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Abstract. We study exponents of integrability of the first exit time from
generalized cones for conditioned rotation invariant stable Lévy processes.
Along the way, we introduce the “spherical fractional Laplacian” and de-
rive some of its spectral properties.

1. Introduction

For x ∈ Rd\{0}, we denote by θ(x) the angle between x and the point
(0, . . . , 0, 1). The right circular cone of angle Θ ∈ (0, π) is the domain
ΓΘ = {x ∈ Rd : θ(x) < Θ}. The exact moments of integrability of the first
exit time, τΓΘ

, for both Brownian motion and conditioned Brownian motion
from ΓΘ have been extensively studied in the literature. These investigations
began with the work of D. L. Burkholder [Bk] who showed that there exists
a constant p(Θ, d) such that for any x ∈ ΓΘ, Ex(τ

p
ΓΘ

) < ∞ if and only if
p < p(Θ, d). This critical exponent, as it was shown by Burkholder, can be
expressed in terms of zeros of confluent hypergeometric function. Extensions
of the result were given by D. DeBlassie [De1], B. Davies and B. Zang [DZ],
and R. Bañuelos and R. Smits [BS]. In particular, the results in [DZ] and
[BS] provide the analogue of Burkholder’s result for conditioned Brownian
motion. In [De2], DeBlassie obtained a counterpart of Burkholder’s result for
symmetric stable processes in R2. DeBlassie’s result was extended to all di-
mensions by P. Méndez-Hernández [M]. In [K3], T. Kulczycki gave results on
the asymptotics of the critical exponent in right circular cones of decreasing
aperture.

The purpose of the present paper is to obtain an analogue of the results in
[DZ] and [BS] for conditioned symmetric stable processes in generalized cones
and to extend the results in [De2] and [M] for the unconditioned processes
to more general cones. Our method is motivated by, but different then, the
method in [DZ]. The key step in our proof is to identify, for generalized
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cones, the Martin kernel with pole at infinity as a homogeneous function of
degree β ∈ [0, α). Once this is done we use the scaling of the stable process
and homogeneity of the kernel, together with tools related to the boundary
Harnack principle of R. Song and J.-M. Wu [SW], to estimate the distribution
of the exit time of the process from the cone. The exponent β depends on the
geometry of the cone and relates the considered problem to the asymptotics of
harmonic functions at the vertex of the cone, see [B1] for boundary points of
Lipschitz domains. We use β to identify the critical moments of integrability
of the exit time of the stable processes and the conditioned stable process
from the cone as β/α and (d − α + 2β)/α, respectively, see Theorem 4.1
below. Our method should apply to other processes with scaling such as the
censored processes studied in [BBC].

The paper is organized as follows. In §2 we recall the basic properties of
the symmetric α–stable processes and the definition of α–harmonic functions.
In §3 we recall the boundary Harnack principle of [SW] and state Theorem
3.2 and Theorem 3.3 which identify the Martin kernels at infinity and at 0
as homogeneous functions of degree β and α − d − β, respectively. We also
give some explicit examples of cones where we identify these exponents in
terms of the parameter α. Theorems 3.2 and 3.3 are proved in §6. In §4 we
obtain the above mentioned critical moments of integrability of the lifetime
of the stable processes in the generalized cones. In §5 we study a “spherical
fractional Laplacian”, which is related in a natural way to the symmetric
stable process. In the classical case of the Brownian motion, the spherical
Laplacian plays a crucial role in understanding the moments of integrability
of the corresponding process in cones. Indeed, the exponent of integration is
obtained from the Dirichlet eigenvalues of the spherical Laplacian on the set
of the sphere which generates the cones, see for example [BS]. While in the
current case we were not able to obtain this precise relation to the exponent of
integrability, nevertheless the spherical operator does provide some additional
information. We also believe this operator may be useful in other settings
and a more detailed study of its spectral properties will be of interest. In a
sense, we give a polar coordinate decomposition of the fractional Laplacian,
which as far as we know has not been given before.

2. Preliminaries

We begin by reviewing the notation used in this paper. By |·| we denote the
Euclidean norm in Rd. For x ∈ Rd, r > 0 and a set A ⊂ Rd we let B(x, r) =
{y ∈ Rd : |x− y| < r} and dist(A, x) = inf{|x− y| : y ∈ A}. A is the closure,
and Ac is the complement of A. We always assume Borel measurability of
the considered sets and functions. The notation c = c(α, β, . . . , ω) means
that c is a constant depending only on α, β, . . . , ω. Constants will always be
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(strictly) positive and finite. Throughout the paper we use the convention
that 0 · ∞ = 0.

For the rest of the paper, unless stated otherwise, α is a number in (0, 2)
and d = 1, 2, . . . . By (Xt,Px) we denote the standard [BG] rotation invariant
(“symmetric”) α-stable, Rd-valued Lévy process (that is, homogeneous, with
independent increments), with index of stability α and characteristic function

Exe
iξ(Xt−x) = e−t|ξ|

α

, x ∈ Rd , ξ ∈ Rd, t ≥ 0.

As usual, Ex denotes the expectation with respect to the distribution Px

of the process starting from x ∈ Rd. The sample paths of Xt are right-
continuous with left limits almost surely. (Xt,Px) is a Markov process with
transition probabilities given by

Pt(x,A) = Px(Xt ∈ A) =

∫
A

p(t;x, y) dy

and it is a strong Markov processes with respect to the standard filtration.
For this and other basic properties, we refer the reader to [BG].

For an open set U ⊂ Rd, we put τU = inf{t ≥ 0; Xt /∈ U}, the first exit
time of U . Given x ∈ Rd, the Px distribution of XτU is a subprobability
measure on U c (probability measure if U is bounded) called the α-harmonic
measure.

The scaling property of Xt plays a key role in this paper. Namely, for r > 0
we have that for every x ∈ Rd the Px distribution of Xt is the same as the
Prx distribution of r−1Xrαt. In particular, the Px distribution of τU is the
same as the Prx distribution of r−ατrU . In short, τrU = rατU in distribution.

When r > 0, |x| < r and B = B(0, r) ⊂ Rd, the corresponding α-harmonic
measure has the density function Pr(x, ·) (the Poisson kernel) given by

Pr(x, y) = Cd
α

[
r2 − |x|2
|y|2 − r2

]α/2
|y − x|−d if |y| > r,(1)

with Cd
α = Γ(d/2)π−d/2−1 sin(πα/2), and 0 otherwise. The formula for the

Poisson kernel for the exterior of the ball {y ∈ Rd : |y − x| > r} is similar.
Namely, for |x| > r we have

P̃r(x, y) = Cd
α

[ |x|2 − r2

r2 − |y|2
]α/2
|y − x|−d if |y| < r,(2)

and P̃r(x, y) = 0 if |y| ≥ r. Both (1) and (2) can be found in [BGR].

Definition 2.1. We say that f defined on Rd is α-harmonic in an open set
D ⊂ Rd if it satisfies the “mean value property”

f(x) = Exf(XτU ), x ∈ U,(3)
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for every bounded open set U with closure contained in D. It is called regular
α-harmonic in D if (3) holds for U = D.

In (3) we always assume that the expectation is absolutely convergent. If D
is unbounded then by the usual convention Exu(XτD) = Ex[ u(XτD); τD <∞].
By the strong Markov property a regular α-harmonic function is α-harmonic.
The converse is not generally true as shown in [B2], [CS2]. An alterna-
tive description of α-harmonic functions as those annihilating the fractional
Laplacian

∆α/2f(x) = Ad,α

∫
Rd

f(y)− f(x)−∇f(x) · (y − x)1{|y−x|<1}
|y − x|d+α dy

= Ad,α lim
ε→0+

∫
B(x,ε)c

f(y)− f(x)

|y − x|d+α dy ,

is given in [BB2]. Here and below, Ad,α = α2α−1π−d/2Γ[(d+α)/2]/Γ(1−α/2)
is an appropriate normalizing constant ([BG], [L]). It follows from (1) and
(3) that an α-harmonic function f in D satisfies

f(x) =

∫
|y−θ|>r

Pr(x− θ, y − θ) f(y) dy, x ∈ B(θ, r),(4)

for every ball B(θ, r) of closure contained in D. In fact, the condition charac-
terizes functions α-harmonic in D. The integral in (4) is absolutely convergent
and, by (1), f is smooth in D and∫

Rd

|f(y)|
(1 + |y|)d+αdy <∞ .(5)

If, in addition, f is nonnegative on Rd and nonzero in D, then it is positive
in D, regardless of the connectedness of D. This is a consequence of Harnack
inequality, see, e.g., [BB1].

3. Kernel functions

The cones ΓΘ described in the introduction are called right circular cones.
By a generalized cone in Rd we shall mean in this paper an open set Γ ⊂ Rd

with the property that if x ∈ Γ and r > 0 then rx ∈ Γ. If 0 ∈ Γ then
Γ = Rd. Otherwise, Γ is characterized by its intersection with the unit sphere
S
d−1 ⊂ Rd. Namely, let Ω �= ∅ be a relatively open subset of Sd−1. Without

loosing generality in what follows, we assume that 1 = (0, 0, . . . , 0, 1) ∈ Ω.
The generalized cone spanned by Ω is then

Γ = ΓΩ = {x ∈ Rd : x �= 0 and x/|x| ∈ Ω} .
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Note that we do not impose any regularity properties on Ω, in particular ΓΩ

may be disconnected.
For n = 0, 1, . . . , we let Bn = {|x| < 2n} and Γn = Γ ∩Bn.

The following result follows from [SW].

Lemma 3.1 (Boundary Harnack principle). There is a constant C1 =
C1(Γ, α) such that for all functions u, v ≥ 0 on Rd which vanish on Γc ∩ B1

and satisfy: u(x) = v(x) for some x ∈ Γ0,

u(x) = Exu(XτΓ1
) , for all x ∈ Rd ,(6)

and

v(x) = Exv(XτΓ1
) , for all x ∈ Rd ,(7)

we have

C−1
1 v(x) ≤ u(x) ≤ C1v(x) , x ∈ B0 .(8)

We note that by (6) and (7), u and v are regular α-harmonic on Γ1. By
considering the regular α-harmonic function v(x) = Px[XτΓ1

∈ Bc
1] ≤ 1

defined by the “boundary condition”: v = 1 on Bc
1 and v = 0 on B1 ∩ Γc,

we see that (8) implies that every function u satisfying the assumptions of
Lemma 3.1 is bounded on B0 and in fact,

u(x) ≤ C2u(1) , |x| < 1,(9)

where C2 = C1/P1[XτΓ1
∈ Bc

1] <∞ depends only on α and Γ.

Recall that a function h : Rd \ {0} → R is homogeneous of degree β if

h(rx) = rβh(x) , r > 0 , x �= 0 ,

or, equivalently, h(x) = |x|βh(x/|x|), x �= 0.

Theorem 3.2. There exists a unique nonnegative function M on Rd such
that M(1) = 1, M = 0 on Γc and for every open bounded set B ⊂ Γ

M(x) = ExM(XτB) , x ∈ Rd .(10)

The function is locally bounded on Rd and homogeneous of degree β = β(Γ, α).
That is,

M(x) = |x|βM(x/|x|) , x �= 0 .(11)

Here, β = 0 if Γc is a polar set for Xt and 0 < β < α, otherwise.

The function M will be called the Martin kernel with pole at infinity for
Γ. The proof of Theorem 3.2 is given in §6 below. Note that if Γ is a right
circular cone then it is a Lipschitz domain. In this case, Theorem 3.2 follows
from the uniqueness of the Martin representation of nonnegative α-harmonic
functions in Lipschitz domains [B2], [CS2], see also Example 4.1 in [BKN].
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By (10) the function M is regular α-harmonic on every open bounded
subset of Γ and by Lemma 3.1 the decay rate of M , namely |x|β as x → 0
along radii, is universal among all functions satisfying the assumptions of
Lemma 3.1. By (9)

M(x) ≤ C2|x|β , x ∈ Rd .(12)

We shall now describe some examples of generalized cones where the exponent
β can be explicitly identified.

Example 3.1. Consider Γ = R
d. The only nonnegative α-harmonic func-

tions on the whole of Rd are constants [BKN]. Thus M ≡ 1 and β = 0 for
this cone.

Example 3.2. We put

M(x) =

{
x
α/2
d if xd > 0 ,
0 if xd ≤ 0 ,

where x = (x1, x2, . . . , xd) ∈ Rd. Then M is α-harmonic on Rd
+ = Rd∩{xd >

0} by checking that ∆α/2M(x) = 0, x ∈ Rd
+ (we refer the reader to [BBC]

for a related explicit calculation), see also [B2]. By Proposition 3.2, it is the
Martin kernel at infinity for Γ = R

d
+. In this case, β = α/2. (This rate of

decay is characteristic for smooth domains [CS1], [K1].)

Example 3.3. Let α > 1 and consider the function M(x) = |xd|α−1, x ∈ Rd.
Using the calculations in [BBC] one obtains ∆α/2M(x) = 0, x ∈ Rd, xd �= 0.
Again by Proposition 3.2, M is the Martin kernel at infinity for cone Γ =
R
d \ {xd = 0} and β = α − 1 in this case. For the same cone but for α ≤ 1,

M is the indicator function of R \ {xd = 0} since {xd = 0} is a polar set if
α ≤ 1 [L]. This time we have β = 0.

Let γ, Γ be generalized cones in Rd, and let m, M be their respective
Martin kernels with pole at infinity. If γ ⊂ Γ then

Px{Xτγ1
∈ B(0, 2)c} ≤ Px{XτΓ1

∈ B(0, 2)c} , x ∈ Rd .(13)

Here γ1 = γ ∩B(0, 2). By BHP there is a constant c such that

m(x) ≤ cM(x) , x ∈ B(0, 1) .(14)

We conclude that the respective homogeneity exponents satisfy β(γ, α) ≥
β(Γ, α), 0 < α < 2. In fact, we have the following result.

Lemma 3.3. If γ ⊂ Γ then β(γ, α) ≥ β(Γ, α). Furthermore, β(γ, α) >
β(Γ, α) if and only if Γ \ γ is a non-polar set.

Proof. We adopt the notation above. We only need to prove the second
statement of the lemma. Let Γ \ γ be nonpolar. We (falsely) assume that
β(γ) = β(Γ). There is a compact K ⊂ Γ1\γ such that for some (hence every)
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starting point x ∈ Γ1 we have with positive probability that TK < τΓ1 , hence
TK = τγ1 . We clearly have

M(x) > Ex{M(Xτγ1
)1γ(Xτγ1

)} , x ∈ Γ1 .(15)

Let

a = inf
x∈γ

M(x)

m(x)
.

By (14) and our assumption β(γ) = β(Γ) we have a > 0. We define H =
M1γ − am, and h(x) = ExH(Xτγ1

), x ∈ Rd. By (15) we have

h(x) < M(x)− am(x) = H(x) , x ∈ γ1 .

We note that H is homogeneous of degree β(γ) = β(Γ) and nonnegative, so
if H(y) > 0 for some y then h(x) > 0 for all x ∈ γ1. By BHP we have that
h ≥ εm on B(0, 1) with some ε > 0, thus H ≥ εm everywhere. In particular
M − am ≥ εm or a = infx∈γ M(x)/m(x) ≥ a + ε, which is a contradiction.
We conclude that H ≡ 0 or M1γ = am. By the mean value property of m

M(x) = Ex{M(Xτγ1
)1γ(Xτγ1

)} , x ∈ γ1 .

This contradicts (15) and thus β(γ) �= β(Γ).
On the other hand, if Γ \ γ is a polar set then there is equality in (14) for

x ∈ γ; in particular β(γ) = β(Γ).
The above lemma gives a positive answer to the question of Ewa Damek

whether the asymptotics of harmonic functions in “obtuse” cones is different
than in the half-space, where β = α/2. On the other hand the proof of the
lemma does not give quantitative information on β(γ) − β(Γ) when Γ \ γ
is non-polar. We expect that spectral analysis of the spherical fractional
Laplacian defined below may give such quantitative results.

By an application of Kelvin transform [B2] the function

K(x) = |x|α−dM(x/|x|2) = |x|α−d−βK(x/|x|) , x �= 0,(16)

is α-harmonic in TΓ = {x/|x|2 ; x ∈ Γ} = Γ, if Γ �= Rd. For completeness we
put K(0) = 0 so that K = 0 on Γc. We call K the Martin kernel at 0 for Γ,
which is justified by the following theorem.

Theorem 3.4. K given by (16) is the unique nonnegative function on Rd

such that K(1) = 1, K = 0 on Γc and for every open set B ⊂ Γ such that
dist(0, B) > 0,

K(x) = Ex{K(XτB); τB <∞} , x ∈ Rd .(17)

The proof of Theorem 3.4 is given in §6 below.

Example 3.4. In the context of Example 3.2 we obtain

K(x) =

{
x
α/2
d |x|−d if xd > 0 ,

0 if xd ≤ 0 .
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On the other hand the Martin kernel at 0 for Γ in Example 3.3 is K(x) =
|xd|α−1|x|2−α−d provided α > 1 (in particular K(x) = 1 for x �= 0, if d = 1)
and

K(x) =

{
|x|α−d , xd �= 0 ,

0 , xd = 0 ,

provided α ≤ 1. (This is essentially M. Riesz kernel [L].)

4. Integrability of exit times

We will write P0
x and E0

x for the probability and expectation associated
with our stable process killed off the cone Γ and conditioned by the Martin
kernel K of Γ with the pole at 0, as defined above. The process is a special
case of the Doob h-process, in particular for any bounded or nonnegative
function f on Γ we have

E0
x{f(Xt); τΓ > t} =

1

K(x)
Ex{K(Xt)f(Xt); τΓ > t}.

Theorem 4.1. Let β be the homogeneity degree of the Martin kernel M of
the cone Γ. For p > 0 and x ∈ Γ we have

Exτ
p
Γ <∞ if and only if p < β/α ,(18)

and

E0
xτ

p
Γ <∞ if and only if p < (d− α + 2β)/α .(19)

The proof of Theorem 4.1 follows immediately from the formula

Eτ p = p

∫ ∞

0

tp−1P(τ > t)dt , p > 0 ,

valid for any positive random variable τ on any probability space; and the
following two lemmas.

Lemma 4.2. There is C3 = C3(Γ, α) such that for all t > 0 and x ∈ Rd

satisfying |x| < t1/α we have

C−1
3 M(x)t−β/α ≤ Px{τΓ > t} ≤ C3M(x)t−β/α .(20)

Proof. We first prove that there is c1 = c1(Γ, α) such that

c−1
1 M(x) ≤ Px{τΓ > 1} ≤ c1M(x) , |x| < 1 .(21)

This is a consequence of the boundary Harnack principle. Indeed, we let, as
usual,

Γn = Γ ∩Bn, Bn = {|x| < 2n} , n = 0, 1, . . . ,

and we have

Px{τΓ > 1} ≤ Px{τΓ1 > 1}+ Px{τΓ1 < τΓ} , x ∈ Rd .



EXIT TIMES FROM CONES 9

By the boundary Harnack principle

Px{τΓ1 < τΓ} ≤ C1P1{τΓ1 < τΓ}M(x) , |x| < 1 ,

where C1 is the constant of Lemma 3.1. We let

c2 = inf
v∈Γ1

∫
Γ\Γ1

Ad,α

|y − v|d+αdy.

Clearly, c2 > 0. We denote by G the Green function of Γ1 for our process
{Xt}. By Ikeda-Watanabe formula ([IW]) and the boundary Harnack princi-
ple

Px{τΓ1 > 1} ≤ ExτΓ1 =

∫
Γ1

GΓ1(x, v)dv

≤ c−1
2

∫
Γ\Γ1

∫
Γ1

GΓ1(x, v)
Ad,α

|y − v|d+αdvdy

= c−1
2 Px{XτΓ1

∈ Γ} ≤ c−1
2 C1P1{XτΓ1

∈ Γ}M(x) , |x| < 1 .

This verifies the upper bound in (21). We then have

Px{τΓ > 1} ≥ Px{τΓ3 > 1}
≥ Ex

[
XτΓ1

∈ B(41, dist(1,Γc)) ; PXτΓ1
{τΓ3 > 1}

]
.

Here, B(41, dist(1,Γc)) is the ball centered at 41 = (0, 0, . . . , 0, 4) ∈ Γ and
of radius dist(1,Γc).

It is easy to verify that there is c3 = c3(Γ, α) such that Pz{τΓ3 > 1} > c3

for all z ∈ B(41, dist(1,Γc)). Thus, by the boundary Harnack principle, for
|x| < 1 we have

Px{τΓ3 > 1} ≥ c3Px

[
XτΓ1

∈ B(41, dist(1,Γc))
]

≥ c3C
−1
1 P1

[
XτΓ1

∈ B(41, dist(1,Γc))
]
M(x).

The proof of (21) is complete.
To prove (20), we use the scaling of {Xt}, (21) and the homogeneity of M .

For t > |x|α the upper bound in (21) gives

Px{τΓ > t} = Pt−1/αx{τΓ > 1} ≤ c1M(t−1/αx)

= c1M(x)t−β/α .

Similarly, the lower bound in (21) gives Px{τΓ > t} ≥ c−1
1 M(x)t−β/α, com-

pleting the proof of Lemma 4.2.

Lemma 4.3. There is C4 = C4(Γ, α) such that for all t > 0 and x ∈ Γ
satisfying |x| < t1/α we have

C−1
4 t(α−d−2β)/α|x|d−α+2β ≤ P0

x{τΓ > t} ≤ C4t
(α−d−2β)/α|x|d−α+2β .(22)
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Proof. For clarity we note that M(x)/K(x) = |x|d−α+2β, x ∈ Γ, which is one
factor in (22). As in the proof of Lemma 4.2, we first consider t = 1 in (22).
We have

P0
x{τΓ > 1} = K(x)−1Ex{K(X1); τΓ > 1} .

To prove (22) for t = 1 we only need to verify that there is c1 = c1(Γ, α) such
that

c−1
1 M(x) ≤ Ex{K(X1); τΓ > 1} ≤ c1M(x) , x ∈ Γ0 .(23)

We have

Ex{K(X1); τΓ > 1} = Ex{K(X1); τΓ3 ≤ 1, τΓ > 1}+ Ex{K(X1); τΓ3 > 1}
By the α-harmonicity of K and Fatou’s lemma

K(x) ≥ ExK(XτΓ3
) , x ∈ Rd .

Thus,

Ex{K(X1); τΓ3 > 1}
≥ Ex{EX1K(XτΓ3

); τΓ3 > 1} = Ex{K(XτΓ3
); τΓ3 > 1}

≥ Ex{EXτΓ1
{K(XτΓ3

); τΓ3 > 1};XτΓ1
∈ B(41, dist(1,Γc))} .

There is c2 = c2(Γ, α) such that Ez{K(XτΓ3
); τΓ3 > 1} ≥ c2 for z ∈

B(41, dist(1,Γc)). By the boundary Harnack principle and the above

Ex{K(X1); τΓ3 > 1} ≥ c2Ex{XτΓ1
∈ B(41, dist(1,Γc))}

≥ c2C
−1
1 M(x)E1{XτΓ1

∈ B(41, dist(1,Γc))} ,
which gives the lower bound in (23). To prove the upper bound we note that
the transition density of the stable process killed off Γ3 satisfies

pΓ3
1 (x, y) ≤ c3M(x)M(y) , x, y ∈ Rd ,(24)

where c3 = c3(Γ, α), as we shall see in Lemmas 5.2 and 5.3 below. It follows
that

Ex{K(X1); τΓ3 > 1} =

∫
Γ3

pΓ3(1, x, y)K(y)dy

≤ c3

∫
Γ3

M(x)M(y)K(y)dy ≤ c4 M(x),

with c4 = c4(Γ, α). We also have

Ex{K(X1); τΓ3 ≤ 1 , τΓ > 1} = Ex{E{K(X1)|XτΓ3
}; τΓ3 ≤ 1 , τΓ > 1}

≤ Ex{K(XτΓ3
); τΓ3 ≤ 1 , τΓ > 1}

≤ ExK(XτΓ3
) ≤ C1E1K(XτΓ3

)M(x)

≤ C1K(1)M(x) = C1M(x) .



EXIT TIMES FROM CONES 11

The proof of (23) is complete.
To prove (22) we use (23), the scaling of {Xt}, and the homogeneity of M

and K. That is, for t > 0 we have

P0
x{τΓ > t} =

1

K(x)
Ex{K(Xt); τΓ > t}

=
1

K(x)
Et−1/αx{K(t1/αX1); τΓ > 1}

≤ c1(t
1/α)α−d−βM(t−1/αx)/K(x) = c1t

(α−d−2β)/α|x|d−α+2β .

The lower bound

P 0
x{τΓ > t} ≥ c−1

1 t(α−d−2β)/α|x|d−α+2β

is proved similarly. This completes the proof of Lemma 3.3 under the as-
sumption that (24) holds.

The estimate (24) is a direct consequence of the intrinsic ultracontractivity
of the semigroup of the killed process Xt which is valid for any bounded
domain in Rd [K2], see also [CS3]. This estimate, however, can be proved
by other more elementary means, comp. [R]. For a domain D ⊂ R

d let
s(x) = sD(x) = ExτD, x ∈ Rd. If sup{s(x) : x ∈ Rd} < ∞ then D is
called Green bounded [BB2], [ChZ]. If the volume, |D|, of D is finite and
D∗ denotes the ball of same volume as D centered at the origin, then (see,
[BLM]),

sup
x∈Rd

sD(x) ≤ sD∗(0) = cd,α|D|α/d <∞ .

Thus domains of finite volume are Green bounded. It is also well known that
there exist Green bounded domains of infinite volume.

Lemma 4.4. Suppose D ⊂ Rd is such that there exits a constant C such that
s(x) ≤ C0 for all x ∈ Rd. Then for n = 1, 2, . . . ,

Exτ
n
D ≤ n!Cn−1

0 s(x) , x ∈ Rd ,(25)

Ex exp(ετD)− 1 ≤ s(x)/(1− εC0) , x ∈ Rd , 0 < ε < 1/C0 ,

and

Px{τD > t} ≤ 1

1− εC0

s(x)

exp(εt)− 1
, x ∈ Rd , t > 0 , 0 < ε < C0 .

Proof. By the strong Markov property of Xt we have for any r > 0,
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∫ ∞

r

Px{τD > t}dt =

∫ ∞

0

Px{τD > t + r}

=

∫ ∞

0

Ex{PXr{τD > t}; τD > r}dt

= Ex{1{τD>r}
∫ ∞

0

PXr{τD > t}dt}

≤ C0Px{τD > r}.
For n ≥ 2 we multiply both sides of the above inequality by (n− 1)rn−2 and
integrate, applying Fubini’s theorem on the left hand side, to obtain

Exτ
n
D ≤ nC0Exτ

n−1
D .

The first asserted inequality follows by induction. The other two inequalities
are even easier and are left to the reader.

Let pDt (x, y) be the transition density of the process Xt killed off D:

Px{τD > t , Xt ∈ A} =

∫
A

pt(x, y)dy .

Clearly

pDt (x, y) ≤ pR
d

t (x, y) = t−d/αpR
d

1 (x/t, y/t)

≤ t−d/α(2π)−d
∫
Rd

e−|ξ|
α

dξ = ct−d/α , x, y ∈ D , t > 0 ,

where c = (2π)−dωdΓ(d/α)/α and ωd is the surface measure of the unit sphere
in Rd. Recall that

Px{τD > t} =

∫
D

pDt (x, y)dy.

From these two observations and the semigroup property of pDt (x, y) we have

pD3t(x, y) =

∫
D

pD2t(x, z)p
D
t (z, y)dz(26)

=

∫
D

(∫
D

pDt (x,w)pDt (w, z)dw

)
pDt (z, y)dz

≤ c

td/α
Px{τD > t}Py{τD > t}.

This together with Lemma 4.4 gives the following result.

Lemma 4.5. Under the assumptions of Lemma 4.4 there is C =
C(α,D, t0, ε) such that

pDt (x, y) ≤ Ce−2εt/3s(x)s(y) , x, y ∈ Rd, t > t0 , 0 < ε < C0 .

Finally, the next lemma yields the estimate (24).
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Lemma 4.6. Let s(x) = ExτΓk , k = 1, 2, . . . . There is c = c(α, d,Γ, k) such
that

s(x) ≤ cM(x) , x ∈ Rd.

Also,

s(x) ≥ c−1M(x), x ∈ Γk−1.

The lemma can be proved in a very similar way as Lemma 4.2, by using
the boundary Harnack principle and the Ikeda-Watanabe formula. We skip
the details.

From (20) and (22) we immediately obtain the following result.

Corollary 4.7. There are constants C3 and C4 depending only on Γ, α and
d, such that for all x ∈ Γ,

C−1
3 |x|βM(x/|x|) ≤ lim inf

t→∞
tβ/α Px{τΓ > t}(27)

≤ lim sup
t→∞

tβ/α Px{τΓ > t}

≤ C3|x|βM(x/|x|)

and

C−1
4 |x|d−α+2β ≤ lim inf

t→∞
t(2β+d−α)/α P0

x{τΓ > t}(28)

≤ lim sup
t→∞

t(2β+d−α)/α P0
x{τΓ > t}

≤ C4|x|d−α+2β

We also have the following “heat–kernel” version of this corollary. Recall
that pΓ

t (x, y) are the transition densities (heat kernel) of Xt killed off Γ.

Corollary 4.8. There is a constants C5 depending only on Γ, α and d, such
that for all x, y ∈ Γ,

C−1
5 |x|β|y|βM(x/|x|)M(y/|y|) ≤ lim inf

t→∞
t(2β+d)/αpΓ

t (x, y)(29)

≤ lim sup
t→∞

t(2β+d)/αpΓ
t (x, y)

≤ C5|x|β|y|βM(x/|x|)M(y/|y|).

Proof. By (26) we have

pΓ
3t(x, y) ≤

c

td/α
Px{τΓ > t}Py{τΓ > t}

with c = (2π)−dωdΓ(d/α)/α. The upper bound follows from this and the
previous result.
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For the lower bound, suppose first that |x|, |y| < 1. By domain monotonic-
ity, we have pΓ

1 (x, y) ≥ pΓ3
1 (x, y). However, since Γ3 is a bounded domain, it

is intrinsically ultracontractive by [K2], [CS3]. Therefore

pΓ3
1 (x, y) ≥ c1Px{τΓ3 > 1}Py{τΓ3 > 1}.

From our proof of (21) it follows that for |x| < 1 we have Px{τΓ3 > 1} ≥
c2M(x). From this we conclude that for |x|, |y| < 1,

pΓ
1 (x, y) ≥ c3M(x)M(y).

This inequality and scaling gives that for all t > max(|x|α, |y|α),
pΓ
t (x, y) = t−d/αpΓ

1 (t−1/αx, t−1/αy)

≥ c3t
−d/αM(t−1/αx)M(t−1/αy)

= c3t
(−2β−d)/αM(x)M(y).

The left hand side of (29) follows from this.
Corollaries 4.7 and 4.8 should be compared with the corresponding results

for the Brownian motion in generalized cones ([BS] (1.5), (1.10) and (2.2)).
However, the exact limits are computed in [BS]. It would be interesting to
have the exact limits in the current setting as well. In addition to generalized
cones, the above limits have been studied in [BDS], [Br], [Li], [LS] in the case
of Brownian motion in parabolas and in other parabolic regions of the form
D = {(x, y) ∈ R × Rd−1 : x > 0, |y| < Axp}, 0 < p < 1. The asymptotic
behavior of the distribution of the exit time and of the heat kernel for such
regions is shown to be subexponetial. It would be interesting to determine
the behavior of the distribution of the exit time and the transition densities
for stable processes in these regions. The scaling techniques we use here do
not seem to apply.

5. Spherical fractional Laplacian

In this section we study the action of ∆α/2 on homogeneous functions.
We also introduce the corresponding spherical operator and give some of its
properties which may be of importance in studying the exponent β(Γ, α).

We first consider an arbitrary function φ on Rd such that ∆α/2φ(1) is well
defined. This is satisfied if∫

Rd

|φ(y)|
(1 + |y|)d+αdy <∞ ,(30)

and, say, |φ(1 + x)− φ(1)−∇φ(1) · x| ≤ c |x|2 for |x| < 1, e.g. φ is C2 at 1.

Lemma 5.1. We have

lim
Θ→0+

∫
Rd\ΓΘ

(y − 1)1{|y−1|<1}
|y − 1|d+α dy = 0 ,(31)
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and

∆α/2φ(1) = Ad,α lim
Θ→0+

∫
Rd\ΓΘ

φ(y)− φ(1)

|y − 1|d+α dy .(32)

The proof of (31) is somewhat tedious (because ΓΘ is not symmetric about
1) but elementary and will be omitted. The formula (32) follows from (31)
immediately.

Let φ be also homogeneous of degree γ; φ(x) = |x|γφ(x/|x|), x �= 0. In
view of (30) we will only consider −d < γ < α.

By (32) and polar coordinates

∆α/2φ(1) = Ad,α lim
Θ→0+

∫
Rd\ΓΘ

φ(y)− φ(1)

|y − 1|d+α dy

= Ad,α lim
Θ→0+

∫
Sd−1\ΓΘ

σ(dθ)

∫ ∞

0

rd−1φ(θ)rγ − φ(1)

|rθ − 1|d+α dy

= Ad,α lim
Θ→0+

∫
Sd−1\ΓΘ

[φ(θ)uγ(θd)− φ(1)u0(θd)]σ(dθ) .(33)

Here

uγ(t) =

∫ ∞

0

rd+γ−1(r2 − 2rt + 1)−(d+α)/2 dr , −1 ≤ t ≤ 1(34)

(we drop d and α from the notation); and (33) holds because

∫ ∞

0

rd+γ−1|rθ − 1|−d−α dr =

∫ ∞

0

rd+γ−1(r2 − 2rθd + 1)−(d+α)/2 dr .

Lemma 5.2. For every −1 ≤ t ≤ 1

uγ(t) = uα−d−γ(t) , −d < γ < α ,(35)

and the function γ �→ uγ(t) is increasing on [(α−d)/2, α) with uα−(t) = −∞.

Proof. Let −1 ≤ t ≤ 1. By a change of variable

uγ(t) =

∫ 1

0

rd+γ−1(r2 − 2rt + 1)−(d+α)/2 dr

+

∫ ∞

0

s−d−γ−1(s−2 − 2s−1t + 1)−(d+α)/2 ds

=

∫ 1

0

1

r
(rd+γ + rα−γ)(r2 − 2rt + 1)−(d+α)/2 dr ,
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which proves (35). Let (α− d)/2 ≤ γ1 < γ2 < α. We have

uγ2(t)− uγ1(t) =

∫ 1

0

1

r
(rd+γ2 + rα−γ2 − rd+γ1 − rα−γ1)(r2 − 2rt + 1)−(d+α)/2 dr

=

∫ 1

0

1

r
(rγ1 − rγ2)(rα−γ2−γ1 − rd) (r2 − 2rt + 1)−(d+α)/2 dr > 0 ,(36)

because α−γ2−γ1 < α−2γ1 ≤ α−(α−d) = d. To verify that uα−(t) = −∞
we note that for γ → α

uγ(t) ≥
∫ ∞

1

rd+γ−1(r2 − 2rt + 1)−(d+α)/2 dr

↑
∫ ∞

1

rd+α−1(r2 − 2rt + 1)−(d+α)/2 dr

≥
∫ ∞

1

rd+α−1(r + 1)−d−α dr =∞ .

The proof is complete.
By (33) for φ homogeneous of degree γ we have

∆α/2φ(1) = Ad,αP.V.

∫
Sd−1

[φ(θ)− φ(1)]u0(θd)σ(dθ)

+ Ad,α

∫
Sd−1

φ(θ) [uγ(θd)− u0(θd)]σ(dθ) .(37)

The principal value integral (P.V.) above is understood as in (33). We note
that the second integral in (37) vanishes if φ is homogeneous of degree 0
and the first one vanishes whenever φ is constant on the unit sphere. The
observation can be used to show that the integrals converge and the second
one converges absolutely (conf. Lemma 5.2), a fact that can be also verified
by a detailed inspection of uγ at t = 1. A formula similar to (37) clearly
holds for every vector η ∈ Sd−1:

∆α/2φ(η) = Ad,αP.V.

∫
Sd−1

[φ(θ)− φ(η)]u0(θ · η)σ(dθ)

+ Ad,α

∫
Sd−1

φ(θ) [uγ(θ · η)− u0(θ · η)]σ(dθ)(38)

where θ · η denotes the usual scalar product of θ and η. The operator

∆
α/2

Sd−1φ(η) = Ad,αP.V.

∫
Sd−1

[φ(θ)− φ(η)]u0(θ · η)σ(dθ)

= Ad,α lim
ε→0+

∫
Sd−1∩{1−θ·η>ε}

[φ(θ)− φ(η)]u0(θ · η)σ(dθ) .(39)

will be called the spherical fractional Laplacian. The second integral in (38)
will be called the “radial” part and denoted Rγφ below.
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Remark 1. By Lemma 5.2 and (36) with γ2 = α − d and γ1 = 0 we see that
φ(x) = |x|γ is α-harmonic on Rd \ {0} if and only if γ = α− d.

We will be concerned with nonnegative definiteness of the kernel uγ(θ · η).
We first consider dimension d = 2 and we will identify R2 with the complex
plane C. By a rotation, Ox2 axis in R2 will be identified with �z axis in C
so that 1 ∈ R2 is now represented by 1 ∈ C. θ ∈ S1 will be replaced by eiθ,
θ ∈ T ∼ [0, 2π) in formulas. With this identification in mind we define

u(2)
γ (θ) =

∫ ∞

0

r2+γ−1|reiθ − 1|−2−α dr.

For r ∈ [0, 1) and η > 0 let f(θ) = |reiθ − 1|−η =
∑∞
−∞ cne

inθ, θ ∈ [0, 2π).

Lemma 5.3. For every η > 0 and r ∈ (0, 1) we have cn > 0, n ∈ Z.

Proof. Let z = reiθ. We have |z| < 1 and log(1− z) = −
∑∞

n=1 x
n/n, thus

log |1− z| = −�
∞∑
n=1

rneinθ/n = −
∞∑

n=−∞, n�=0

r|n|einθ/n .

Since |1− z|−η = exp(−η log |1− z|), the sequence {cn = cn(r)} is the convo-
lution exponent of the sequence {1{n�=0}ηr

|n|/(2n)}∞−∞. The latter sequence
is nonnegative and so {cn} is positive (c0 ≥ 1).
Let φ be a test function and let η , θ ∈ [0, 2π). We consider the operator

R(2)
γ φ(η) =

∫ 2π

0

φ(ω)[u(2)
γ (θ − η)− u

(2)
0 (θ − η)]dθ .

For γ ≥ 0 we have that R
(2)
γ ≥ 0 in the sense that∫ 2π

0

R(2)
γ φ(θ)φ(θ)dθ ≥ 0

for all such φ. In fact we have the following result.

Lemma 5.4. If (α− d)/2 ≤ γ1 ≤ γ2 < α then R
(2)
γ2 −R

(2)
γ1 ≥ 0.

Proof. Let φ(θ) =
∑∞

n=−∞ ane
inθ ∈ L2(0, 2π) . By (36) and Lemma 5.3 with

η = d + α we have∫ 2π

0

[R(2)
γ2
−R(2)

γ1
]φ(θ)φ(θ)dθ

=

∫ 1

0

1

r
(rγ1 − rγ2)(rα−γ2−γ1 − rd)

∫ 2π

0

∫ 2π

0

∞∑
−∞

cne
in(θ−ω)φ(ω)φ(θ) dωdθdr

= 4π2

∞∑
−∞
|an|2

∫ 1

0

1

r
(rγ1 − rγ2)(rα−γ2−γ1 − rd) cn(r) dr > 0 ,

unless φ = 0 a.e. (comp. the proof of Lemma 5.2).
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Theorem 5.5. {Rγ , γ ∈ [0, α)} is an increasing family of nonnegative def-
inite operators on L2(Sd−1, σ), d ≥ 2.

Proof. Let (α − d)/2 ≤ γ1 ≤ γ2 < α. We only need to prove that K =
Rγ2 − Rγ2 is nonnegative definite. For dimension d = 2 this is proved above
under a slightly different notation. We now let d ≥ 3. For a test function φ
on Sd−1

Kφ(η) = Ad,α

∫
Sd−1

φ(θ) [uγ2(θ · η)− uγ1(θ · η)]σ(dθ) ,(40)

compare (38). K has the form of spherical convolution hence it is diagonalized
by spherical harmonics;

KYm = KmYm , m = 0, 1, . . . ,(41)

where Ym is any spherical harmonics of degree m, and, by Funk-Hecke formula
([E], (11.4.24), page 248 or [Ru], (2.15)–(2.19), page 10),

Km = cm

∫ 1

−1

[uγ2(t)− uγ1(t)]C
d/2−1
m (t)[1− t2](d−3)/2dt ,(42)

where

cm =
2π(d−1)/2

Γ((d− 1)/2))C
d/2−1
m (1)

(43)

and C
d/2−1
m are the Gegenbauer (ultraspherical) polynomials ([E], (10.9), page

174).
We only need to verify that Km ≥ 0, m = 0, 1, . . . . By (36) it is enough to

prove that for every r ∈ [0, 1) the spherical convolution

kφ(η) =

∫
Sd−1

φ(θ)
[
r2 − 2rθ · η + 1

]−(d+α)/2
σ(dθ)

has nonnegative eigenvalues

km = cm

∫ 1

−1

[
r2 − 2rt + 1

]−(d+α)/2
Cd/2−1
m (t)[1− t2](d−3)/2dt .(44)

By Rodrigues’ formula ([E], (10.9.11), page 175),

Cd/2−1
m (t) = (−1)mdm(1− t2)(3−d)/2 dm

dtm
[
(1− t2)m+(d−1)/2

]
,

where

dm =
(d− 2)m

2mm!(d/2− 1/2)m
,
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and we used the notation (λ)k = λ(λ+1) . . . (λ+k−1). Integrating by parts
we obtain

km = (−1)mcmdm

∫ 1

−1

[
r2 − 2rt + 1

]−(d+α)/2 dm

dtm
[
(1− t2)m+(d−1)/2

]
dt .

= cmdm

∫ 1

−1

dm

dtm
[
r2 − 2rt + 1

]−(d+α)/2
(1− t2)m+(d−1)/2 dt .

By induction we easily check that

dm

dtm
[
r2 − 2rt + 1

]−(d+α)/2
= 2m(

d + α

2
)mr

m
[
r2 − 2rt + 1

]−(d+α)/2−m
.

Thus

km = 2m(
d + α

2
)mcmdmr

m

∫ 1

−1

[
r2 − 2rt + 1

]−(d+α)/2−m
(1−t2)m+(d−1)/2 dt > 0 .

The proof is complete.

For clarity we note that the operator ∆
α/2

Sd−1 is negative semi-definite on

L2(Sd−1, σ). Namely, for test functions φ we have∫
Sd−1

∆
α/2

Sd−1φ(η)φ(η)σ(dη) = −1

2
Ad,α

∫
Sd−1×Sd−1

[φ(θ)− φ(η)]2 u0(θ·η)σ(dθ)σ(dη) ,

which is negative unless φ is constant on Sd−1. The proof of the above equality
using the approximation (39) is standard and will be omitted.

Example 5.1. Let d = 2 and α = 1. The kernel of ∆
α/2

Sd−1 is

u0(t) =

∫ 1

0

(r + 1)(r2 − 2rt + 1)−3/2 dr , |t| ≤ 1 ,

see the proof of Lemma 5.2. We use Euler change of variable:
√
r2 − 2rt + 1 =

x− r, to get

u0(t) = 2

∫ 1+
√

2(1−t)

1

x2 + 2x− 2t− 1

(x2 − 2tx + 1)2
dx .

The primitive function of the last integrand is −(x+1)/(x2−2tx+1), which
yields

u0(t) =
1

1− t
.

Thus, for a test function φ on S1 we have

∆
1/2

S1
φ(η) =

1

2π
P.V.

∫
S1

φ(θ)− φ(η)

1− θ · η σ(dθ) .

In particular, if φm(θ) = (θ1 + iθ2)
m, θ = (θ1, θ2), n = 0,±1,±2, . . . (expo-

nential basis on the torus), then, after a calculation, we obtain ∆
1/2

S1
φm =

−|m|φm. Similarly, trigonometric functions diagonalize ∆
α/2

S1
.
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We conclude this section with a variant of Funk-Hecke formula for ∆
α/2

Sd−1

when d ≥ 3. For every spherical harmonics Ym of order m = 0, 1, . . . we have

∆
α/2

Sd−1Ym = λmYm ,

where

λm = cm

∫ 1

−1

[Cd/2−1
m (t)− Cd/2−1

m (1)]u0(t)[1− t2](d−3)/2dt ,(45)

and cn is given in (43). We recall a formula for the Gegenbauer polynomials
([E], (10.9.18), page 175)

Cκ
m(cos θ) =

m∑
n=0

(κ)n(κ)m−n
n!(m− n)!

cos(m− 2n)θ .

λ0 = 0 because C
d/2−1
0 ≡ 0. For m > 0 we note that C

d/2−1
m attains its

maximum at t = 1, and so λm < 0. The proof of (45) follows from the usual
Funk-Hecke formula via the approximation (39).

A further study of spectral properties of ∆
α/2

Sd−1 in relation to the increasing
operator family {Rγ , 0 ≤ γ < α} discussed above may help to quantitatively
describe β(Γ, α) in terms of the trace of Γ on the unit sphere. Apart from
such a program there is also an interesting problem to understand to what
extent our spherical fractional Laplacian is related to the spherical operator
introduced in Ch. 8 of [Ru]. The operators turn out to be equal when d = 2
and α = 1 (comp. Example 5.1 above with [Ru], (29.2), (29.3), page 361),
but this may be more the exception than the rule.

6. Proofs of Theorem 3.2 and 3.4

Below we construct and prove the uniqueness of the Martin kernel M at
infinity for generalized cone Γ. The intersection of Γ with the unit sphere may
be highly irregular however the scaling property of the cone: kΓ = Γ (k > 0)
allows for application of arguments similar to those used in Lemma 16 in [B1]
and in [B2] for Lipschitz domains. Note that the uniqueness of the Martin
kernel with the pole at a boundary point of a general domain is an open
problem for our stable process. For more on this, we also refer the reader to
[SW], where results on the so called “fat sets” are given.

Proof of Theorem 3.2. For s > 0 we write Ts = τΓ∩{|x|<s} and we define

hs(x) = Px{XTs ∈ Γ} , x ∈ Rd .

By scaling we have that for all s, t > 0 and x ∈ Rd,

hs(sx) = ht(tx) or hs(x) = ht(
t

s
x) .
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We claim there is

γ = γ(Γ, α) < α,(46)

and c1 = c1(Γ, α) such that

h1(r1) ≥ c1r
γ , 0 < r ≤ 1 .(47)

The argument verifying (47) is given in the proof of Lemma 5 in [B1] and
we refer the reader to that paper for details. The fact that γ is strictly less
that α is important and distinguishes the present situation from that of the
potential theory of Brownian motion. By scaling we have hs(1) ≥ c1s

−γ,
s ≥ 1. We define

us(x) =
hs(x)

hs(1)
, s > 0 , x ∈ Rd ,

so that us(1) = 1, s > 0. Note that

us(x) ≤ 1

c1s−γ
= c−1

1 sγ , s ≥ 1 , x ∈ Rd .(48)

We claim that

ut(x) ≤ 2γC1c
−1
1 [|x| ∨ 1]γ , t ≥ 2 , x ∈ Rd .(49)

To verify (49), assume that t ≥ 2. If |x| ≥ t/2 then we put s = 2(1∨ |x|) and
by Lemma 3.1 we have

ut(x) ≤ C1us(x) ≤ C1c
−1
1 2γ[|x| ∨ 1]γ .

By Harnack inequality and our normalization ut(1) = 1, the functions ut are
uniformly bounded on F for any compact F ⊂ Γ and equicontinuous on F
for all large t. The last assertion follows from the Poisson formula for the ball
or the gradient estimates of [BKN]. Therefore there is a sequence tn → ∞
and a function M such that

M(x) = lim
n→∞

utn(x) , x ∈ Rd

and we take M such that M = 0 on Γc. Notice that, by (49),

M(x) ≤ 2γC1c
−1
1 [|x| ∨ 1]γ , x ∈ Rd .(50)

Let x ∈ Γ and set B = B(0, r), where r > |x|. We have

utn(x) =

∫
(Γ∩B)c

utn(y)ω
x
Γ∩B(dy),

where we denote by ωx
Γ∩B the α-harmonic measure of Γ∩B. Since ωx

Γ∩B ≤ ωx
B

on Bc we have by (4)

ωx
Γ∩B(dy) ≤ 2d+α3−α/2Cd

αr
α|y|−d−α dy , |y| > 2r .(51)
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Since utn(y)→ u(y) for all y, by (49), (51) and dominated convergence we

M(x) = lim
n→∞

∫
(Γ∩B)c

utn(y)ω
x
Γ∩B(dy) =

∫
(Γ∩B)c

M(y)ωx
Γ∩B(dy) ,

proving that M is a regular α-harmonic function on Γ ∩ B. We note that
we used here the integrability of |y|−d−α+γ at infinity, which is a consequence
of (46). By the strong Markov property, M is regular α-harmonic on every
open bounded subset of Γ. This proves the existence part of the Theorem.

To prove the uniqueness of M , we assume that there is another function
m ≥ 0 on Rd which vanishes on Γc, satisfies m(1) = 1 and for which

m(x) = Exm(XτU ) , x ∈ Rd ,

for every open bounded U ⊂ Γ. By Lemma 3.1 and scaling

C−1
1 m(x) ≤M(x) ≤ C1m(x) , x ∈ Rd .

Let a = infx∈Γ m(x)/M(x). For clarity, we observe that C−1
1 ≤ a ≤ 1. Let

H(x) = m(x)− aM(x), so that H ≥ 0 on Rd.
Assume that H(x) > 0 for some, and therefore for every, x ∈ Γ. Once

again by Lemma 3.1 and scaling

H(x) ≥ εM(x) , x ∈ Rd,

for some ε > 0. This gives

a = inf
x∈Γ

m(x)

M(x)
= inf

x∈Γ

aM(x) + H(x)

M(x)
≥ a + ε ,

which is a contradiction.
Thus H ≡ 0 and hence m = aM . The normalizing condition m(1) =

M(1) = 1 yields a = 1 and the uniqueness of M is verified.
It remains to prove the homogeneity property of M . By the scaling of Xt,

for every k > 0 the function M(kx)/M(k1) satisfies the hypotheses used to
construct M . By uniqueness this function is equal to M , that is, M(kx) =
M(x)M(k1) for x ∈ Rd. In particular, M(kl1) = M(l1)M(k1) for every
positive k, l. By continuity there exists β such that M(k1) = kβM(1) = kβ

and
M(kx) = kβM(x) , x ∈ Rd .

By (50), M is locally bounded, thus β ≥ 0 and β ≤ γ < α.
We claim that Γc is non-polar if and only if 0 is a regular point of Γc, that

is, P0{τ ′Γ = 0} = 1, where τ ′Γ = inf{t > 0 ; Xt ∈ Γc} is the first hitting time of
Γc. Indeed, it is enough to verify that if Γc is non-polar, then P0{τ ′Γ = 0} = 1.
But in this case P0{τ ′Γ < 1/ε} ≥ ε for some ε > 0. By scaling of Xt and Γ,
P0{τ ′Γ = 0} ≥ ε. By the 0–1 law, P0{τ ′Γ = 0} = 1.

Consider u(x) = Px{XτΓ1
∈ Γ}, x ∈ Rd. If 0 is regular for Γc, then

u(x)→ 0 as x→ 0. In consequence, by Lemma 3.1, M(k1)→ 0 as k → 0+.
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Therefore β > 0. If Γc is polar, the indicator function of Γ satisfies the
hypotheses defining M and so β = 0 in this case. This completes the proof
of Theorem 3.2.

We now consider K, the Martin kernel with the pole at 0 for the generalized
cone Γ ⊂ Rd. Before we prove Theorem 3.4 we note that the function K as
defined by (16) is bounded in the complement of every neighborhood of 0.
For dimension d = 1 this follows by inspection of Example 3.4. For d ≥ 2 we
even have that K(x)→ 0 as |x| → ∞.

Proof of Theorem 3.4. Consider K defined by (16). Let η > ε > 0 and
U = Γ ∩ {η > |y| > ε}. Consider an increasing sequence {Un} of open sets
such that each closure Un is a compact subset of U and U =

⋃
Un. Let x ∈ Rd.

Since K is α-harmonic in Γ we have K(x) = ExK(XτUn
), n = 1, 2, . . . . Let

O = {τUn = τU for some n } ,(52)

P = {τUn < τU for every n } .(53)

For every n,

K(x) = Ex{K(XτUn
); O}+ Ex{K(XτUn

); P}
= Ex{K(XτU );O, τUn = τU}+ Ex{K(XτUn

);O, τUn < τU}(54)

+ Ex{K(XτUn
);P} .

We have that K is bounded on U and continuous on Rd, except for a po-
lar subset. By monotone convergence, dominated convergence and the left
continuity of the paths of Xt,

K(x) = Ex{K(XτU );O}+ Ex{K(XτU );P} = ExK(XτU ) .

We now let U = Γ ∩ {|y| > ε}, 0 < ε < 1 and Un = Γ ∩ {n > |y| > ε},
n = 1, 2 . . . . For these new sets Un we define O and P by (52) and (53), and
we obtain (54). If α < d or Γc is non-polar, then K(x) → 0 as |x| → ∞.
Hence, the second and the third terms in (54) tend to 0 as n→∞. We thus
obtain

K(x) = Ex{K(XτU ); O} = Ex{K(XτU ); τU <∞ } .
If d = 1 ≤ α and Γ = R \ {0}, then K is given by Example 3.4. since the
process Xt is recurrent in this case, we obtain

K(x) = 1 = ExK(XτU ), if x �= 0 .

We used here the observation that XτU �= 0 Px–a.s., for |x| > ε. In fact, the
Px distribution of XτU is absolutely continuous with respect to the Lebesgue
measure on the interior of U c, [B1].

The case of general U in (17) now follows by strong Markov property.
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We now sketch a proof of uniqueness of K. Assume that K̃ is a nonnegative
function on Rd such that K̃(1) = 1, K̃ = 0 on Γc and for every open set U ⊂ Γ
such that dist(0, U) > 0

K̃(x) = Ex{K̃(XτU ); τU <∞} , x ∈ Rd .(55)

By [SW], K̃ is locally bounded in Rd \ {0}. By (5) it is integrable in any
bounded neighborhood of 0. Given a cone Γ ⊂ Rd, r > 0, U = Rd∩{|y| > r}
and A ⊂ Rd ∩ {|y| ≤ r}, we have

Px{τU∩Γ <∞, XτU∩Γ
∈ A} ≤ Px{τU <∞, XτU ∈ A} =

∫
A

P̃r(x, y) dy ,

where P̃r(x, y) is given by (2). If α < d then∫
{|y|<r}

P̃r(x, y) dy ≤ C|x|α−d , x ∈ Rd ,

as can be shown from [BC]. From this it follows that K̃(x) ≤ C|x|α−d for all
sufficiently large x. Hence,

TK̃(x) = |x|α−dK̃(x/|x|2) ≤ C.

Since {0} is polar if α < d, it follows that TK̃ is regular α-harmonic in every
bounded subset of Γ. Thus TK̃ = M by Theorem 3.2 and so K̃ = K.

If d = 1 ≤ α and Γ = R1
+, then a similar argument works (see [B2] for the

Poisson kernel for the half-line).
If d = 1 ≤ α and Γ = R \ {0}, then by (55), (2) and Harnack inequality,

K̃ is bounded in a neighborhood of 0, hence in R. For α = 1 it follows that
K̃ is regular α-harmonic on Γ because {0} is polar for the Cauchy process.
For α > 1, we use the Kelvin transform, and TK̃(x) ≤ c|x|α−1 and this goes
to 0 as x goes to 0. Thus TK̃ is regular α-harmonic in every open bounded
subset of Γ. By Theorem 3.2 TK̃ = M or K̃ = K, as before.
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