s +

∫ τ

0

A(Zn
s )∇uf (Zn

s ) · ∇pn(Zn
s )

pn(Zn
s )

ds

−
∫ τ

0

A(Zn
s )∇uf (Zn

s ) · ∇h(Zn
s )

h(Zn
s )

ds
]

= En
(0,w)

[ ∫ τ

0

A(Zn
s )∇uf (Zn

s ) ·
(
∇pn(Zn

s )

pn(Zn
s )
− ∇h(Zn

s )

h(Zn
s )

)
ds
]
.

Next, we use the occupation time formula to write this expectation as an inte-
gral over Rd × R+. Let us denote the Green’s function for the upper half-space
with pole (0, w) by Gw(x, y). Then

Gw(x, y) =


1

2π
log

(
x2 + (y + w)2

x2 + (y − w)2

)
, d = 1,

Γ(d−1
2

)

2π
d+1
2

(
1

(|x|2 + |w − y|2)
d−1
2

− 1

(|x|2 + |w + y|2)
d−1
2

)
, d ≥ 2.

Since the occupation time measure for the process Zn
t is given by

pn(x, y)Gw(x, y)

pn(0, w)
,

it follows from the occupation time formula that

TwA (f)(n) =

∫
Rd

∫
R+

pn(x, y)Gw(x, y)

pn(0, w)
A(x, y)∇uf (x, y) ·

(
∇pn(x, y)

pn(x, y)
− ∇h(x, y)

h(x, y)

)
dydx

=

∫
Rd

∫
R+

h(x, y)Gw(x, y)

pn(0, w)
A(x, y)∇uf (x, y) ·

(
∇pn(x, y)

h(x, y)
− pn(x, y)∇h(x, y)

h(x, y)2

)
dydx

=

∫
Rd

∫
R+

h(x, y)Gw(x, y)

pn(0, w)
A(x, y)∇uf (x, y) · ∇

(
pn(x, y)

h(x, y)

)
dydx.

For m,n ∈ Zd, we define the kernel for the operator TwA by

(4.2) Kw
A(n,m) := TwA (δm)(n)

where δm(n) = 1 if m = n and otherwise 0. Note that uδm(x, y) = pm(x,y)
h(x,y)

and hence
we have

(4.3) TwA (f)(n) =
∑
m∈Zd

Kw
A(n,m)f(m),



14 DISCRETE SINGULAR INTEGRALS

where

Kw
A(n,m) =

∫
Rd

∫
R+

Gw(x, y)

pn(0, w)
h(x, y)A(x, y)∇

(pm
h

)
· ∇
(pn
h

)
dydx.(4.4)

With the kernels Kw
A(n,m) defined for all w > 0, we like to compute the limit as

w → 0 and study their properties. For each m,n ∈ Zd and f ∈ `pc(Zd), we define

(4.5) KA(n,m) = lim
w→∞

Kw
A(n,m)

and

(4.6) TA(f)(n) =
∑
m∈Zd

KA(n,m)f(m).

The following theorem shows that TA is well-defined and gives an explicit expres-
sion for it.

Theorem 4.1. Let A(x, y) be a matrix-valued function with ‖A‖ < ∞ and m,n ∈
Zd. Then, Kw

A(n,m) converges as w →∞ and

KA(n,m) = lim
w→∞

Kw
A(n,m) =

∫
Rd

∫
R+

2yh(x, y)A(x, y)∇
(pm
h

)
· ∇
(pn
h

)
dydx.(4.7)

Lemma 4.2. Let d ≥ 1, n ∈ Zd, and (x, y) ∈ Rd × R+. Then we have

lim
w→∞

Gw(x, y)

pn(0, w)
= 2y.

If n ∈ Zd and w ≥ |n|, then
Gw(x, y)

pn(0, w)
≤ 2yg

( y
w

)
where

g(t) =

{
1
2t

log(1 + 4t(t− 1)−2), d = 1,

2
d+1
2 |t− 1|−(d+1), d ≥ 2.

(4.8)

Proof. The case d = 1 was proven in [9, Lemma 3.3]. For d ≥ 2, we use the mean
value theorem to get

1

(|x|2 + |w − y|2)
d−1
2

− 1

(|x|2 + |w + y|2)
d−1
2

= 2(d− 1)wy(|x|2 + |w − y|2 + 4wyε)−
d+1
2

= 2(d− 1)yw−d(1 + | x
w
|2 + | y

w
|2 + 2(2ε− 1) y

w
)−

d+1
2

for some ε ∈ (0, 1). The first part follows now from

Gw(x, y)

pn(0, w)
=

Γ(d−1
2

)

2π
d+1
2

2(d− 1)yw−d(1 + | x
w
|2 + | y

w
|2 + 2(2ε− 1) y

w
)−

d+1
2

cdw−d(1 + |n|2
|w|2 )−

d+1
2

=
2y(1 + |n|2

|w|2 )
d+1
2

(1 + | x
w
|2 + | y

w
|2 + 2(2ε− 1) y

w
)
d+1
2

,
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and the other one is a consequence of the inequality

Gw(x, y)

pn(0, w)
=

2y(1 + |n|2
|w|2 )

d+1
2

(1 + | x
w
|2 + | y

w
|2 + 2(2ε− 1) y

w
)
d+1
2

≤ 2y
( 2

| y
w
− 1|2

) d+1
2
,

when w ≥ |n|. �

Lemma 4.3. Let d ≥ 1, n ∈ Zd, x ∈ Rd, and y > 0, then we have

|∇pn(x, y)|
pn(x, y)

≤ d

y
,
|∇h(x, y)|
h(x, y)

≤ d

y
.

Proof. Direct computation gives

∂

∂xi
pn(x, y) = −cd(d+ 1)(xi − ni)y

(|x− n|2 + y2)
d+3
2

= −(d+ 1)(xi − ni)
|x− n|2 + y2

pn(x, y),(4.9)

∂

∂y
pn(x, y) =

cd(|x− n|2 − dy2)

(|x− n|2 + y2)
d+3
2

=
(|x− n|2 − dy2)

y(|x− n|2 + y2)
pn(x, y).(4.10)

This in turn gives

|∇pn(x, y)|2

pn(x, y)2
=

1

y2(|x− n|2 + y2)2

(
(d+ 1)2y2|x− n|2 + (|x− n|2 − dy2)2

)
=

1

y2(|x− n|2 + y2)2

(
|x− n|4 + (d2 + 1)y2|x− n|2 + d2y4

)
=

1

y2(|x− n|2 + y2)2

(
(|x− n|2 + d2y2)(|x− n|2 + y2)

)
=
|x− n|2 + d2y2

y2(|x− n|2 + y2)

≤ d2

y2
.

Let N > 0 and set hN(x, y) =
∑

n∈Zd,|n|≤N pn(x, y). Note that hN(x, y)→ h(x, y) and

∇hN(x, y) → ∇h(x, y) as N → ∞ uniformly on compact sets in Rd × R+. We then
have

|∇hN(x, y)| ≤
∑

n∈Zd,|n|≤N

|∇pn(x, y)|

≤ d

y
h(x, y)

∑
n∈Zd,|n|≤N

pn(x, y)

h(x, y)

≤ d

y
h(x, y).

Letting N →∞, we get the desired result. �



16 DISCRETE SINGULAR INTEGRALS

Proof of Theorem 4.1. Let

jn,m(x, y, w) =
Gw(x, y)

pn(0, w)
h(x, y)A(x, y)∇

(pm
h

)
· ∇
(pn
h

)
,

then Kw
A(n,m) =

∫∫
jn,m(x, y, w) dxdy. Let w ≥ |n| and define

j(1)
n,m(x, y, w) = jn,m(x, y, w)1{0<y<w/2},

j(2)
n,m(x, y, w) = jn,m(x, y, w)1{y≥w/2}.

We claim that

lim
w→∞

∫∫
j(1)
n,m(x, y, w) dxdy =

∫
Rd

∫
R+

2yh(x, y)A∇
(pm
h

)
· ∇
(pn
h

)
dydx,

lim
w→∞

∫∫
j(2)
n,m(x, y, w) dxdy = 0.

By Lemma 4.3, we have

|∇(log
pm(x, y)

h(x, y)
)| ≤ |∇pm(x, y)|

pm(x, y)
+
|∇h(x, y)|
h(x, y)

≤ 2d

y

and ∣∣∣∣A(x, y)∇
(

log
pm(x, y)

h(x, y)

)
· ∇
(

log
pn(x, y)

h(x, y)

)∣∣∣∣ ≤ Cd,A
y2

.

Note that if 0 < y < w/2, then g(y/w) ≤ C for some C > 0. By Lemma 4.2,

Gw(x, y)/pn(0, w) ≤ 2yg(y/w) ≤ Cy.

Thus, we have

j(1)
n,m(x, y, w) =

Gw(x, y)

pn(0, w)

pmpn
h

A∇
(

log
pm
h

)
· ∇
(

log
pn
h

)
≤ Cd,Apm(x, y)pn(x, y)

yh(x, y)
.

If y ≥ 1, then it follows from Lemma 3.1 that

pm(x, y)pn(x, y)

h(x, y)
≤ Cpm(x, y)pn(x, y) ≤ Cd,m,n

y2

(|x|2 + y2)d+1
.

Since ∫ ∞
1

∫
Rd

y

(|x|2 + y2)d+1
dxdy <∞,

it follows from the dominated convergence theorem that

lim
w→∞

∫ ∞
1

∫
Rd
j(1)
n,m(x, y, w) dxdy =

∫ ∞
1

∫
Rd

2yh(x, y)A(x, y)∇
(pm
h

)
· ∇
(pn
h

)
dxdy.
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Suppose 0 < y < 1 and n 6= m. Using pm(x, y) + pn(x, y) ≤ h(x, y), we get

pm(x, y)pn(x, y)

h(x, y)
≤ cdy

(|x− n|2 + y2)
d+1
2 + (|x−m|2 + y2)

d+1
2

≤ 2
d−1
2 cdy

(|x− n|2 + |x−m|2 + 2y2)
d+1
2

=
cdy

2(|x− (n+m
2

)|2 + y2 + |n+m
2
|2)

d+1
2

≤ Cd,n,m
y

(|x|2 + 1)
d+1
2

.

Since ∫ 1

0

∫
Rd

1

(|x|2 + 1)
d+1
2

dxdy <∞,

we obtain that

lim
w→∞

∫ 1

0

∫
Rd
j(1)
n,m(x, y, w) dxdy =

∫ 1

0

∫
Rd

2yh(x, y)A(x, y)∇
(pm
h

)
· ∇
(pn
h

)
dxdy

when n 6= m.
Suppose 0 < y < 1 and n = m. For f = δn, it follows from Itô’s formula that

M f
t = uf (Zt) = uf (0, w) +

∫ t

0

∇uf (Zs) · dBs =
pn(0, w)

h(0, w)
+

∫ t

0

∇
(
pn(Zs)

h(Zs)

)
· dBs.

Note that E(0,w)[M
f
τ |Xτ = n] = 1. Applying (4.4) with A(x, y) = Id, we get

E(0,w)

[∫ t

0

∇
(
pn(Zs)

h(Zs)

)
· dBs

∣∣∣∣Xτ = n

]
=

∫ ∞
0

∫
Rd

Gw(x, y)

pn(0, w)
h(x, y)

∣∣∣∇(pn
h

)∣∣∣2 dxdy,
which leads to∫ ∞

0

∫
Rd

Gw(x, y)

pn(0, w)
h(x, y)

∣∣∣∇(pn
h

)∣∣∣2 dxdy = 1− pn(0, w)

h(0, w)
.(4.11)

Fix N > 0. Note that it follows from the proof of Lemma 4.2 that there exists a
constant C depending only on d such that for large w,

Gw(x, y)

pn(0, w)
≥ Cy

for all 0 < y < 1 and |x| ≤ N . Thus, we obtain∫ 1

0

∫
|x|≤N

yh(x, y)
∣∣∣∇(pn

h

)∣∣∣2 dxdy ≤ C.

By Lemma 4.2 and the dominated convergence theorem, we get

lim
w→∞

∫ 1

0

∫
|x|≤N

j(1)
n,n(x, y, w) dxdy =

∫ 1

0

∫
|x|≤N

2yh(x, y)A(x, y)∇
(pn
h

)
· ∇
(pn
h

)
dxdy.
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Since |j(1)
n,n| is integrable over Rd, we have∫ 1

0

∫
|x|≥N

j(1)
n,n(x, y, w) dxdy → 0

as N →∞. Using the previous argument, we see that

|2yh(x, y)A(x, y)∇
(pn
h

)
· ∇
(pn
h

)
| ≤ C

pn(x, y)2

yh(x, y)
≤ C

pn(x, y)

y
=

C

(|x− n|2 + y2)(d+1)/2
.

Since the integral of (|x− n|2 + y2)−(d+1)/2 over |x| ≥ N converges to 0 as N →∞,
we get

lim
w→∞

∫ 1

0

∫
Rd
j(1)
n,n(x, y, w) dxdy =

∫ 1

0

∫
Rd

2yh(x, y)A(x, y)∇
(pn
h

)
· ∇
(pn
h

)
dxdy

as desired.
For the other integral, we have

j(2)
n,m(x, y, w) ≤ Cd,n,m,A

y2

(|x|2 + y2)d+1
· 2yg(

y

w
) · 1

y2

≤ Cd,n,m,A
y

(|x|2 + y2)d+1
· g(

y

w
).

Since ∫ ∞
w
2

∫
Rd
g(
y

w
)

y

(|x|2 + y2)d+1
dxdy =

∫ ∞
w
2

g(
y

w
)

1

yd+1

∫
Rd

1

(|x|2 + 1)d+1
dxdy

=
Cd
wd

∫ ∞
1
2

g(t)

|t|d+1
dt

≤ Cd
wd
,

we conclude that limw→∞
∫∫

j
(2)
n,m(x, y, w) dxdy = 0 as desired. �

Theorem 4.4. Let f ∈ `p(Zd), 1 < p <∞, and A(x, y) be a matrix-valued function
with ‖A‖ <∞. Then

(4.12) ‖TA(f)‖`p ≤ (p∗ − 1)‖A‖‖f‖`p .

If in addition, A(x, y) is orthogonal for all (x, y) ∈ Rd × R+, then

(4.13) ‖TA(f)‖`p ≤ cot

(
π

2p∗

)
‖A‖‖f‖`p .

Proof. Suppose f : Zd → R is compactly supported. By the sharp martingale
inequality (Theorem 3.6) and Jensen’s inequality for conditional expectations, we
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have ∑
n∈Zd
|TwA (f)(n)|ppn(0, w)

h(0, w)
= E(0,w)[|TwA (f)(Xτ )|p](4.14)

= E(0,w)[|E(0,w)[(A ∗M f )τ |Xτ = n]|p]
≤ E(0,w)[E(0,w)[|(A ∗M f )τ |p|Xτ = n]]

= E(0,w)[|(A ?M f )τ |p]
≤ (p∗ − 1)p‖A‖pE(0,w)[|M f

τ |p]

= (p∗ − 1)p‖A‖p
∑
n∈Zd
|f(n)|ppn(0, w)

h(0, w)
.

Since

pn(0, w) =
cdw

(|n|2 + w2)
d+1
2

=
cd
wd

1

( |n|
2

w2 + 1)
d+1
2

≤ cd
wd
,

we get

1

cd

∑
n∈Zd
|TwA (f)(n)|pwdpn(0, w) ≤ (p∗ − 1)p‖A‖p

∑
n∈Zd
|f(n)|p.

Recall that TA(f)(n) is the (pointwise) limit of TwA (f)(n). By Fatou’s lemma, we
get ∑

n∈Zd
|TA(f)(n)|p ≤ lim inf

w→∞

1

cd

∑
n∈Zd
|TwA (f)(n)|pwdpn(0, w)

≤ (p∗ − 1)p‖A‖p
∑
n∈Zd
|f(n)|p,

which proves (4.12). The proof of (4.13) follows from the same argument using
the second part of Theorem 3.6. �

The following Littlewood–Paley inequality is the analogue in our current setting
of the inequalities in [4, Corollaries 3.42 and 3.9.2].

Corollary 4.5. Let p ∈ (1,∞), q = p/(p− 1), f ∈ `p(Zd), and g ∈ `q(Zd), then∫ ∞
0

∫
Rd

2yh(x, y)|∇uf (x, y)||∇ug(x, y)| dxdy ≤ (p∗ − 1)‖f‖`p‖g‖`q .

Proof. Let A(x, y) be a matrix-valued function with ‖A‖ < ∞. Assume that f and
g have compact supports. By (4.7) and Theorem 4.4, we have∣∣∣ ∑
n∈Zd

TAf(n)g(n)
∣∣∣ =

∣∣∣ ∑
n,m∈Zd

(∫
Rd

∫
R+

2yh(x, y)A(x, y)∇
(pm
h

)
· ∇
(pn
h

)
dydx

)
f(m)g(n)

∣∣∣
=
∣∣∣ ∫

Rd

∫
R+

2yh(x, y)A(x, y)∇uf (x, y) · ∇ug(x, y) dydx
∣∣∣

≤ (p∗ − 1)‖A‖‖f‖`p‖g‖`q .
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Define

Aij(x, y) =
∂juf (x, y)∂iug(x, y)

|∇uf (x, y)||∇ug(x, y)|
for 1 ≤ i, j ≤ d + 1. Here, we used the notations ∂i = ∂xi for i = 1, 2, · · · , d and
∂d+1 = ∂y. Since ‖A‖ ≤ 1 and A∇uf∇ug = |∇uf ||∇ug|, the proof is complete. �

5. Discrete Calderón–Zygmund operators

5.1. Discrete Calderón–Zygmund operators and norm estiamtes. Let T be
an operator acting on the Schwartz space of rapidly decreasing function on Rd.
We say T is a Calderón–Zygmund operator if it is bounded in L2 and can be written
as

Tf(x) = p.v.

∫
Rd
K(x, z)f(z) dz(5.1)

where K is continuously differentiable off the diagonal with the bounds

|K(x, z)| ≤ C

|x− z|d
, |∇xK(x, z)| ≤ C

|x− z|d+1
, |∇zK(x, z)| ≤ C

|x− z|d+1
,(5.2)

for x 6= z, for some universal constant C.
The Calderón–Zygmund operator T as above are bounded in Lp, for 1 < p <∞

(see [35, Chapter 8]). Here we will consider Calderón–Zygmund operators which
are of convolution type. That is, their kernels are of the form K(x, z) = K(x − z)
satisfying

K ∈ C1(Rd \ {0}), |K(z)| ≤ κ|z|−d, |∇K(z)| ≤ κ|z|−(d+1),(5.3)

for some universal constant κ.
For these operators, Calderón and Zygmund [20] defined their discrete ana-

logues by

Tdis(f)(n) =
∑

m∈Zd\{n}

K(n−m)f(m), f ∈ `p(Zd).(5.4)

As already mentioned in the introduction, M. Riesz [62] showed that in dimen-
sion 1, the boundedness of H on Lp(R) implies the boundedness of Hdis on `p(Z).
In the “Added in proof” section of their paper they observed that the boundedness
of T on Lp(Rd) leads to the boundedness of Tdis on `p(Zd). In fact, they remarked
([20, pg. 138]) that “for n = 1 this remark is due to M. Riesz, and the proof in
the case of general n follows a similar pattern" (here their n = d). However, no
further details are provided. For the sake of completeness and because we wish
to keep track of constants, we provide the proof here. Recall that the truncated
operator Tε is defined by Tε(f) = Kε ∗ f where Kε(x) = K(x)1{|x|≥ε}, Tε satis-
fies ‖Tεf‖Lp ≤ Cp‖f‖Lp, where Cp is independent of ε and the limε→0 Tεf exists in
Lp(Rd) and a.e. We denote the limit operator by T .
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Proposition 5.1. Let T be the Calderón–Zygmund operator with convolution ker-
nel K(x) satisfying (5.3). Then, Tdis is bounded on `p(Zd), 1 < p < ∞. Further-
more, we have

‖Tdis‖`p→`p ≤ ‖T1‖Lp→Lp + C(d, κ).

Proof. As asserted by Calderón and Zygmund, the proof follows the argument of
Riesz. Let p ∈ (1,∞) and q be the conjugate exponent, that is, 1

p
+ 1

q
= 1. Let

f ∈ `p(Zd) and g ∈ `q(Zd). Define F ∈ Lp(Rd) and G ∈ Lq(Rd) by F (x) = f(n) and
G(x) = g(n) for x ∈ n+Q, Q = [−1

2
, 1

2
)d. Then,∫

Rd
T1(F )(x)G(x) dx =

∫
Rd

∫
Rd
K1(y − x)F (x)G(y) dxdy

=
∑

n,m∈Zd

(∫
m+Q

∫
n+Q

K1(y − x) dxdy

)
f(n)g(m)

=
∑
n∈Zd

Tdis(f)(n)g(n) +
∑

n,m∈Zd
K̃1(n−m)f(n)g(m),

where

K̃1(n−m) =

∫
m+Q

∫
n+Q

K1(y − x) dxdy −K1(m− n)

=

∫
Q

∫
Q

(K1(m− n+ s− t)−K1(m− n)) dtds.

Using |∇K1(x− z)| ≤ κ|x− z|−(d+1), we have

|K̃1(n−m)| ≤ C(κ, d)|n−m|−(d+1),

for |m− n| large enough. Since |m|−(d+1) is summable, we have∣∣∣∣∣∣
∑

n,m∈Zd
K̃1(n,m)f(n)g(m)

∣∣∣∣∣∣ ≤
 ∑
n,m∈Zd

|K̃1(n,m)||f(n)|p
1/p ∑

n,m∈Zd
|K̃1(n,m)||g(m)|q

1/q

≤ C(d, κ)‖f‖`p‖g‖`q

and this gives
‖Tdis‖`p→`p ≤ ‖T1‖Lp→Lp + C(d, κ),

where the constant C(d, κ) depends on d and κ but not on p. �

Riesz’s argument as above is adopted in [39] to prove a discrete Ap-weighted
version of the celebrated Hunt-Muckenhoupt-Wheeden Theorem for the Hilbert
transform. For a non-duality argument (again in the case of the Hilbert trans-
form), see [45].

In [67], Titchmarsh gave (with a slightly different version ofH) a different proof
of Riesz’s theorem by first showing that Hdis is bounded on `p and from this that
H is bounded in Lp and that in fact ‖H‖Lp→Lp ≤ ‖Hdis‖`p→`p. We show next that
a similar result holds for singular integrals that commute with dilations. More
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precisely, consider singular integrals with kernels of the form K(x) = Ω(x)
|x|d , where

Ω is homogeneous of degree zero; Ω(rx) = Ω(x), for all r > 0. We assume that Ω
satisfies the necessary hypothesis (see for example [63, Theorem 3]) so that the
singular integral is bounded on Lp. That is, (i) Ω is bounded, (ii) Dini continuous,
and (iii) its integral on the sphere is 0.

Proposition 5.2. Suppose K(x) = Ω(x)
|x|d is as above and Ω(x) = Ω(−x) for all

x ∈ Rd \ {0}. For 1 < p <∞, we have ‖Tdis‖`p→`p ≥ ‖T‖Lp→Lp.

Proof. We define the continuous-discrete operator T̃dis on Lp(Rd) by

T̃dis(F )(x) =
∑

n∈Zd\{0}

K(n)F (x− n), F ∈ Lp, x ∈ Rd.

Let Q = [−1
2
, 1

2
)d. For f ∈ `p(Zd), let F (x) =

∑
n∈Zd f(n)1Q(x − n). Then, ‖F‖Lp =

‖f‖`p and

T̃dis(F )(n) =
∑

m∈Zd\{0}

K(m)
∑
l∈Zd

f(l)1Q(n−m− l)

=
∑

m∈Zd\{0}

K(m)f(n−m)

= Tdis(f)(n),

which implies ‖Tdis‖`p→`p ≤ ‖T̃dis‖Lp→Lp. On the other hand, for any F ∈ Lp we
have,

‖T̃disF‖pLp =

∫
Rd

∣∣∣ ∑
m∈Zd\{0}

K(m)F (x−m)
∣∣∣pdx

=
∑

n∈Zd\{0}

∫
Q

∣∣∣ ∑
m∈Zd\{0}

K(m)F (x+ n−m)
∣∣∣pdx

≤ ‖Tdis‖p`p→`p
∑

n∈Zd\{0}

∫
Q

|F (x+ n)|pdx

= ‖Tdis‖p`p→`p‖F‖
p
Lp .

Thus in fact, ‖T̃dis‖Lp→Lp = ‖Tdis‖`p→`p.
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Let ε > 0 and define τεF (x) := ε
d
pF (εx). Then ‖τεF‖p = ‖F‖p, for F ∈ Lp(Rd). Let

T̃ εdisF (x) = τ 1
ε
T̃disτεF (x). Now suppose F is smooth with compact support. Then

T̃ εdisF (x) =
∑

m∈Zd\{0}

K(m)F (x− εm)

=
∑

m∈Zd\{0}

Ω(εm)

|εm|d
F (x− εm)εd

=
εd

2

∑
m∈Zd\{0}

Ω(εm)

|εm|d
(F (x− εm)− F (x+ εm)).

For each r > 0, we have

lim
ε→0

εd

2

∑
m∈Zd\{0},
|εm|>r

Ω(εm)

|εm|d
(F (x− εm)− F (x+ εm)) =

1

2

∫
|y|>r

Ω(y)

|y|d
(F (x− y)− F (x+ y)) dy.

On the other hand, since Ω is bounded and F is smooth of compact support, it
follows that∣∣∣∣∣εd2 ∑

m∈Zd\{0},
|εm|≤r

Ω(εm)

|εm|d
(F (x− εm)− F (x+ εm))

∣∣∣∣∣ ≤ Cεd
∑

m∈Zd\{0},
|εm|≤r

1

|εm|d−1
= Cr.

Similarly, ∣∣∣∣∣
∫
|y|≤r

Ω(y)

|y|d
(F (x− y)− F (x+ y)) dy

∣∣∣∣∣ ≤ C

∫
|y|≤r
|y|1−d dy = Cr.

Therefore, we get

lim
ε→0

T̃ εdisF (x) = lim
ε→0

εd

2

∑
m∈Zd\{0}

Ω(εm)

|εm|d
(F (x− εm)− F (x+ εm))(5.5)

=
1

2
lim
r→0

∫
|y|>r

Ω(y)

|y|d
(F (x− y)− F (x+ y)) dy

= T (F )(x).

By Fatou’s lemma, we get

‖T (F )‖Lp ≤ lim inf
ε↓0

‖T̃ εdis(F )‖Lp ≤ ‖T̃dis(F )‖Lp ,

which finishes the proof. �

The “continuous-discrete operator” versions have been used in several places
to bound the norm of the continuous version by that of its discrete versions, see
for example [45,56].
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5.2. A conjecture on the `p-norms of the discrete Riesz transforms. The
canonical examples of Calderón–Zygmund operators that satisfy the assumptions
of both Propositions 5.1 and 5.2 are the classical Riesz transforms on Rd defined
by

(5.6) R(k)f(x) = lim
ε→0

∫
|z|>ε

K(k)(z)f(x− z) dz, k = 1, 2, . . . d

with

(5.7) K(k)(z) = cd
zk
|z|d+1

for z 6= 0, cd =
Γ(d+1

2
)

π
d+1
2

.

The Riesz transforms arise naturally from the Poisson semigroup and its con-
nection to the Laplacian. That is, if we let Pyf(x) be the convolution of the func-
tion f with the Poisson kernel p(· , y) as in (3.1), then in fact,

R(k)f(x) =

∫ ∞
0

∂

∂xk
Pyf(x) dy =

∂

∂xk
(−∆)−1/2f(x).(5.8)

With this interpretation the Riesz transforms can be defined in a variety of ana-
lytic and geometric settings, including manifolds, Lie groups, and Wiener space.
We briefly recall here the Gundy–Varopoulos [36] representation of R(k), referring
the reader to [4] for details and applications. Let Bt be the standard Brownian
motion in the upper half-space Rd+1

+ and τ its exit time. Consider the conditional
expectations operators

(5.9) Ey
[ ∫ τ

0

H(k)∇Uf (Bs) · dBs

∣∣∣Bτ = x
]
,

where Uf (x, y) = Pyf(x) and Ey are expectations with respect to the measures on
path space obtained by starting the Brownian motion on Rd+1

+ according to the
Lebesgue measure on the hyperplane at level y and for each k = 1, 2, · · · , d, we
define the (d+ 1)× (d+ 1) matrix H(k) = (a

(k)
ij ) by

(5.10) a
(k)
ij =


−1, i = k, j = d+ 1

1, i = d+ 1, j = k

0, otherwise.

Then (under the assumption that f is sufficiently smooth), the quantity in (5.9)
converges pointwise to R(k)f(x), as y →∞.

We remark here that verifying the convergence of (5.9) to the Riesz transforms
is much simpler than the corresponding convergence results in Section 4.1; see
for example [4, p. 417]. It is also worth mentioning here that the original Gundy–
Varopoulos paper used the so called “background radiation" process in the con-
struction. That background radiation is not needed was shown in [3].

When d = 1 the Riesz transform reduces to the Hilbert transform

Hf(x) =
1

π
lim
ε→0

∫
|z|>ε

f(x− z)

z
dz.
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It is well-known that for all k = 1, . . . d,

(5.11) ‖R(k)‖Lp→Lp = ‖H‖Lp→Lp = cot

(
π

2p∗

)
,

for 1 < p < ∞. Furthermore, it is proved in Laeng [46] that the Lp-norm of the
truncated Hilbert transform Hε, defined by

Hεf(x) =
1

π

∫
|z|>ε

f(x− z)

z
dz,

coincides with that of the Hilbert transform H. That is, ‖Hε‖p→p = cot
(

π
2p∗

)
for

every ε > 0.
The upper bound in (5.11) is proved in [42] using the method of rotations and

in [14] using martingale inequalities and the probabilistic representation in (5.9).
Both methods extend the upper bound to the truncated Riesz transforms. Let
K

(k)
ε (z) = K(k)(z)1{|z|>ε} and R

(k)
ε f(x) = K

(k)
ε ∗ f(x) be the truncated Riesz trans-

form. Our claim is that

(5.12) ‖R(k)
ε ‖Lp→Lp = cot

(
π

2p∗

)
,

for all ε > 0. To see this observe that by Fatou’s lemma, it suffices to show the
upper inequality

‖R(k)
ε ‖Lp→Lp ≤ cot

(
π

2p∗

)
.(5.13)

This follows from the method of rotations ([35, Equation (4.2.17)]) applied with
Ω(y) = cd

yk
|y| and the additional observation that∫

Sd−1

|Ω(θ)| dθ = cd

∫
Sd−1

|θk| dθ = cd
2π

d−1
2

Γ
(
d+1

2

) =
2

π
.

Following Calderón–Zygmund, we now define the discrete analogues as in (5.4)
by

R
(k)
disf(n) = cd

∑
m∈Zd\{0}

mk

|m|d+1
f(n−m).(5.14)

In the sequel we call these operators “Calderón–Zygmund discrete Riesz trans-
form” or in short “CZ discrete Riesz transform.”

Remark 5.3. It is important to note here that these operators do not arise as
“genuine” Riesz transforms of semigroups associated with discrete/semi-discrete
Laplacians for which many results exist and to which the "usual" Gundy–Varopoulos
construction applies, see for example [1,2,27].

With (5.12) and the bounds in Propositions 5.1 and 5.2 we have
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Corollary 5.4. For 1 < p < ∞, k = 1, 2, . . . , d, the `p-norms of the CZ discrete
Riesz transforms satisfy

cot

(
π

2p∗

)
≤ ‖R(k)

dis‖`p ≤ cot

(
π

2p∗

)
+ C(d),

where C(d) is a dimensional constant.

Corollary 5.4 and the fact that

‖Hdis‖`p→`p = ‖H‖Lp→Lp = cot

(
π

2p∗

)
lead to the following

Conjecture 5.5. For all d > 1, 1 < p <∞, k = 1, . . . , d,

(5.15) ‖R(k)
dis‖`p ≤ cot

(
π

2p∗

)
.

Problem 5.6. A weaker, but also interesting problem, is to show that

(5.16) ‖R(k)
dis‖`p ≤ Cp,

where Cp is independent of d.

This problem is also motivated by the remark in [50, pg. 193] already discussed
in connection to inequality (3.10).

6. Discrete Riesz transforms and their probabilistic counterparts

6.1. Probabilistic Discrete Riesz Transforms and their norms. The proof of
the Conjecture 5.5 for d = 1 in [9] rests on the probabilistic construction of the
operators in Section 3.3 for d = 1 applied to the operator TwH as in (4.13) with the
matrix

(6.1) H =

[
0 −1
1 0

]
,

which is orthogonal and of norm 1. Motivated by this and the Gundy–Varopoulos
[36] probabilistic representation of the Riesz transforms R(k) on Rd, d ≥ 1 as in
(5.9) and its many variants studied over the years (see for example [4, 5] and
the many references therein), we consider the operators TH(k), where for each
k = 1, 2, · · · , d, the (d + 1) × (d + 1) matrix H(k) is given by (5.10). Note that H(k)

is orthogonal, ‖H(k)‖ = 1, and H(k)v · w = −H(k)w · v for v, w ∈ Rd+1. We call
the operators TH(k), k = 1, . . . d, the “Probabilistic discrete Riesz transforms”. By
Theorem 4.1, their kernels are given by

(6.2) KH(k)(n,m) =

∫
Rd

∫ ∞
0

2yh(x, y)H(k)∇
(
pm(x, y)

h(x, y)

)
· ∇
(
pn(x, y)

h(x, y)

)
dydx.
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Using the fact that h(x+m, y) = h(x, y) for all m ∈ Zd, a change of variables shows
that
(6.3)

KH(k)(n,m) = KH(k)(n−m) =

∫
Rd

∫ ∞
0

2yh(x, y)H(k)∇
(
p0(x, y)

h(x, y)

)
·∇
(
pn−m(x, y)

h(x, y)

)
dydx.

Note that when d = 1 the matrices in (5.10) reduce to the matrix H in (6.1) and
we denote the corresponding operator by TH. This is what we call the “probabilis-
tic Hilbert transform” to which we return in Section 7 below.

Remark 6.1. For n = (n1, n2, · · · , nd) ∈ Zd, define

ñ = (n1, n2, · · · ,−nk, . . . nd).
It follows from (6.3) (or from (6.6) below) that KH(k)(n) = −KH(k)(ñ). Thus we
have KH(k)(n) = 0, if nk = 0, and in particular, KH(k)(0) = 0. It also follows that
KH(k)(n) = −KH(k)(−n). These properties of KH(k) will be used below in several
computations.

By (4.13) of Theorem 4.4 and (4.7) of Theorem 4.1, we obtain the following

Theorem 6.2. Suppose f ∈ `p(Zd), 1 < p <∞. Set

(6.4) TH(k)(f)(n) =
∑
m∈Zd

KH(k)(n−m)f(m).

Then,

‖TH(k)f‖`p ≤ cot(
π

2p∗
)‖f‖`p , k = 1, 2, . . . , d.(6.5)

In the following proposition, we derive a different integral representation for
the kernel KH(k)(n) which will provide a relationship between the operators TH(k)

and the CZ discrete Riesz transforms R(k)
dis . As we shall see, this representation

allows to prove that the `p-bound in (6.5) is best possible; see Theorem 6.6. By
Remark 6.1, KH(k)(0) = 0 and note that for n ∈ Zd, 1{|n|>0}(n) = 1{|n|≥1}(n).

Theorem 6.3. We have

KH(k)(n) =

(∫
Rd

∫ ∞
0

Un(x, y)

h(x, y)
dydx

)
1{|n|≥1}(n)(6.6)

=

(
4

∫
Rd

∫ ∞
0

Sn(x, y)

h(x, y)
dydx− 3

∫
Rd

∫ ∞
0

Tn(x, y)

h(x, y)
dydx

)
1{|n|≥1}(n)

where

Sn(x, y) =
2c2
d(d+ 1)xky

2

(|x|2 + y2)
d+3
2 (|x− n|2 + y2)

d+1
2

,

Tn(x, y) =
4c2
d(d+ 1)2xky

4

3(|x|2 + y2)
d+3
2 (|x− n|2 + y2)

d+3
2

,

and Un(x, y) = 4Sn(x, y)− 3Tn(x, y).
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Proof. We first note that on the numerator of (4.10) we have (|x − n|2 − dy2).
Splitting this into |x−n|2+y2 and −(d+1)y2, then the first term can be absorbed in
Sn(x, y) and the other in Tn(x, y). Thus, integration by parts with (4.9) and (4.10)
gives that

KH(k)(n) = 4

∫
Rd

∫ ∞
0

(
y

h

∂p0

∂xk

∂pn
∂y

+
yp0

h2

∂h

∂y

∂pn
∂xk
− yp0

h2

∂h

∂xk

∂pn
∂y

)
dydx

(6.7)

= −4

∫
Rd

∫ ∞
0

1

h

∂p0

∂xk

∂

∂y
(ypn) dydx

= 8c2
d(d+ 1)

∫
Rd

∫ ∞
0

1

h(x, y)

xky
2

(|x|2 + y2)
d+3
2 (|x− n|2 + y2)

d+1
2

dydx

− 4c2
d(d+ 1)2

∫
Rd

∫ ∞
0

1

h(x, y)

xky
4

(|x|2 + y2)
d+3
2 (|x− n|2 + y2)

d+3
2

dydx.

�

Remark 6.4. When d = 1 using the expression for

h(x, y) =
sinh(2πy)

cosh(2πy)− cos(2πx)
,

the right-hand side of (6.7) and (several) integration by parts, we can obtain

KH(n) =
1

πn

(
1 +

∫ ∞
0

2y3

(y2 + π2n2) sinh2(y)
dy

)
1Z\{0}(n)(6.8)

=
1

πn

(
1 +

∫ ∞
0

2y3

(y2 + π2n2) sinh2(y)
dy

)
1{|n|≥1}(n).

This formula was computed in [9] with a slightly different approach. We will
return to this formula below in Section 8.

Recall that R(k)
dis are the CZ discrete Riesz transform given by

R
(k)
disf(m) = cd

∑
n∈Zd
n6=0

nk
|n|d+1

f(m− n) =
∑
n∈Zd

K
R

(k)
dis

(n)f(m− n),(6.9)

where

K
R

(k)
dis

(n) = cd
nk
|n|d+1

1Zd\{0}(n), cd =
Γ(d+1

2
)

π
d+1
2

.

The following expresions for the CZ discrete Riesz kernels will be frequently
used below.
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Proposition 6.5. We have

K
R

(k)
dis

(n) =

(∫
Rd

∫ ∞
0

Un(x, y) dydx

)
1{|n|≥1}(n) =

(∫
Rd

∫ ∞
0

Sn(x, y) dydx

)
1{|n|≥1}(n)

=

(∫
Rd

∫ ∞
0

Tn(x, y) dydx

)
1{|n|≥1}(n).

Proof. Let N = d+3
2

. By the definition of Gamma function,

∫ ∞
0

∫
Rd

xky
2

(|x|2 + y2)N(|x− n|2 + y2)N−1
dxdy

=
1

Γ(N)Γ(N − 1)

∫ ∞
0

∫
Rd

∫ ∞
0

∫ ∞
0

xky
2uN−1vN−2e−u(|x|2+y2)−v(|x−n|2+y2) dudvdxdy

=
1

Γ(N)Γ(N − 1)

∫ ∞
0

∫
Rd

∫ ∞
0

∫ ∞
0

xky
2uN−1vN−2e−(u+v)|x− v

u+v
n|2− uv

u+v
|n|2−(u+v)y2 dudvdxdy.

Since we have∫
Rd
xke

−(u+v)|x− v
u+v

n|2 dx =

∫
Rd

(
xk +

v

u+ v
n1

)
e−(u+v)|x|2 dx

=
v

u+ v
nk

∫
Rd
e−(u+v)|x|2 dx

=
π
d
2 v

(u+ v)1+ d
2

nk

and ∫ ∞
0

y2e−(u+v)y2 dy = (u+ v)−
3
2

√
π

4
,

it follows from Fubini’s theorem that∫ ∞
0

∫
Rd

xky
2

(|x|2 + y2)N(|x− n|2 + y2)N−1
dxdy

=
π
d+1
2 nk

4Γ(N)Γ(N − 1)

∫ ∞
0

∫ ∞
0

uN−1vN−1

(u+ v)N+1
e−

uv
u+v
|n|2 dudv

=
π
d+1
2

4Γ(N)Γ(N − 1)

nk
|n|d+1

∫ 1

0

∫ ∞
0

sN−2tN−1(1− t)N−1e−st(1−t) dsdt

=
1

2(d+ 1)cd

nk
|n|d+1

.
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Similarly, we have∫ ∞
0

∫
Rd

xky
4

(|x|2 + y2)
d+3
2 (|x− n|2 + y2)

d+3
2

dxdy

=
1

Γ(N)2

∫ ∞
0

∫
Rd

∫ ∞
0

∫ ∞
0

xky
4uN−1vN−1e−(u+v)|x− v

u+v
n|2− uv

u+v
|n|2−(u+v)y2 dudvdxdy

=
3π

d+1
2

8Γ(N)2

nk
|n|d+1

∫ ∞
0

∫ ∞
0

uN−1vN

(u+ v)N+2
e−

uv
u+v dudv

=
3

4cd(d+ 1)2

nk
|n|d+1

.

�

Theorem 6.6. The `p-bound of TH(k) in Theorem 6.2 is best possible. That is, for
all d ≥ 1, k = 1, . . . d, ‖TH(k)‖`p→`p = cot( π

2p∗
).

The result will follow from the next two lemmas.

Lemma 6.7. With the notation introduced earlier in this section, we have

lim
|n|→∞

|n|d|KH(k)(n)−K
R

(k)
dis

(n)| = 0.

Proof. Recall that

KH(k)(n) =

∫
Rd

∫ ∞
0

Un(x, y)

h(x, y)
dydx, K

R
(k)
dis

(n) =

∫
Rd

∫ ∞
0

Un(x, y)dydx,

where

Un(x, y) = −4
∂p0

∂xk
(x, y)

∂

∂y
(ypn(x, y)) .

Observe that p0(x, y) = εd+1p0(εx, εy) and pn(x, y) = εd+1pεn(εx, εy). Therefore,

Un(x, y) = ε2d+1Uεn(εx, εy);

here and below we abuse the notation and we allow n in pn and Un to be an
arbitrary vector in Rd. It follows that

KH(k)(n) =

∫
Rd

∫ ∞
0

Un(x, y)

h(x, y)
dydx

= ε2d+1

∫
Rd

∫ ∞
0

Uεn(εx, εy)

h(x, y)
dydx

= εd
∫
Rd

∫ ∞
0

Uεn(x, y)

h(1
ε
x, 1

ε
y)
dydx.

If we choose ε = 1
|n| , we find that

|n|dKH(k)(n) =

∫
Rd

∫ ∞
0

Un/|n|(x, y)

h(|n|x, |n|y)
dydx.
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Similarly,

|n|dK
R

(k)
dis

(n) =

∫
Rd

∫ ∞
0

Un/|n|(x, y)dydx.

Therefore,

(6.10) |n|d|KH(k)(n)−K
R

(k)
dis

(n)| ≤
∫
Rd

∫ ∞
0

|Un/|n|(x, y)| ×
∣∣∣∣ 1

h(|n|x, |n|y)
− 1

∣∣∣∣dydx.
By the estimate (3.4), we have

y√
x2 + y2

∣∣∣∣ 1

h(|n|x, |n|y)
− 1

∣∣∣∣ ≤ C1

for a constant C1 that depends only on the dimension d, and by Lemma 3.1, the
left-hand side converges point-wise to zero as |n| → ∞. On the other hand, by the
explicit expression for Un/|n| given in Theorem 6.3, we have√

x2 + y2

y
|Un/|n|(x, y)| ≤ C2

√
x2 + y2

y

|xk|y2

(|x|2 + y2)
d+3
2 (|x− n

|n| |2 + y2)
d+1
2

+
C3

√
x2 + y2

y

|xk|y4

(|x|2 + y2)
d+3
2 (|x− n

|n| |2 + y2)
d+3
2

= C2
|xk|y

(|x|2 + y2)
d+2
2 (|x− n

|n| |2 + y2)
d+1
2

+ C3
|xk|y3

(|x|2 + y2)
d+2
2 (|x− n

|n| |2 + y2)
d+3
2

≤ C4
y

(|x|2 + y2)
d+1
2 (|x− n

|n| |2 + y2)
d+1
2

for some constants C2, C3 and C4 that again depend only on d. We have thus
shown that

(6.11) |Un/|n|(x, y)| ×
∣∣∣∣ 1

h(|n|x, |n|y)
− 1

∣∣∣∣ ≤ C1C4
y

(|x|2 + y2)
d+1
2 (|x− n

|n| |2 + y2)
d+1
2

,

and additionally, as |n| → ∞, the left-hand side converges point-wise to zero.
Observe that if we denote by On an orthogonal transformation of Rd which maps
n
|n| to e1 = (1, 0, 0, . . . , 0), then the above estimate takes form

|Un/|n|(Onx, y)| ×
∣∣∣∣ 1

h(|n|Onx, |n|y)
− 1

∣∣∣∣ ≤ C1C4
y

(|x|2 + y2)
d+1
2 (|x− e1|2 + y2)

d+1
2

,
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and the right-hand side no longer depends on n. Since the right-hand side is
integrable, by the dominated convergence theorem we find that

lim
|n|→∞

∫
Rn

∫ ∞
0

|Un/|n|(x, y)| ×
∣∣∣∣ 1

h(|n|x, |n|y)
− 1

∣∣∣∣dxdy
= lim
|n|→∞

∫
Rn

∫ ∞
0

|Un/|n|(Onx, y)| ×
∣∣∣∣ 1

h(|n|Onx, |n|y)
− 1

∣∣∣∣dxdy = 0.

The desired result now follows from (6.10). �

Let us consider the continuous-discrete operator

T̃H(k)F (x) =
∑

n∈Zd\{0}

F (x+ n)KH(k)(n).

(Recall that KH(k)(0) = 0 per Remark 6.1.) By the argument of Proposition 5.2, the

norm of the operator T̃H(k) on Lp(Rd) is equal to the norm of the operator TH(k) on
`p(Zd).

For ε > 0, 1 > p < ∞ and a function F on Rd, denote τεF (x) = εd/pF (εx)

and T̃ εH(k) = τ1/εT̃H(k)τε. Observe that ‖τεF‖p = ‖F‖p, and hence the norm of the

operator T̃ εH(k) on Lp(Rd) does not depend on ε.

We claim that as ε→ 0+, the operators T̃ εH(k) approximate the continuous Riesz
transform. More precisely we have

Lemma 6.8. Suppose that F is a smooth and compactly supported function on
Rd. Then

lim
ε→0+

T̃ εH(k)F (x) = R(k)F (x),

for every x ∈ Rd.

Proof. We write

(6.12)

T̃ εH(k)F (x) =
∑

n∈Zd\{0}

F (x+ εn)KH(k)(n)

=
1

2

∑
n∈Zd\{0}

(F (x+ εn)− F (x− εn))KH(k)(n)

=
1

2

∑
n∈Zd\{0}

(F (x+ εn)− F (x− εn))K
R

(k)
dis

(n)

+
1

2

∑
n∈Zd\{0}

(F (x+ εn)− F (x− εn))(KH(k)(n)−K
R

(k)
dis

(n)).

We treat the two terms in the right-hand side separately.
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Since K
R

(k)
dis

(n) = εdKR(k)(εn), the first term in the right-hand side of (6.12) is

just the Riemann sum

εd

2

∑
n∈Zd\{0}

(F (x+ εn)− F (x− εn))KR(k)(εn)

of the integral

R(k)F (x) =
1

2

∫
Rd

(F (x+ y)− F (x− y))KR(k)(y)dy.

By (5.5) of Proposition 5.2 applied to the kernels for R(k) we have,

lim
ε→0+

εd

2

∑
n∈Zd\{0}

(F (x+ εn)− F (x− εn))KR(k)(εn)

=
1

2

∫
Rd

(F (x+ y)− F (x− y))KR(k)(y)dy.

Thus, it remains to prove that the other term in the right-hand side of (6.12)
converges to zero. To this end, we apply Lemma 6.7. First, there is a constant C1

(which depends on F ) such that |F (x + y) − F (x − y)| ≤ C1|y|. If R > 0 is large
enough, so that F (x+ y) = 0 whenever |y| ≥ R, we have

1

2

∣∣∣∣ ∑
n∈Zd\{0}

(F (x+ εn)− F (x− εn))(KH(k)(n)−K
R

(k)
dis

(n))

∣∣∣∣
≤ C1

2

∑
n∈Zd\{0}

1B(0,R)(εn)|εn| |KH(k)(n)−K
R

(k)
dis

(n)|.

Given any δ > 0, by Lemma 6.7 there is r > 0 such that |KH(k)(n)−K
R

(k)
dis

(n)| < δnd

when |n| ≥ r. Thus, denoting C2 = supn6=0 |KH(k)(n)−K
R

(k)
dis

(n)|, we find that

1

2

∣∣∣∣ ∑
n∈Zd\{0}

(F (x+ εn)− F (x− εn))(KH(k)(n)−K
R

(k)
dis

(n))

∣∣∣∣
≤ C1δ

2

∑
n∈Zd\{0}

1B(0,R)(εn)|εn| |n|−d +
C1C2

2

∑
n∈Zd\{0}

1B(0,r)(n)|εn|

≤ C1δε

2

∑
n∈Zd\{0}

1B(0,R/ε)(n)|n|1−d +
C1C2ε

2

∑
n∈Zd\{0}

1B(0,r)(n)|n|.

The first sum in the right-hand side is bounded by C3

ε
for an appropriate constant

C3, and the second one is a constant. Since δ > 0 is arbitrary, we conclude that

lim
ε→0+

1

2

∣∣∣∣ ∑
n∈Zd\{0}

(F (x+ εn)− F (x− εn))(KH(k)(n)−K
R

(k)
dis

(n))

∣∣∣∣ = 0,

and the proof is complete. �
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Applying Fatou’s lemma, exactly as in the proof of Proposition 5.2, proves that
‖R(k)‖Lp→Lp ≤ ‖TH(k)‖`p→`p. This and the equality (5.11) give the assertion of The-
orem 6.6.

Remark 6.9. From the martingale inequality in [14, Theorem 1] we also obtain
the following version of Essén’s inequality for the probabilistic discrete Riesz
transforms ∥∥∥(|TH(k)f |2 + |f |2

)1/2∥∥∥
`p
≤

√
1 +

(
cot
( π

2p∗

))2

‖f‖`p .(6.13)

Let F ∈ Lp(Rd) be such that F (x) = f(n) for x ∈ n + Q, n ∈ Zd. Then, it follows
from Lemma 6.8 with Fatou’s lemma that∥∥∥∥(|T̃H(k)F |2 + |F |2

)1/2
∥∥∥∥
Lp
≥
∥∥∥(|R(k)F |2 + |F |2

)1/2∥∥∥
Lp
.

Let τεF (x) = εd/pF (εx). Since τ1/εR
(k)τε = R(k) and ‖τεF‖p = ‖F‖p, we have∥∥∥(|R(k)F |2 + |F |2

)1/2∥∥∥
Lp

=
∥∥∥(|R(k)(τεF )|2 + |τεF |2

)1/2∥∥∥
Lp
.

Since any function G ∈ Lp(Rd) can be approximated by τεF where F (x) is of the
form F (x) =

∑
n∈Zd f(n)1n+Q(x) for f ∈ `p(Zd), with the help of the Fatou’s lemma,

we see that the inequality (6.13) is also sharp.

Remark 6.10. Similarly, using the matrices Ajk as in [14, pg. 595] would lead
to what one may call “probabilistic discrete second order Riesz transforms” with
`p-norms bounded above by (p∗−1). Notice, however, that even if we had the ana-
logues of the above Lemmas for these operators (which we do not currently have),
the (p∗ − 1) bound will not be sharp. Instead one would expect the sharp bound
to be 1

2
(p∗− 1) when j 6= k and the Choi constant when j = k, see [11,34]. Similar

questions could be asked about the probabilistic discrete Beurling–Ahlfors oper-
ator, its sharp norm on `p and the relationships to the discrete Beurling–Ahlfors
operator which Calderón and Zygmund highlight in their discussion on discrete
singular integrals, see [20, pg. 138]. Based on Iwaniec’s conjecture [41] that the
norm of the Beurling–Ahlfors operator on Lp(R2) is (p∗− 1), 1 < p <∞, one would
conjecture that the CZ discrete Beurling–Ahlfors operator should also have norm
(p∗ − 1) on `p(Z2). We have not explored these questions.

7. Fourier multiplier of the probabilistic discrete Hilbert transform

In this section we focus on the case d = 1 and compute the Fourier transform
of the probabilistic discrete Hilbert transform TH whose kernel is given by

KH(n) = −4

∫
R

∫ ∞
0

1

h

∂p

∂x

∂

∂y
(ypn) dydx.(7.1)

This representation for the kernel of the probabilistic discrete Hilbert trans-
form TH together with the computation from Proposition 6.5 makes it clear that
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there is a connection between this operator and the discrete Hilbert transform
Hdis. However, this by itself does not yet give the bound ‖Hdis‖`p→`p ≤ cot( π

2p∗
). In

order to derive this bound from the bound of ‖TH‖`p→`p, we show that, up to con-
volution with a probability kernel, the discrete Hilbert transform equals the prob-
abilistic discrete Hilbert transform. This crucial fact was derived in [9, Lemma
1.3] using explicit computations to construct such a kernel. In what follows we
provide a completely different proof of this fact, based on the formula from Lem-
mas 7.3, 7.4, and Bochner’s theorem on positive-definite functions, which gives
an explicit formula for the Fourier transform of such a kernel. Although not clear
at all at this point, it may be possible that such approach based on the Fourier
transform (as opposed to the complex variables approach in [9]) could lead to a
similar results for the CZ discrete Riesz transforms in d > 1.

From (3.7) we have the explicit expression

h(x, y) =
sinh(2πy)

cosh(2πy)− cos(2πx)
,

which gives
1

h(x, y)
= coth(2πy)− 1

sinh(2πy)
cos(2πx)

(a linear combination of 1 and cos(2πx) for y fixed). This is crucial for the compu-
tations below.

Let ψ(x) be the digamma function defined by

ψ(x) =
d

dx
log(Γ(x)) =

Γ′(x)

Γ(x)
= −γ +

∫ ∞
0

e−y − e−xy

1− e−y
dy

where γ is the Euler constant.

Theorem 7.1. There exists a kernel P such that P(n) ≥ 0 for all n ∈ Z,
∑

n∈ZP(n) =
1, and Hdis = TH ∗ P. That is, for all f : Z→ R of compact support,

Hdisf(n) = (TH ∗ P)f(n),

where ∗ denotes the convolution operation.

An immediate corollary of this is the main result in [9].

Corollary 7.2.

‖Hdis‖`p→`p ≤ ‖TH‖`p→`p ≤ cot(
π

2p∗
).

Lemma 7.3. The kernel for the probabilistic discrete Hilbert transform is given
by

KH(n) = −i
∫
R

ξ

|ξ|
M(ξ)e2πinξ dξ
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where

M(ξ) =

|ξ|
−1, |ξ| ≥ 1,

1 + (1− |ξ|) (2(ψ(1 + |ξ|)− ψ(1)) + |ξ|(ψ′(1 + |ξ|)− ψ′(1)), |ξ| < 1.

Proof. We begin by observing that

(∂p
∂x

(·, y)
)∧

(ξ) = 2πiξe−2π|ξ|y,( ∂
∂y

(ypn(·, y))
)∧

(ξ) = (1− 2π|ξ|y)e−2πin·ξe−2π|ξ|y.

Then,

(
1

h

∂p

∂x

)∧
(ξ) = coth(2πy)

(
∂p

∂x

)∧
(ξ)− 1

sinh(2πy)

(
cos(2πx)

∂p

∂x

)∧
(ξ)

and

(
cos(2πx)

∂p

∂x

)∧
(ξ) =

(
1

2
(e2πix + e−2πix)

∂p

∂x

)∧
(ξ)

= πi
(
(ξ − 1)e−2π|ξ−1|y + (ξ + 1)e−2π|ξ+1|y)

=


2πi

ξ

|ξ|
e−2π|ξ|y(|ξ| cosh(2πy)− sinh(2πy)), |ξ| ≥ 1,

2πi
ξ

|ξ|
e−2πy(|ξ| cosh(2π|ξ|y)− sinh(2π|ξ|y)), |ξ| < 1.

If |ξ| ≥ 1, then

(
1

h

∂p

∂x

)∧
(ξ) = 2πi

ξ

|ξ|
e−2π|ξ|y.

On the other hand, if |ξ| < 1, then

(
1

h

∂p

∂x

)∧
(ξ) = 2πi

ξ

|ξ|
e−2π|ξ|y

(
|ξ|+ (1− |ξ|)

(
e4π|ξ|y − 1

e4πy − 1

))
.



DISCRETE SINGULAR INTEGRALS 37

Thus by Plancherel’s theorem,

KH(n) = −4

∫ ∞
0

(∫
R

(
1

h

∂p

∂x

)∧
(ξ)

(
∂

∂y
(ypn(·, y))

)∧
(ξ) dξ

)
dy

= −8πi

∫
|ξ|≥1

∫ ∞
0

ξ

|ξ|
e−4π|ξ|y(1− 2π|ξ|y)e2πin·ξ dydξ

− 8πi

∫
|ξ|≤1

∫ ∞
0

ξ

|ξ|
e−4π|ξ|y(1− 2π|ξ|y)e2πin·ξ

(
|ξ|+ (1− |ξ|)

(
e4π|ξ|y − 1

e4πy − 1

))
dydξ

= −i
∫
|ξ|≥1

ξ

|ξ|2
e2πin·ξ dξ − i

∫
|ξ|≤1

ξ

|ξ|
e2πin·ξ dξ

− 2i

∫
|ξ|≤1

ξ

|ξ|
e2πin·ξ

(
(1− |ξ|)

∫ ∞
0

(
1− |ξ|y

2

)
e−y − e−(1+|ξ|)y

1− e−y
dy

)
dξ.

Since∫ ∞
0

(1− |ξ|y
2

)
e−y − e−(1+|ξ|)y

1− e−y
dy = (ψ(1 + |ξ|)− ψ(1)) +

|ξ|
2

(ψ′(1 + |ξ|)− ψ′(1)),

where ψ are the digamma function, we obtain that

KH(n) = −i
∫
R

ξ

|ξ|
M(ξ)e2πinξ dξ.

�

Lemma 7.4. For ξ ∈ Q = [−1
2
, 1

2
) and a compactly supported function f on Z, the

Fourier transform of the probabilistic discrete Hilbert transform TH(f) is given
by

F(TH(f))(ξ) = −i ξ
|ξ|
M̃(ξ)F(f)(ξ)

where

M̃(ξ) = 1 + (1− 2|ξ|)(ψ(1 + |ξ|) + ψ(1− |ξ|)− 2ψ(1)) + |ξ|(1− |ξ|)(ψ′(1 + |ξ|)− ψ′(1− |ξ|)).

Proof. By the Poisson summation formula for periodic distribution (see [33, The-
orem 8.5.1, Corollary 8.5.1]), we have

F(TH(f))(ξ) = −i
∑
n∈Z

ξ + n

|ξ + n|
M(ξ + n)F(f)(ξ + n).

Since F(f)(ξ + n) = F(f)(ξ) for all n ∈ Z, it suffices to show∑
n∈Z

ξ + n

|ξ + n|
M(ξ + n) =

ξ

|ξ|
M̃(ξ)

for ξ ∈ [0, 1
2
]. By the series representation for the digamma function

ψ(1 + z) = −γ +
∞∑
m=1

(
1

m
− 1

m+ z

)
,
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we have ∑
|n|≥2

ξ + n

|ξ + n|
M(ξ + n) =

∞∑
m=2

(
1

ξ +m
+

1

ξ −m

)

=
∞∑
m=1

(
1

m+ ξ
− 1

m
+

1

m
− 1

m− ξ

)
+

2ξ

1− ξ2

= ψ(1− ξ)− ψ(1 + ξ) +
2ξ

1− ξ2
.

Using the recurrence relation ψ(1 + z) = ψ(z) + 1
z
, we have

ξ + 1

|ξ + 1|
M(ξ + 1) +

ξ − 1

|ξ − 1|
M(ξ − 1)

=
1

ξ + 1
− (1 + 2ξ(ψ(2− ξ)− ψ(1)) + ξ(1− ξ)(ψ′(2− ξ)− ψ′(1)))

= 1− 2ξ

1− ξ2
− (1 + 2ξ(ψ(1− ξ)− ψ(1)) + ξ(1− ξ)(ψ′(1− ξ)− ψ′(1))) .

Therefore, for ξ ∈ [0, 1
2
], we have∑

n∈Z

ξ + n

|ξ + n|
M(ξ + n) = M(ξ) +

∑
|n|≥2

ξ + n

|ξ + n|
M(ξ + n) +

ξ + 1

|ξ + 1|
M(ξ + 1) +

ξ − 1

|ξ − 1|
M(ξ − 1)

= 1 + (1− ξ) (2(ψ(1 + ξ)− ψ(1)) + ξ(ψ′(1 + ξ)− ψ′(1))

+ ψ(1− ξ)− ψ(1 + ξ) +
2ξ

1− ξ2
+ 1− 2ξ

1− ξ2

− (1 + 2ξ(ψ(1− ξ)− ψ(1)) + ξ(1− ξ)(ψ′(1− ξ)− ψ′(1)))

= M̃(ξ),

which completes the proof. �

Remark 7.5. One can show that ‖M̃‖∞ = 1. This implies that TH is bounded

in `2(Z) and its norm is 1, as we already know. Since M̃ is symmetric, periodic,

M̃(0) = 1, and M̃(1/2) = 0, it suffices to show that M̃(ξ) is decreasing in [0, 1
2
]. Let

ϕ(x) := ψ(1 +x) +ψ(1−x)− 2ψ(1) where ψ is the digamma function. Then, M̃ can
be written as

M̃(ξ) = 1 + (1− 2|ξ|)ϕ(|ξ|) + |ξ|(1− |ξ|)ϕ′(|ξ|).

By the definition of ψ, ϕ(x) has the integral representation

ϕ(x) = 2

∫ ∞
0

1− cosh(xy)

ey − 1
dy.
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Figure 1. Comparison between the Fourier multipliers for the clas-
sical Hilbert transform (orange), the discrete Hilbert transform
(blue), and the probabilistic discrete Hilbert transform (green).

It follows from this that dn

dxn
ϕ(x) ≤ 0 for all n = 0, 1, 2, · · · and x ∈ [0, 1

2
]. Then,

ϕ(x) = −2x2

∞∑
n=1

1

n(n2 − x2)
, ϕ′(x) = −4x

∞∑
n=1

n

(n2 − x2)2

ϕ′′(x) = −4
∞∑
n=1

n(n2 + 3x2)

(n2 − x2)3
.

Thus,

M̃ ′(x) = −2ϕ(x) + 2(1− 2x)ϕ′(x) + x(1− x)ϕ′′(x)

= −4
∞∑
n=1

1

n(n2 − x2)3

(
−x2(n2 − x2)2 + 2(1− 2x)n2(n2 − x2) + x(1− x)n2(n2 + 3x2)

)
.

The numerator in the summand can be written as

− x2(n2 − x2)2 + 2(1− 2x)n2(n2 − x2) + x(1− x)n2(n2 + 3x2)

= (1− 2x)(2 + x)n4 − x2(x2 − 7x+ 2)n2 − x6

= (1− 2x)(2 + x)(n4 − n2) + ((1− 2x)(2 + x)− x2(x2 − 7x+ 2)− x6)n2 + x6(n2 − 1)

= (1− 2x)(2 + x)(n4 − n2)− (x− 1)2(x4 + 2x3 + 4x2 − x− 2)n2 + x6(n2 − 1).

Since x4 + 2x3 + 4x2 − x − 2 ≤ 0 for all x ∈ [0, 1
2
], we conclude that M̃ ′(x) ≤ 0 for

x ∈ [0, 1
2
].

Recall that a function u : Rd → C is said to be positive-definite if for any
k ∈ N, ξ1, · · · , ξk ∈ Rd, c1, · · · , ck ∈ C, it satisfies

∑k
i,j=1 u(ξi − ξj)cicj ≥ 0. A

function u : Rd → C is called negative-definite if for any k ∈ N, ξ1, · · · , ξk ∈ Rd,
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c1, · · · , ck ∈ C,

k∑
i,j=1

(u(ξi) + u(ξj)− u(ξi − ξj))cicj ≥ 0.

Bochner’s theorem (see [43, Theorem 3.5.7, p.108]) says that a function u :
Rd → C is the Fourier transform of a probability measure µ if and only if u is con-
tinuous and positive-definite with u(0) = 1. Note that the definitions of positive-
definite and negative-definite functions and Bochner’s theorem can be extended
to functions on locally compact abelian groups in a natural way. In particular, if
u : Q → C is positive-definite and continuous with u(0) = 1 where Q = [−1

2
, 1

2
),

then there exists (P(n))n∈Z such that P(n) ≥ 0 for all n ∈ Z,
∑

n∈ZP(n) = 1, and
F(P)(ξ) = u(ξ). See [17] for further information.

Lemma 7.6. Suppose that a nonnegative continuous function u : R→ R satisfies
u(ξ + n) = u(ξ) for all ξ ∈ R, n ∈ Z and u(0) = 0, and is increasing and concave
on [0, 1

2
]. Then, there exists a probability kernel (P(n))n∈Z (that is, P(n) ≥ 0 and∑

n∈ZP(n) = 1) such that

F(P)(ξ) :=
∑
n∈Z

P(n)e−2πinξ =
1

1 + u(ξ)
.

Proof. By Bochner’s theorem, it is enough to show that (1 + u(ξ))−1 is positive-
definite. Let v(ξ) := u(1/2) − u(ξ), then v is decreasing and convex. By [43,
Theorem 3.5.22], we know that v(ξ) · 1Q(ξ) is positive-definite and so there exists
a bounded nonnegative measure µ such that µ̂ = v · 1Q by Bochner’s theorem.
Since a translation of a Fourier transform corresponds to a multiplication of a
positive-definite function, v(ξ) · 13Q(ξ) is also positive-definite. We claim that v is
positive-definite. Let k ∈ N, c1, · · · , ck ∈ C, and ξi ∈ R. Since v is periodic in Q, it
suffices to consider ξi ∈ Q. Since ξi − ξj ∈ 3Q, we obtain

k∑
i,j=1

v(ξi − ξj)cicj =
k∑

i,j=1

v(ξi − ξj)13Q(ξi − ξj)cicj ≥ 0

as desired. It then follows from [43, Corollary 3.6.10] that v(0) − v(ξ) = u(ξ) is
negative-definite. By [43, Corollary 3.6.13], we see that (1 + u(ξ))−1 is positive-
definite. �

Proof of Theorem 7.1. The Fourier multiplier for the classical discrete Hilbert
transform Hdis with kernel KHdis

(n) = 1
πn

is

F(KHdis
)(ξ) =

∑
n∈Z\{0}

1

πn
e−2πinξ = −

∑
n∈Z\{0}

2i

πn
sin(2πnξ) = −i ξ

|ξ|
(1− 2|ξ|)
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for ξ ∈ [−1
2
,−1

2
). Thus, we have

F(KHdis
)(ξ) = −i ξ

|ξ|
(1− 2|ξ|) = F(KH)(ξ)

1− 2|ξ|
M̃(ξ)

.

By this and Lemma 7.6, it is enough to show that u(x) := M̃(x)/(1 − 2|x|) − 1 is

increasing and concave on [0, 1/2] with u(0) = 0. Since M̃(0) = 1, we immediately
have u(0) = 0. Since

u(x) =
1

1− 2x
+ ϕ(x) +

x(1− x)

1− 2x
ϕ′(x)− 1

=
1

4(1− 2x)
(4 + ϕ′(x)) + ϕ(x)− 1− 2x

4
ϕ′(x)− 1,

u′(x) =
1

2(1− 2x)2
(4 + ϕ′(x)) +

ϕ′′(x)

4(1− 2x)
+

3

2
ϕ′(x)− 1− 2x

4
ϕ′′(x),

it follows from L’hospital’s rule and the recurrence property of polygamma func-
tions that

u′(1/2) = − 1

16
ϕ′′′(1/2) +

3

2
ϕ′(1/2) = 0.

Thus, it suffices to prove that u′′(x) ≤ 0 for x ∈ [0, 1
2
]. Let

v(x) := (1− 2x)3u′′(x)

= 2(4 + ϕ′(x)) + (1− 2x)(1 + 2(1− 2x)2)ϕ′′(x) + x(1− x)(1− 2x)2ϕ′′′(x).

Note that

v′(x) = (1− 2x)2(−12ϕ(2)(x) + 4(1− 2x)ϕ(3)(x) + x(1− x)ϕ(4)(x)).

Using the series representation for ϕ(x) (see the remark above), we get

− 12ϕ(2)(x) + 4(1− 2x)ϕ(3)(x) + x(1− x)ϕ(4)(x)

=
∞∑
n=1

n

(n2 − x2)5
(n6 − 5x(1− 2x)n4 − 5x3(2− x)n2 − x5)

=
∞∑
n=1

n

(n2 − x2)5
((n6 − n4) + (1− x)5n4 + 5x3(2− x)(n4 − n2) + (n4 − 1)x5) ≥ 0

for all x ∈ [0, 1
2
]. Since v′(x) ≥ 0 and v(1/2) = 0, we obtain that v(x) ≤ 0 and so

u′′(x) ≤ 0 for x ∈ [0, 1
2
] as desired. By Lemma 7.6, we conclude that there exists a

probability kernel P such that Hdis = TH ∗ P. �

Question 7.7. Does Theorem 7.1 hold for d > 1? More precisely, is there a
probability kernel P(k) on Zd such that

R
(k)
disf(n) =

∑
m∈Zd

P(k)(n−m)TH(k)f(m)?
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8. Probabilistic continuous Riesz transforms

Given that discrete operators obtained from Calderón–Zygmund kernels as de-
fined in (5.3) simply by replacing the continuous variable z by the discrete vari-
able n and avoiding the singularity at {0} in the sum are bounded on `p (Propos-
tion 5.1), it is natural to ask if the the opposite is also true in the current situation.
More precisely, is it true that the kernels obtained from KH(k) simply by replacing
k ∈ Zd with z ∈ Rd, |z| ≥ 1, together with the some modification for |z| < 1, are
Calderón–Zygmund kernels satisfying (5.3)? In this section we give a formula for
such continuous kernels that satisfy (5.3), with the exception of the C1 property
on the sphere |z| = 1, and are also bounded on Lp(Rd), 1 < p < ∞ with rather
precise norm bounds. Since we are able to find various explicit constants for the
case d = 1, we consider the cases d = 1 and d > 1 separately.

From formula (6.8) a natural version of a continuous kernel which gives the
probabilistic discrete Hilbert transform à la Calderón–Zygmund would be

KH(z) =
1

πz

(
1 +

∫ ∞
0

2y3

(y2 + π2z2) sinh2(y)
dy

)
1{|z|≥1}(z) +

1

πz
1{|z|<1}(z), z ∈ R.

(8.1)

Similarly, for d > 1 from (6.7) a natural definition of version of a continuous kernel
which gives the probabilistic discrete Riesz transforms for k = 1, 2, . . . , d would
be

KH(k)(z) : =

(
−4

∫
Rd

∫ ∞
0

1

h(x, y)

∂p0

∂xk

∂

∂y
(ypz) dydx

)
1{|z|≥1}(z) + cd

zk
|z|d+1

1{|z|<1}(z)

(8.2)

= (I1(z) + I2(z))1{|z|≥1}(z) + cd
zk
|z|d+1

1{|z|<1}(z),

where

I
(k)
1 (z) =

∫
Rd

∫ ∞
0

8c2
d(d+ 1)xky

2

h(x, y)(|x|2 + y2)
d+3
2 (|x− z|2 + y2)

d+1
2

dxdy,

and

I
(k)
2 (z) = −

∫
Rd

∫ ∞
0

4c2
d(d+ 1)2xky

4

h(x, y)(|x|2 + y2)
d+3
2 (|x− z|2 + y2)

d+3
2

dxdy

and cd = Γ(d+1
2

)π−
d+1
2 .

Notice that KH(k) is not continuous on |z| = 1 and hence not a Calderón–
Zygmund kernel requiring (5.3). Nevertheless, with these definition we have

Theorem 8.1. For any d ≥ 1 and k = 1, . . . d, the kernels KH(k)(z) (KH(z) when
d = 1) satisfy
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(i)

|KH(k)(z)| ≤ Cd
|z|d

, z ∈ Rd \ {0}.(8.3)

(ii)

|∇KH(k)(z)| ≤ Cd
|z|d+1

, z ∈ Rd \ {0}, |z| 6= 1,(8.4)

where Cd depends only on d. Furthermore,
(iii) For d = 1,

sup
ξ∈R
|K̂H(ξ)| ≤ 1 +

2

π

∫ ∞
0

y ln(y2/π2 + 1)

sinh2(y)
dy ≈ 1.09956.(8.5)

(iv) For d > 1 and all k = 1, . . . d, we have

|K̂H(k)(ξ)| ≤ Cd, for all ξ ∈ Rd \ {0}(8.6)

Proof. We first show the case d = 1 which is computationally much simper and will
give explicit constants, particularly the bound for the Fourier transform. Clearly
|KH(z)| = 1

π|z| , for 0 < |z| < 1. On the other hand, since∫ ∞
0

y3

(y2 + π2z2) sinh2(y)
dy ≤ 1

π2z2

∫ ∞
0

y3

sinh2(y)
dy

=
4

π2z2

∫ ∞
0

y3

e2y(1− e−2y)2
dy

=
4

π2z2

∞∑
k=1

k

∫ ∞
0

y3e−2ky dy

=
3

2π2z2

∞∑
k=1

1

k3
=

3

2π2z2
ζ(3).(8.7)

From this it follows that |K(z)| ≤ C1

|z| , for all |z| > 0. Similarly, for |z| ≥ 1,

|K ′H(z)| =
∣∣∣∣− 1

πz2

(
1 +

∫ ∞
0

2y3

(y2 + π2z2) sinh2(y)
dy

)
−
∫ ∞

0

4y3

(y2 + π2z2)2 sinh2(y)
dy

∣∣∣∣
≤ C2

|z|2
,

and again we have |K ′H(z)| ≤ C
|z|2 for all |z| > 0, |z| 6= 1. Here, κ is a universal

constant. Thus KH satisfies (i) and (ii).
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In addition, we have, in the principal value sense,

K̂(ξ) =

∫
R
K(z)e−2πiz·ξdz

=

∫
R

1

πz
e−2πiz·ξdz +

1

π

∫ ∞
0

2y3

sinh2(y)

(∫
{|z|>1}

e−2πiz·ξ

z(y2 + π2z2)
dz

)
dy(8.8)

= −i sign(ξ) +
1

π

∫ ∞
0

2y3

sinh2(y)

(∫
{|z|>1}

e−2πiz·ξ

z(y2 + π2z2)
dz

)
dy

= −i sign(ξ)

(
1 +

1

π

∫ ∞
0

2y3

sinh2(y)

(∫
{|z|>1}

sin(2πz|ξ|)
z(y2 + π2z2)

dz

)
dy

)
.

By Fubini and the identity, obtained by integration by parts,∫ ∞
1

1

z(y2 + π2z2)
dz =

ln(y2/π2 + 1)

2y2
,

we have∣∣∣ 1
π

∫ ∞
0

y3

sinh2(y)

(∫
{|z|>1}

e−2πiz·ξ

z(y2 + π2z2)
dz

)
dy
∣∣∣ ≤ 2

π

∫ ∞
0

y3

sinh2(y)

(∫ ∞
1

1

z(y2 + π2z2)
dz

)
dy

=
1

π

∫ ∞
0

y ln(y2/π2 + 1)

sinh2(y)
dy

≈ 0.0497822.(8.9)

Hence for all ξ ∈ R,

|K̂(ξ)| ≤ 1 +
2

π

∫ ∞
0

y ln(y2/π2 + 1)

sinh2(y)
dy ≈ 1.09956,

which is the claim in (iii).
We now suppose d > 1. By (6.11) and a change of variables we have, for |z| ≥ 1

and z = |z|θ, that

|KH(k)(z)| ≤ Cd

∫ ∞
0

∫
Rd

y

(|x|2 + y2)
d+1
2 (|x− z|2 + y2)

d+1
2

dxdy

=
Cd
|z|d

∫ ∞
0

∫
Rd

y

(|x|2 + y2)
d+1
2 (|x− θ|2 + y2)

d+1
2

dxdy.

Since∫ ∞
0

∫
Rd

y

(|x|2 + y2)
d+1
2 (|x− θ|2 + y2)

d+1
2

dxdy ≤
∫ ∞

0

∫
{|x−θ|≤ 1

2
}

y

(1
4

+ y2)
d+1
2 (|x− θ|2 + y2)

d+1
2

dxdy

+

∫ ∞
0

∫
{|x−θ|≥ 1

2
}

y

(|x|2 + y2)
d+1
2 (1

4
+ y2)

d+1
2

dxdy

≤
∫ ∞

0

Cd

(1 + y2)
d+1
2

∫
Rd

1

(|x|2 + 1)
d+1
2

dxdy ≤ Cd.
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This together with the obvious bound for the second term in (8.2) gives that
|KH(k)(z)| ≤ Cd

|z|d , for |z| > 0. Next, for j = 1, 2, · · · , d, differentiation and (3.4) gives

that for |z| > 1,∣∣∣ ∂
∂zj

I
(k)
1 (z)

∣∣∣ = Cd

∣∣∣ ∫ ∞
0

∫
Rd

xky
2(xj − zj)

h(x, y)(|x|2 + y2)
d+3
2 (|x− z|2 + y2)

d+3
2

dxdy
∣∣∣

≤ Cd
|z|(d+1)

∫ ∞
0

∫
Rd

|xkxj|y
(|x|2 + y2)

d+2
2 (|x− θ|2 + y2)

d+3
2

dxdy

+
Cd|zj|
|z|(d+2)

∫ ∞
0

∫
Rd

|xkzj|y
(|x|2 + y2)

d+2
2 (|x− θ|2 + y2)

d+3
2

dxdy

≤ Cd
|z|d+1

,

where z = |z|θ. Similarly, we can obtain the same upper bound for ∂
∂zj
I

(k)
2 (z),

|z| > 1, which leads to
∣∣∇KH(k)(z)

∣∣ ≤ Cd
|z|d+1 for all |z| > 0 and |z| 6= 1.

It remains to show that the Fourier transform of K(k)(z) is bounded. By (6.7)
and Proposition 6.5, we have that

−4

∫
Rd

∫ ∞
0

∂p0(x, y)

∂xk

∂

∂y
(ypz(x, y)) dydx =

cdzk
|z|d+1

, |z| > 0.(8.10)

This formula can also be easily verified using the Fourier transform. More pre-
cisely, we have

− 4

∫
Rd

∫
Rd

∫ ∞
0

∂p

∂xk
(x, y)

∂

∂y
(yp(x− z, y))e−2πiz·ξ dydxdz

= −4

∫
Rd

∫ ∞
0

∂p

∂xk
(x, y)

∂

∂y
(ye−2π|ξ|y)e−2πix·ξ dydx

= −8πiξk

∫ ∞
0

(1− 2π|ξ|y)e−4π|ξ|y dy

= −i ξk
|ξ|
,

which implies (8.10). Thus we can write (8.2) as

KH(k)(z) =

(
−4

∫ ∞
0

∫
Rd

(
1

h
− 1

)
∂p0(x, y)

∂xk

∂

∂y
(ypz(x, y)) dxdy

)
1{|z|≥1}(z) + cd

zk
|z|d+1

.

(8.11)

Since the Fourier transform of the second term is −i ξk|ξ| (the Fourier transform of
the classical Riesz transforms), it is enough to show that∫

{|z|≥1}
J

(k)
1 (z)e−2πiz·ξ dz,

∫
{|z|≥1}

J
(k)
2 (z)e−2πiz·ξ dz
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are uniformly bounded in ξ, where

J
(k)
1 (z) :=

∫ ∞
0

∫
Rd

(
1

h(x, y)
− 1

)
xky

2

(|x|2 + y2)
d+3
2 (|x− z|2 + y2)

d+1
2

dxdy,(8.12)

J
(k)
2 (z) :=

∫ ∞
0

∫
Rd

(
1

h(x, y)
− 1

)
xky

4

(|x|2 + y2)
d+3
2 (|x− z|2 + y2)

d+3
2

dxdy.(8.13)

By the estimate (3.4), | 1
h(x,y)

− 1| ≤ Cd

√
x2+y2

y
, and

∫
{|x|≥ 1

2
}
(|x|2 + y2)−

d+1
2 dx ≤

∫
{|x|≥ 1

2
}
|x|−(d+1) dx ≤ Cd(8.14)

for 0 ≤ y ≤ 1 we have

∫
{|z|≥1}

∫ 1

0

∫
{|x|≤ 1

2
}

∣∣∣∣ 1

h(x, y)
− 1

∣∣∣∣ |xk|y2

(|x|2 + y2)
d+3
2 (|x− z|2 + y2)

d+1
2

dxdydz

≤
∫ 1

0

∫
{|x|≤ 1

2
}

(∫
{|x−z|≥ 1

2
}

1

(|x− z|2 + y2)
d+1
2

dz

)∣∣∣∣ 1

h(x, y)
− 1

∣∣∣∣ |xk|y2

(|x|2 + y2)
d+3
2

dxdy

≤ Cd

∫ 1

0

∫
{|x|≤ 1

2
}

y

(|x|2 + y2)
d+1
2

dxdy ≤ Cd.

Note that in the first inequality, we used the fact that if |x| ≤ 1
2

and |z| ≥ 1, then
|x− z| ≥ 1

2
. Similarly,

∫
{|z|≥1}

∫ ∞
1

∫
{|x|≤ 1

2
}

∣∣∣∣ 1

h(x, y)
− 1

∣∣∣∣ |xk|y2

(|x|2 + y2)
d+3
2 (|x− z|2 + y2)

d+1
2

dxdydz

≤ Cd

∫ ∞
1

(∫
{|x|≥ 1

2
}

1

(|x|2 + y2)
d+1
2

dx

)(∫
{|x|≤ 1

2
}

∣∣∣∣ 1

h(x, y)
− 1

∣∣∣∣ |xk|y2

(|x|2 + y2)
d+3
2

dx

)
dy

≤ Cd

∫ ∞
1

∫
{|x|≤ 1

2
}
y−d−1 dxdy ≤ Cd.

On the other hand, it follows from (3.4), (8.14), and the bound

∫
{|z|≥1}

y

(|x− z|2 + y2)
d+1
2

dz ≤ Cd(8.15)
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that∫
{|z|≥1}

∫ 1

0

∫
{|x|≥ 1

2
}

∣∣∣∣ 1

h(x, y)
− 1

∣∣∣∣ |xk|y2

(|x|2 + y2)
d+3
2 (|x− z|2 + y2)

d+1
2

dxdydz

=

∫ 1

0

∫
{|x|≥ 1

2
}

(∫
{|z|≥1}

y

(|x− z|2 + y2)
d+1
2

dz

)∣∣∣∣ 1

h(x, y)
− 1

∣∣∣∣ |xk|y
(|x|2 + y2)

d+3
2

dxdy

≤ Cd

∫ 1

0

∫
{|x|≥ 1

2
}

∣∣∣∣ 1

h(x, y)
− 1

∣∣∣∣ |xk|y
(|x|2 + y2)

d+3
2

dxdy

≤ Cd

∫ 1

0

∫
{|x|≥ 1

2
}

1

(|x|2 + y2)
d+1
2

dxdy ≤ Cd.

By Lemma 3.1, we know that |1/h(x, y)− 1| ≤ Cd
y

for y ≥ 1. Using this,∫
{|z|≥1}

∫ ∞
1

∫
{|x|≥ 1

2
}

∣∣∣∣ 1

h(x, y)
− 1

∣∣∣∣ |xk|y2

(|x|2 + y2)
d+3
2 (|x− z|2 + y2)

d+1
2

dxdydz

=

∫ ∞
1

∫
{|x|≥ 1

2
}

(∫
{|z|≥1}

y

(|x− z|2 + y2)
d+1
2

dz

)∣∣∣∣ 1

h(x, y)
− 1

∣∣∣∣ |xk|y
(|x|2 + y2)

d+3
2

dxdy

≤ Cd

∫ ∞
1

∫
{|x|≥ 1

2
}

1

(|x|2 + y2)
d+2
2

dxdy

≤ Cd

∫ ∞
1

1

y2
dy

∫
Rd

1

(|w|2 + 1)
d+2
2

dw ≤ Cd.

In the last inequality, we have used the change of variable wy = x. Thus, we get∣∣∣∣∫
{|z|≥1}

J
(k)
1 (z)e−2πiz·ξ dz

∣∣∣∣ ≤ ∫
{|z|≥1}

|J (k)
1 (z)| dz ≤ Cd.(8.16)

Using the trivial bound y2/(|x−z|2+y2) ≤ 1, it follows from the previous argument
that ∣∣∣∣∫

{|z|≥1}
J

(k)
2 (z)e−2πiz·ξ dz

∣∣∣∣
≤
∫
{|z|≥1}

∫ ∞
0

∫
Rd

∣∣∣∣ 1

h(x, y)
− 1

∣∣∣∣ |xk|y4

(|x|2 + y2)
d+3
2 (|x− z|2 + y2)

d+3
2

dxdydz

≤
∫
{|z|≥1}

∫ ∞
0

∫
Rd

∣∣∣∣ 1

h(x, y)
− 1

∣∣∣∣ |xk|y2

(|x|2 + y2)
d+3
2 (|x− z|2 + y2)

d+1
2

dxdydz

≤ Cd.

�
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Remark 8.2. Note that the proof of the boundedness of the Fourier transform
for d = 1 shows that in fact the function

J(z) =
1

πz

(∫ ∞
0

2y3

(y2 + π2z2) sinh2(y)
dy

)
1{|z|≥1}(z)

is in L1(R) with ‖J‖L1 ≈ 0.09956. Similarly, for d > 1, the proof shows that

J
(k)
1 (z)1{|z|≥1}(z) and J

(k)
2 (z)1{|z|≥1}(z) are in L1(Rd) with bounds depending only

on d.

This gives the following

Corollary 8.3. For d = 1, the continuous probabilistic Hilbert transform is given
by

KH(z) =
1

πz

(
1 +

∫ ∞
0

2y3

(y2 + π2z2) sinh2(y)
dy

)
1{|z|≥1}(z) +

1

πz
1{|z|<1}(z)

= J(z) +
1

πz
,(8.17)

where ‖J‖L1 ≈ 0.09956.
Similarly for d > 1,

KH(k)(z) = J
(k)
1 + J

(k)
2 + cd

zk
|z|d+1

,(8.18)

= J (k) + cd
zk
|z|d+1

,

where ‖J (k)‖L1 ≤ Cd where Cd depends only on d.

We record the Lp-boundedness of the operators in the following Corollary.

Corollary 8.4. With J and J (k) as above, the probabilistic continuous Hilbert and
Riesz transforms are of the form:

KH ∗ f = J ∗ f +Hf,(8.19)

KH(k) ∗ f = J (k) ∗ f +R(k) ∗ f, k = 1, . . . , d.(8.20)

For 1 < p <∞,

‖KH‖Lp→Lp ≤ ‖J‖L1 + cot(π/(2p∗)) ≈ 0.09956 + cot(π/(2p∗))(8.21)

and

‖KH(k)‖Lp→Lp ≤ ‖J (k)‖L1 + cot(π/(2p∗)) ≤ Cd + cot(π/(2p∗)),(8.22)

where Cd depends on the dimension d.

We conjecture that the Lp-norm of the operator KH(k) is independent of d. As to
the sharp value, that is not easy to guess with the information at hand.

Our proof above shows that the choice for the second terms in (8.1) and (8.2)
is quite natural given the relationship of the first term to the Hilbert and Riesz
transforms. The question of choosing different second terms in (8.1) and (8.2)
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that could lead to continuous operators with smaller p norms, perhaps even
cot(π/(2p∗)), would be interesting to explore.

Remark 8.5. Recall that the smoothness condition |∇K(z)| ≤ κ|z|−(d+1) can be
relaxed with Hörmander’s condition

sup
y 6=0

∫
|x|≥2|y|

|K(x− y)−K(x)| dx ≤ B <∞,(8.23)

see [35, Theorem 4.3.3] and [63, Corollary on p.34, Theroem 2, p.35]. In particu-
lar, if K satisfies |K(x)| ≤ κ|x|−d and Hörmander’s condition, then the convolution
operator T with kernel K is bounded on Lp, 1 < p <∞. We claim that the kernel
KH(k) satisfies Hörmander’s condition. We have already seen that

|∇KH(k)(x)| ≤ C

|x|d+1
, for |x| 6= 0, 1.

Suppose |y| > 1. If |x| ≥ 2|y| then

|θ(x− y) + (1− θ)x| = |x− θy| ≥ (1− θ
2
)|x| ≥ (2− θ)|y|

for all 0 ≤ θ ≤ 1. By Taylor’s theorem, we have

|KH(k)(x− y)−KH(k)(x)| ≤ |∇KH(k)(x− θy)||y| ≤ C|y|
|x− θy|d+1

≤ C|y|
|x|d+1

,

which leads to∫
|x|≥2|y|

|KH(k)(x− y)−KH(k)(x)| dx ≤ C|y|
∫ ∞

2|y|

1

r2
dr ≤ C <∞.

If |y| ≤ 1 and |x| > |y|+1, then |x−θy| > 1 for 0 ≤ θ ≤ 1. Thus, the same argument
yields ∫

|x|≥|y|+1

|KH(k)(x− y)−KH(k)(x)| dx ≤ C <∞.

Let 1
4
< |y| ≤ 1 and 2|y| ≤ |x| ≤ |y|+ 1. Using |KH(k)(x)| ≤ κ|x|−d and |x− y| ≥ 1

2
|x|,

we get∫
2|y|≤|x|≤|y|+1

|KH(k)(x− y)−KH(k)(x)| dx ≤ C

∫
2|y|≤|x|≤|y|+1

|x|−d dx = C

∣∣∣∣log

(
|y|+ 1

2|y|

)∣∣∣∣ ,
which is bounded for |y| ∈ (1

4
, 1]. Suppose |y| ≤ 1

4
and 3

4
≤ |x| ≤ |y| + 1, then the

same argument gives∫
3
4
≤|x|≤|y|+1

|KH(k)(x− y)−KH(k)(x)| dx ≤ C

∫
3
4
≤|x|≤|y|+1

|x|−d dx = C| log(4
3
(|y|+ 1))| <∞.

If |y| ≤ 1
4

and 2|y| ≤ |x| < 3
4
, then |x − θy| < 1. Thus it follows from the gradient

bound that∫
2|y|≤|x|< 3

4

|KH(k)(x− y)−KH(k)(x)| dx ≤ C|y|
∫ 3

4

2|y|

1

r2
dr ≤ C <∞.
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Therefore the kernel KH(k) satisfies Hörmander’s condition and the Lp(Rd)-boundedness
of the operators for 1 < p <∞ also follows from the Calderón–Zygmund theory.

9. A method of rotations for discrete Riesz trasforms

Given the fact that the classical method of rotations can be used to show that
the Riesz transforms (and other singular integrals) in Rd have norms bounded
above by the norm of the Hilbert transform, as discussed in Section 5.2, it is
natural to ask if there is a discrete version of such a technique that would reduce
the boundedness of operators on `p(Zd) (with some assumptions on their kernel)
to the boundedness of Hdis on `p(Z). While this does not seem to be the case for
the setting of the CZ discrete Riesz transform as defined in (5.14), we can define
closely related operators for which such a procedure is possible.

9.1. Two-dimensional case. We first consider the d = 2 case where a particu-
larly simple expression for the discrete transform is available. For j = 1, 2, from
(5.6) we have

R(i)f(x) =
1

2π
p.v.

∫
R2

f(y)
xi − yi
|x− y|3

dy.

Note that
∂2|y|
∂y2

j

=
1

|y|
−

y2
j

|y|3
=
|y|2 − y2

j

|y|3
=

y2
i

|y|3
,

where i = 1, if j = 2 and i = 2, if j = 1. Hence, the kernel of R(i) is given by

1

yi

∂2|y|
∂y2

j

.

Although not necessarily natural, this motivates the following definition for a
different variant of discrete Riesz transforms

R(i)f(n) =
1

2π

∑
m∈Z2

f(m)
|n−m+ ej|+ |n−m− ej| − 2|n−m|

ni −mi

1{mi 6=ni}.

For simplicity, we consider i = 1. Fix a, b ∈ R and define the directional discrete
Hilbert transform via the formula

Ha,bf(n) =
1

π

∑
m∈Z2

f(m)

n1 −m1

1{n1 6=m1,n2−ban1+bc=m2−bam1+bc}.

The intuition behind this definition is as follows. We split Z2 into an infinite family
of “one-dimensional” sets

Fa,b,l = {(k, bak + bc+ l) : k ∈ Z} = {n ∈ Z2 : n2 − ban1 + bc = l},
where l takes arbitrary integer values. Then Ha,b acts as a (one-dimensional)
discrete Hilbert transform on each of the fibers Fa,b,l. In particular, the above
interpretation combined with Corollary 7.2 immediately gives that

‖Ha,b‖p→p = cot( π
2p∗

),
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which is the norm of the continuous Hilbert transform.

Theorem 9.1. For compactly supported f : Z2 → R, we have

R(1)f(n) =
1

2

∫ 1

0

∫ ∞
−∞

1

(1 + a2)3/2
Ha,bf(n)dadb,(9.1)

Proof. Formula (9.1) is equivalent to

1

2π

|n−m+ e2|+ |n−m− e2| − 2|n−m|
n1 −m1

=
1

2

∫ 1

0

∫ ∞
−∞

1

(1 + a2)3/2

1

π

1

m1 − n1

1{m2−bam1+bc=n2−ban1+bc} dadb,

whenever m1 6= n1. After elementary simplification, we need to prove that

|n−m+ e2|+ |n−m− e2| − 2|n−m|

=

∫ 1

0

∫ ∞
−∞

1

(1 + a2)3/2
1{m2−bam1+bc=n2−ban1+bc} dadb.

We denote the right-hand side of the above equality by I.
The integrand in I is a periodic function of b, with period 1. Therefore, we

may integrate with respect to b over an arbitrary interval of unit length. For
convenience, we choose this to be [−an1,−an1 + 1), so that ban1 + bc = 0, and we
substitute c = an1 + b. It follows that

I =

∫ ∞
−∞

∫ −an1+1

−an1

1

(1 + a2)3/2
1{m2−bam1+bc=n2} dbda

=

∫ ∞
−∞

∫ 1

0

1

(1 + a2)3/2
1{m2−ba(m1−n1)+cc=n2} dcda.

We consider the case m1 > n1, the remaining case m1 < n1 being very similar. We
have

I =

∫ 1

0

∫ ∞
−∞

1

(1 + a2)3/2
1{m2−ba(m1−n1)+cc=n2} dadc

=

∫ 1

0

∫ (m2−n2−c+1)/(m1−n1)

(m2−n2−c)/(m1−n1)

1

(1 + a2)3/2
dadc

=

∫ 1

0

(
m2 − n2 − c+ 1√

(m2 − n2 − c+ 1)2 + (m1 − n1)2
− m2 − n2 − c√

(m2 − n2 − c)2 + (m1 − n1)2

)
dc

=
(
−
√

(m2 − n2)2 + (m1 − n1)2 +
√

(m2 − n2 − 1)2 + (m1 − n1)2
)

−
(
−
√

(m2 − n2 + 1)2 + (m1 − n1)2 +
√

(m2 − n2)2 + (m1 − n1)2
)

= |m− n− e2|+ |m− n+ e2| − 2|m− n|,

as desired. �
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Note that ∫ ∞
−∞

1

(1 + a2)3/2
da = 2.

This, as in the classical method of rotations, immediately leads to the following
estimate.

Corollary 9.2. We have

‖R(1)‖`p→`p ≤ cot( π
2p∗

).

On the other hand, we have the following perfect analogue of Lemma 6.7 which
gives the opposite inequality.

Lemma 9.3. If we denote by KR(k)(n) the kernel of R(k), then

lim
|n|→∞

|n|2|KR(k)(n)−K
R

(k)
dis

(n)| = 0.

Proof. The argument boils down to an application of Taylor’s theorem and ele-
mentary estimates. If n = (n1, n2) ∈ Z2, |n| ≥ 2 and n1 6= 0, then

|n− e2|+ |n+ e2| − 2|n| =
√
n2

1 + (n2 − 1)2 +
√
n2

1 + (n2 + 1)2 − 2
√
n2

1 + n2
2

=

∫ 1

−1

(1− |x|) n2
1

(n2
1 + (n2 − x)2)3/2

dx,

and hence∣∣∣∣ |n− e2|+ |n+ e2| − 2|n|
n1

− n1

(n2
1 + n2

2)3/2

∣∣∣∣
=

∣∣∣∣∫ 1

−1

(1− |x|) n1

(n2
1 + (n2 + x)2)3/2

dx−
∫ 1

−1

(1− |x|) n1

(n2
1 + n2

2)3/2
dx

∣∣∣∣
≤
∫ 1

−1

(1− |x|)
∣∣∣∣ n1

(n2
1 + (n2 + x)2)3/2

− n1

(n2
1 + n2

2)3/2

∣∣∣∣dx.
However, |n+ ye2| ≥ |n| − |y| ≥ |n| − 1 ≥ 1

2
|n| when |y| ≤ 1 and |n| ≥ 2, so that∣∣∣∣ n1

(n2
1 + (n2 + x)2)3/2

− n1

(n2
1 + n2

2)3/2

∣∣∣∣ =

∣∣∣∣∫ x

0

3n1(n2 + y)

(n2
1 + (n2 + y)2)5/2

dy

∣∣∣∣
≤ 96|n1|(|n2|+ 1)

|n|5
≤ 192

|n|3

when |x| ≤ 1 and |n| ≥ 2. It follows that∣∣∣∣ |n− e2|+ |n+ e2| − 2|n|
n1

− n1

n2
1 + n2

2

∣∣∣∣ ≤ 192

|n|3

∫ 1

−1

(1− |x|) dx =
192

|n|3

when |n| ≥ 2 and n1 6= 0, and the desired result follows. �
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With the above result at hand, we can follow the proof of Lemma 6.8 and show
that appropriately rescaled operators R(k) can be used to approximate (in the
point-wise sense) the continuous Riesz transforms R(k), and consequently

‖R(k)‖`p→`p ≥ ‖R(k)‖Lp→Lp = cot( π
2p∗

).

We have thus proved the following result.

Theorem 9.4. The two-dimensional discrete Riesz transforms, defined for i = 1, 2
by

R(i)f(n) =
1

2π

∑
m∈Z2

f(m)
|n−m+ ej|+ |n−m− ej| − 2|n−m|

ni −mi

1{mi 6=ni},

where j = 2 if i = 1 and j = 1 if i = 2, have norms on `p equal to the norms on Lp

of the corresponding continuous Riesz transforms: when 1 < p <∞, we have

‖R(i)‖`p→`p = ‖R(i)‖Lp→Lp = cot( π
2p∗

).

9.2. Higher dimensions. The same approach works in higher dimensions, too,
but a closed-form expression for the corresponding kernel does not seem avail-
able. When d ≥ 2, we define

R(k)f(n) =
∑
m∈Zd

KR(k)(n−m)f(m),(9.2)

where the kernel for k = 1 is given in an integral form as follows. If n = (n1, ñ) ∈
Zd with n1 ∈ Z and ñ = (n2, . . . , nd) ∈ Zd−1, and if n1 > 0, then

KR(1)(n) =
1

πn1

× Cd
∫

[0,1]d−1

∫
ñ−b
n1

+[0, 1
n1

)d−1

1

(1 + |a|2)(d+1)/2
dadb,

where Cd is related to the constant cd in (5.7) via

Cd =

(∫
Rd−1

1

(1 + |a|2)(d+1)/2
da

)−1

= πcd.

Furthermore, when n1 < 0, then KR(1)(n) = −KR(1)(−n). For a general k, the
kernel KR(k)(n) is equal to KR(1)(n′), where n′ is obtained from n by swapping the
first and k-th coordinate.

By definition, as in the two-dimensional case, for compactly supported f : Zd →
R, we have

R(1)f(n) = Cd

∫
[0,1]d−1

∫
Rd−1

1

(1 + |a|2)(d+1)/2
Ha,bf(n)dadb,

where Ha,b acts as the discrete Hilbert transform with respect to n1 on each of
the fibers

Fa,b,l = {(n1, ban1 + bc+ l) : n1 ∈ Z} = {n ∈ Zd : nj − bajn1 + bjc = lj, j = 2, 3, . . . , d},
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with l ∈ Zd−1 (here we understand that the floor function in ban1+bc acts component-
wise). Therefore,

‖R(1)‖`p→`p ≤ cot( π
2p∗

).

On the other hand, below we prove that (as in Lemma 9.3 for d = 2)

lim
|n|→∞

|n|d|KR(1)(n)−K
R

(1)
dis

(n)| = lim
|n|→∞

|n|d
∣∣∣∣KR(1)(n)− cd

n1

|n|(d+1)/2

∣∣∣∣ = 0.(9.3)

Once this is shown, by the same argument as in the case of d = 2, we find that

‖R(1)‖`p→`p ≥ ‖R(1)‖Lp→Lp = cot( π
2p∗

).

Thus, we conclude that in fact the norms are equal. We state this as a theorem.

Theorem 9.5. The discrete Riesz transforms R(k) introduced above have norms
on `p equal to the norms on Lp of the corresponding continuous Riesz transforms:
when 1 < p <∞, we have

‖R(k)‖`p→`p = ‖R(k)‖Lp→Lp = cot( π
2p∗

).

Proof. We only need to prove (9.3). As before, we write n = (n1, ñ), where
ñ = (n2, . . . , nd), and since both kernels are odd functions of n1, without loss
of generality we assume that n1 > 0. We have

KR(1)(n)−K
R

(1)
dis

(n)

=
cd
n1

∫
[0,1]d−1

∫
ñ−b
n1

+[0, 1
n1

)d−1

1

(1 + |a|2)(d+1)/2
dadb− cd

n1

(n2
1 + |ñ|2)(d+1)/2

=
cd
nd1

∫
[0,1]d−1

∫
[0,1)d−1

nd+1
1

(n2
1 + |ñ− b+ v|2)(d+1)/2

dvdb− cd
n1

(n2
1 + |ñ|2)(d+1)/2

= cdn1

∫
[0,1]d−1

∫
[0,1)d−1

(
1

(n2
1 + |ñ− b+ v|2)(d+1)/2

− 1

(n2
1 + |ñ|2)(d+1)/2

)
dvdb.

Since in the given region of integration we have −b+ v ∈ [−1, 1]d−1, it follows that

|KR(1)(n)−K
R

(1)
dis

(n)| ≤ cdn1 sup
w∈[−1,1]d−1

∣∣∣∣ 1

(n2
1 + |ñ+ w|2)(d+1)/2

− 1

(n2
1 + |ñ|2)(d+1)/2

∣∣∣∣.
We now simply use the mean value theorem for the function t 7→ t−d−1 evaluated
at t1 =

√
n2

1 + |ñ+ w|2 and t2 =
√
n2

1 + |ñ|2 = |n|: we have∣∣∣∣ 1

td+1
1

− 1

td+1
2

∣∣∣∣ ≤ |t1 − t2| × d+ 1

min{td+2
1 , td+2

2 }
.

Since |t1− t2| ≤ |w| ≤
√
d− 1, we have t1 ≥ t2−

√
d− 1 = |n| −

√
d− 1 ≥ 1

2
|n| when

|n| is large enough, and thus∣∣∣∣ 1

(n2
1 + |ñ+ w|2)(d+1)/2

− 1

(n2
1 + |ñ|2)(d+1)/2

∣∣∣∣ =

∣∣∣∣ 1

td+1
1

− 1

td+1
2

∣∣∣∣ ≤ √d− 1× 2d+2(d+ 1)

|n|d+2
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when |n| is large enough. We thus conclude that when |n| is large enough, then

|KR(1)(n)−K
R

(1)
dis

(n)| ≤ 2d+1(d+ 1)cd
√
d− 1

n1

|n|d+2
.

The right-hand side multiplied by |n|d goes to zero as |n| → ∞, and the proof is
complete. �

We remark that a similar construction of the discrete Riesz transform using the
method of rotations can be carried out using the probabilistic discrete Hilbert
transform TH instead of the discrete Hilbert transform Hdis applied above. This
procedure will lead to a transform with the same norm on `p, but with a kernel
which is greater in absolute value than the kernel ofR(k) (in the point-wise sense).
However, we did not pursue this direction.

We summarize in the following Theorem.

Theorem 9.6. (i) Let R(k) be the classical Riesz transforms in (5.6), R(k)
dis the CZ

discrete Riesz transforms in (5.14), TH(k) the probabilistic discrete Riesz trans-
forms in (6.4), and R(k) the Riesz transforms obtained by the method of rotations
in (9.2). Then, for 1 < p <∞, d ≥ 2 and k = 1, . . . , d,

‖R(k)‖Lp = ‖TH(k)‖`p = ‖R(k)‖`p = cot( π
2p∗

) ≤ ‖R(k)
dis‖`p .(9.4)

(ii) When d = 1, the operators reduce to the classical Hilbert transform H in (1.1),
the discrete Hilbert transform Hdis in (1.2), the probabilistic discrete Hilbert
transform TH in (7.1). The p-norm of all three operators is cot( π

2p∗
).

10. Numerical comparison of kernels

We end with some remarks on numerical comparisons on the kernels for the
discrete operators R(k)

dis , R(k), and TH(k). Numerical evaluation of the kernels for

R
(k)
dis and R(k) when d = 2 presents no difficulties. The situation is quite different

for TH(k), which is given by a triple integral involving the periodic Poisson kernel
h(x, y).

In the following numerical simulations we used Wolfram Mathematica 10 and
a relatively naive approach, which may lead to significant errors. That said, the
outcome turned out to be relatively stable when we varied the parameters, so we
believe that our approximations are correct to roughly fourth significant digit.

The periodic Poisson kernel h(x, y) was approximated using the definition (3.2)
when y ≤ 1

4
and using the expression (3.6) based on the Poisson summation for-

mula when y ≥ 1
4
. Additionally, since h(x, y) converges to 1 exponentially fast as

y → ∞, for y ≥ 10 we simply approximated h(x, y) by a constant 1. To speed up
numerical integration, we evaluated the above numerical approximation to h(x, y)
in a limited number of points, and then we used appropriate interpolation to find
the values of h(x, y) between these points.

Numerical integration was done using standard methods available in Mathe-
matica. Although Mathematica warned about slow convergence, the estimated
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Figure 2. Values of the kernels of the three transforms: KH(1)(n1, n2)
(red), KR(1)(n1, n2) (blue), and K

R
(1)
dis

(n1, n2) (black) for n1, n2 ∈
{−5,−4, . . . , 5}.

error of numerical integration appears to be less significant than the errors in
approximation of the periodic Poisson kernel.

The values of the three kernels are shown in Figure 2. Ratio between the
kernels of the probabilistic and the CZ discrete Riesz transform are shown in
Figure 3, while a similar plot for the method of rotations and the Riesz transform
R1

dis is shown in Figure 4. Numerical results are presented in Tables 1, 2 and 3.
Our simulations suggest that there is no general point-wise relation between

the kernels of R(k) and R
(k)
dis , nor there is one between the kernels of TH(k) and

R(k). However, it seems that the kernel of TH(k) is always greater (in the absolute

value) than the kernel of R(k)
dis . This leads to the following conjecture which we

know is true for d = 1 by (6.8).

Conjecture 10.1. For all d ≥ 2, we have |KH(k)(n)| ≥ |K
R

(k)
dis

(n)| for every n ∈ Zd.

The above numerical findings give little insight into Question 7.7, which asks
whether K

R
(k)
dis

is the convolution of KH(k) with some probability kernel. Indeed,

although intuitively point-wise domination asserted in Conjecture 10.1 appears
to be a necessary condition for a positive answer to Question 7.7, neither of these
statements implies the other one.

On the other hand, our calculations strongly suggest that in dimension d = 2
the maximum of KR(1)(n1, n2) is strictly smaller than the maximum of K

R
(1)
dis

(n1, n2);

both maxima are attained at (n1, n2) = (1, 0). If this is indeed the case, then K
R

(1)
dis
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Figure 3. Ratio between the kernels of two transforms:
KH(1)(n1, n2)/K

R
(1)
dis

(n1, n2) (red) compared with constant 1 (black) for

n1, n2 ∈ {−5,−4, . . . , 5}. When n1 = 0, we set 0/0 = 1.

Figure 4. Ratio between the kernels of two transforms:
KR(1)(n1, n2)/K

R
(1)
dis

(n1, n2) (blue) compared with constant 1 (black)

for n1, n2 ∈ {−5,−4, . . . , 5}. When n1 = 0, we set 0/0 = 1.
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Table 1. Values of the kernels of the three transforms: KH(1)(n1, n2)
(top row), KR(1)(n1, n2) (middle row) and K

R
(1)
dis

(n1, n2) (bottom row)

for n1, n2 ∈ {0, 1, . . . , 5}, n1 6= 0. The largest value in each cell is set
in bold, while the smallest one is given in slanted type.

n2

0 1 2 3 4 5

1
0.2051
0.1318
0.1592

0.0698
0.0649
0.0563

0.0158
0.0166
0.0142

0.0053
0.0055
0.0050

0.0024
0.0024
0.0023

0.0012
0.0012
0.0012

2
0.0446
0.0376
0.0398

0.0315
0.0284
0.0285

0.0151
0.0147
0.0141

0.0071
0.0071
0.0068

0.0037
0.0037
0.0036

0.0021
0.0021
0.0020

n1 3
0.0188
0.0172
0.0177

0.0160
0.0149
0.0151

0.0106
0.0103
0.0102

0.0065
0.0064
0.0063

0.0039
0.0039
0.0038

0.0025
0.0025
0.0024

4
0.0103
0.0098
0.0099

0.0094
0.0090
0.0091

0.0073
0.0071
0.0071

0.0052
0.0051
0.0051

0.0036
0.0036
0.0035

0.0025
0.0025
0.0024

5
0.0065
0.0063
0.0064

0.0061
0.0060
0.0060

0.0052
0.0051
0.0051

0.0041
0.0040
0.0040

0.0031
0.0030
0.0030

0.0023
0.0023
0.0023

is clearly not a convolution of KR(1) and a probability kernel. Thus, we expect
that the analogue of Question 7.7 for R(k) instead of TH(k) has a negative answer.

Finally, one can ask if the analogue of Question 7.7 holds for the discrete Riesz
transform obtained with the method of rotations, but using the probabilistic dis-
crete Hilbert transform TH instead of the usual discrete Hilbert transform Hdis.
We did not attempt to answer this question.
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Table 2. Values of the ratios KH(1)(n1, n2)/K
R

(1)
dis

(n1, n2) of kernels of

two transforms for n1, n2 ∈ {0, 1, . . . , 5}, n1 6= 0.

n2

0 1 2 3 4 5
1 1.2885 1.2413 1.1127 1.0593 1.0356 1.0235
2 1.1200 1.1067 1.0717 1.0458 1.0303 1.0211

n1 3 1.0615 1.0567 1.0450 1.0333 1.0243 1.0180
4 1.0364 1.0345 1.0298 1.0241 1.0191 1.0150
5 1.0239 1.0230 1.0208 1.0179 1.0149 1.0123

Table 3. Values of the ratios KR(1)(n1, n2)/K
R

(1)
dis

(n1, n2) of kernels of

two transforms for n1, n2 ∈ {0, 1, . . . , 5}, n1 6= 0.

n2

0 1 2 3 4 5
1 0.8284 1.1530 1.1667 1.0947 1.0574 1.0379
2 0.9443 0.9959 1.0452 1.0483 1.0385 1.0292

n1 3 0.9737 0.9873 1.0094 1.0205 1.0221 1.0199
4 0.9848 0.9897 0.9997 1.0077 1.0116 1.0125
5 0.9902 0.9923 0.9972 1.0022 1.0057 1.0075
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