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1. Introduction. Let K(A) denote the sum of all the K-theory groups of a
C*-algebra A in all degrees and with all cyclic coefficient groups. The Bockstein
operations (which generate a category Λ) act on K(A). We establish a universal
coefficient exact sequence

0→ Pext(K∗(A),K∗(B))
δ−→ KK(A,B)

Γ−→ HomΛ(K(A),K(B))→ 0.

that holds in the same generality as the universal coefficient theorem of Rosenberg
and Schochet.

There are advantages, in some circumstances, to using HomΛ(K(A),K(B)) in
place of KK(A,B). These advantages derive from the fact that K(A) can be
equipped with order and scale structures similar to those on K0(A). With this
additional structure, the “Λ−module” K(A) becomes a powerful invariant of C*-
algebras. We show that it is a complete invariant for the class of real-rank-zero
AD algebras. The AD algebras are a certain kind of approximately subhomoge-
neous C∗-algebras which may have torsion in K1 [Ell]. In addition to classifying
these algebras, we calculate their automorphism groups up to approximately inner-
automorphisms.

1.1 Summary The universal coefficient theorem (UCT) of Rosenberg and Schochet
[RS] states the existence of an exact sequence

0→ Ext1
Z(K∗(A),K∗(B))

δ−→ KK∗(A,B)
γ−→ Hom(K∗(A),K∗(B))→ 0

for many pairs of C∗-algebrasA andB. Loosely speaking, this shows thatKK∗(A,B)
can be regarded as the K-theory of B with coefficients in K∗(A). In particu-
lar it shows that the coefficient group Z is universal in the sense that, knowing
K∗(B;Z) = K∗(B), we can determine the K-theory for B with other coefficients.
For example,

K∗(B;Z/p) = KK∗(Ap, B)

where Ap is an appropriate C∗-algebra with K1(Ap) = Z/p and K0(Ap) = 0 (or
K0(Ap) = Z/p and K1(Ap) = 0). Mod-p K-theory for C*-algebras was considered
in [Kar], [Cu] and [Sc1-2].
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We have recently discovered that mod-p K-theory can be given a very useful
order structure [DL3]. More specifically, there is a order structure on

K0(B)⊕K1(B)⊕K0(B;Z/p)⊕K1(B;Z/p)

and this order is not determined by the order on

K0(C(S1)⊗B) = K0(B)⊕K1(B),

which was defined in [DN] and [Ell]. This order is critical in the classification of
AD (approximately dimension-drop) algebras ([Ell], [DL3], [Ei]).

The AD algebras are inductive limits of matrices over dimension-drop algebras
Ĩn (see 1.2.) and over C(T). These C*-algebras may have torsion in K1. The clas-
sification of simple AD algebras is due essentially to Elliott [Ell], but his techniques
failed for nonsimple algebras as his invariant could not encode the possible com-
plexity of the ideal structure. In order to overcome this difficulty we introduced
an ordered structure on the mod-p K-groups. In [DL3] we used this additional
structure to prove an isomorphism theorem for nonsimple AD algebras. This iso-
morphism result was phrased in terms of the KK-classes and raised the question:
Given group homomorphisms (positive or not)

φin : Ki(A;Z/n)→ Ki(A;Z/n)

for all i and all n, how is it determined if there is a single KK-element inducing
all the φin ?

To answer this, we develop a variation of the universal coefficient theorem which
we call the Universal Multi-Coefficient Theorem, or the UMCT. This was in part
inspired by the work of Eilers [Ei] in the context of AD algebras, but is stated and
proven in a general setting. Applications to AD algebras will be discussed in the
last section.

We define

K(A) =
∞⊕
n=0

K∗(A;Z/n)

where
K∗(A;Z/n) = K0(A;Z/n)⊕K1(A;Z/n).

By HomΛ(K(A),K(B)) we mean all homomorphisms that respect the direct sum
decomposition and the action of certain natural transformations. Some of these
transformations have degree zero and are induced by coefficient morphisms Z/n→
Z/m. The others have degree one and are known as the Bockstein operations. Abus-
ing the terminology, we will call these transformations will be called the Bockstein
operations. Taken together, the Bockstein operations (as defined in the C∗-algebra
context by Schochet [Sc2]) form a category Λ that acts on K(A). Rosenberg and
Schochet used the UCT to study homology operations on mod-p K-theory [RS].

For groups G and H we define Pext(G,H) to be the subgroup of pure extensions
in Ext(G,H). Recall that an extension of groups is pure if every element of finite
order in the quotient lifts to an element of the same order [F].

The UMCT exact sequence, which is valid when A is in the so-called bootstrap
category of [RS] and B is σ-unital, is

0→ Pext(K∗(A),K∗(B))
δ−→ KK(A,B)

Γ−→ HomΛ(K(A),K(B))→ 0.
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As a special case, when A has finitely generated K-theory, Γ is an isomorphism.
Several special cases of the UMCT, specifically where A and B are so-called AD-
algebras with some restrictions on their K-theory, were discovered by Eilers [Ei].
Our proof of the UMCT relies heavily on the techniques used by Rosenberg and
Schochet [RS] to prove the universal coefficient theorem.

The Λ-module K(A), together with its order structure defines an effective in-
variant of C*-algebras. The UMCT allows us to define positivity for KK-elements.
With these tools at hand we complete the classification started in [Ell] and [DL3] of
(non-simple) AD algebras of real rank zero and compute their automorphism group
modulo the approximately-inner automorphisms.

The first-named author thanks Claude Schochet and Jim McClure for useful
discussions. We are grateful to Pierre de la Harpe for the references [Kar] and [B]
and to Claude Schochet for making available to us early drafts of his papers [Sc3-4].

1.2. Bockstein Operations. The standard definition of mod-p K-theory for
C∗-algebras, as given by Schochet in [Sc2], is

Ki(A;Z/n) = Ki(Cn ⊗A)

where Cn is a commutative C∗-algebra, described below. Schochet also defines the
Bockstein operations, which are natural transformations Ki(−;G) → Kj(−;H)
for various indices and coefficient groups. Then he establishes exact sequences
connecting these groups.

The definition of Cn is that it is the mapping cone of a degree n map of C0(R) to
itself. This is the lowest-dimensional way to introduce torsion in the commutative
situation. In the non-commutative setting, we may get torsion a dimension lower.

Let In denote the mapping cone of the unital map C→Mn, or

In = {f ∈ C([0, 1],Mn) | f(0) = 0, f(1) ∈ CI}.

This has the same K-theory as Cn, (or K-homology, as was computed in [PS]).
Moreover, it is relatively easy to establish a natural isomorphism

KK(In;A) = K0(Cn ⊗A).

However, it is laborious to figure out the effect this has on the Bockstein operations.
We therefore take as a definition

(1.1) Ki(A;Z/n) = KK(In, SiA),

redefine the Bockstein operations and rederive basic facts about them.
The advantages to using In in the definition of mod-p K-theory stem from the

semiprojectivity of In and from our previously established isomorphism

[In, A⊗K] ∼= KK(In, A)

which holds when A is a σ-unital C∗-algebras. (See [DL1,Lo1,Lo2].) These facts
will not be used to prove the UMCT, but do indicate that our definition is a natural
one. More evidence of this is given by the crucial role In plays in the construction

3



of AD algebra and by the smoothing results regarding In and related C∗-algebras
developed in [LP].

There are four types of Bockstein operations, each in two degrees. The operation

(1.2) ρn = ρ0
n ⊕ ρ1

n, ρin : Ki(A)→ Ki(A;Z/n)

is given by the Kasparov product with the element of KK(In,C) given by the
function δ1 : In → C defined by

δ1(f) = f(1).

The operation

(1.3) β = β0
n ⊕ β1

n, βin : Ki(A;Z/n)→ Ki+1(A)

is given by the Kasparov product with the element of KK1(C, In) determined by
the obvious inclusion

SMn ↪→ In.

The assignment

f 7→


f

f
. . .

f


determines a ∗-homomorphism from In to Imn. Kasparov product with this deter-
mines the operation κn,mn, where

(1.4) κin,mn : Ki(A;Z/mn)→ Ki(A;Z/n).

Finally, κmn,m, with

(1.5) κimn,m : Ki(A;Z/m)→ Ki(A;Z/mn)

is given by Kasparov product with the inclusion of Imn into Mn(Im), where we
make the identifications

Mn(Im) = {f ∈ C0((0, 1],Mn ⊗Mm) | f(1) ∈Mn ⊗ CI}

and
Imn = {f ∈ C0((0, 1],Mn ⊗Mm) | f(1) ∈ CI ⊗ CI}.

Since the first two Bockstein operations are induced by the maps in the exact
sequence

0→ SMn −→ In
δ1−→ C→ 0,

the exact sequence

(1.6)

K0(A)
ρ0n−−−−→ K0(A;Z/n)

β0
n−−−−→ K1(A)x×n y×n

K0(A)
β1
n←−−−− K1(A;Z/n)

ρ1n←−−−− K1(A)
4



follows from the the six term exact sequence in KK-theory.
There is a second important exact sequence involving the Bockstein operations

[Sc2]. Let us define βim,n = ρi+1
m ◦ βin. Then this exact sequence takes the following

form:

(1.7)

K0(A;Z/mn)
κ0
n,mn−−−−→ K0(A;Z/n)

β0
m,n−−−−→ K1(A;Z/m)

κ0
mn,m

x yκ1
mn,m

K0(A;Z/m)
β1
m,n←−−−− K1(A;Z/n)

κ1
n,mn←−−−− K1(A;Z/mn)

To prove this is exact we introduce an auxiliary C∗-algebra that is homotopic to
In. For any m, define

Jm,n = {f ∈ C0((0, 1]2,Mmn) | ∀t, f(1, t) ∈Mn, & f(1, 1) ∈ C}

where we have made unital identifications

C ⊆Mn ⊆Mmn.

Let δr denote the evaluation map on the set {(1, t) | t ∈ (0, 1]} and let δu denote
evaluation on the set {(s, 1) | s ∈ (0, 1]}. It is easy to see that δr is a homotopy
equivalence with In, with the inverse λ given by λ(f)(s, t) = f(t).

There is a short exact sequence

0→ SMn(Im)
ι−→ Jm,n

δu−→ Imn → 0

Which gives rise to diagram

KK(Imn, A) −−−−→ KK(Jm,n, A) −−−−→ KK(SMn(Im), A)x y
KK(SMn(Im), SA) ←−−−− KK(Jm,n, SA) ←−−−− KK(Imn, SA)

Making the identifications given by δr : Jm,n → In, Bott periodicity and dropping
matrices, have established an exact sequence of the form (1.7), but must check that
the homomorphisms are the ones indicated.

It is easy to check that

δu ◦ λ(f) =


f

f
. . .

f


and thus prove the map from K0(A;Z/mn) to K0(A;Z/n) is κn,mn.

There is also a commutative diagram with exact rows

0 −−−−→ SMn(Im)
ι−−−−→ Jm,n

δu−−−−→ Imn −−−−→ 0x x x
0 −−−−→ SImn −−−−→ CImn −−−−→ Imn −−−−→ 0
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where all the vertical maps are the obvious inclusions. The bottom row, which
is the usual sequence involving a cone, induces boundary map that equals [id]
in KK(SImn, SImn). It follows by naturality that the map from K0(A;Z/m) to
K0(A;Z/mn) is κmn,m.

The commutative diagram

SMn(Im)
ι−−−−→ Jm,n

SMn(δ1)

y yδr
SMn −−−−→ In

shows that the remaining two maps are βm,n = ρm ◦ βn.

1.3 Examples. One obvious example to compute is K∗(C;Z/n). It follows easily
from (1.2) and the definition of the ρ operation that

K0(C;Z/n) = Z/n, K1(C;Z/n) = 0

with [δ0] the generator of K0(C;Z/n). The composition

In −→ Imn, f 7→


f

f
. . .

f


with δ0 : Imn → C is again δ0 : In → C which proves that

κ1
n,mn : K0(C;Z/mn)→ K0(C;Z/n)

is the map
Z/mn→ Z/n

sending [1] to [1].
Next we compute the same operation for Ik. The Bockstein operations are

natural and commute with suspensions (since they are given by KK-products) so
from the short exact sequence

(1.8) 0→ SMk −→ Ik −→ C→ 0

we get a commutative diagram with exact rows:

0 −−−−→ K0(Ik;Z/n) −−−−→ Z/n ×k−−−−→ Z/n −−−−→ K1(Ik;Z/n) −−−−→ 0xκ0
n,mn

x×1

x×1

xκ1
n,mn

0 −−−−→ K0(Ik;Z/mn) −−−−→ Z/mn ×k−−−−→ Z/mn −−−−→ K1(Ik;Z/mn) −−−−→ 0

That the connecting maps are given as multiplication by k can be deduced from
the fact that (1.8) represents the k times the generator of KK(C,C). From this
diagram we may conclude that

K0(Ik;Z/n) ∼= Z/(n, k), K1(Ik;Z/n) ∼= Z/(n, k)
6



and that κ0
n,mn : Z/(mn, k)→ Z/(n, k) is given by

(1.9) κ0
n,mn(1) =

m(n, k)

(mn, k)
1

and finally κ1
n,mn : Z/(mn, k)→ Z/(n, k) is given by

(1.10) κ1
n,mn(1) = 1.

1.4 The universal multi-coefficient theorem Let Λ denote the category of
Bockstein operations. The Kasparov product

KK(In, A)×KK(A,B)→ KK(In, B)

induces a map

γ0
n : KK(A,B)→ Hom(K0(A;Z/n),K0(B;Z/n)).

Similarly there is a map

γ1
n : KK(A,B)→ Hom(K1(A;Z/n),K1(B;Z/n)).

Then γn = (γ0
n, γ

1
n) will be a map

γn : KK(A,B)→ Hom(K∗(A;Z/n),K∗(B;Z/n)).

Note that if n = 0 then K∗(A,Z/n) = K∗(A) and the map γ0 is the same as the
map γ from the UCT. If n = 1 then K∗(A,Z/n) = 0.

For a σ-unital C*-algebra A we define the group

K(A) =

∞⊕
n=0

K∗(A;Z/n).

It is a Z/2 × N graded group. Via the Bockstein operations, K(A) becomes a
Λ-module. It is natural to consider the group HomΛ(K(A),K(B)) consisting of
all Z/2 × N graded group morphisms which are Λ-linear, i.e. preserve the action
of the category Λ. Equivalently HomΛ(K(A),K(B)) consists of sequences (φn) of
Z/2-graded morphisms of groups

φn = (φ0
n, φ

1
n) : K∗(A;Z/n)→ K∗(B;Z/n)

which preserve the following exact sequences

Ki(−)
×n−−→ Ki(−)

ρin−→ Ki(−;Z/n)
βi
n−→ Ki+1(−)

and

Ki+1(−;Z/n)
βi+1
m,n−−−→ Ki(−;Z/m)

κi
mn,m−−−−→ Ki(−;Z/mn)

κi
n,mn−−−−→ Ki(−;Z/n)

for all m,n ∈ N, i ∈ Z/2. We assemble the sequence (γn) into a map Γ. Since the
Bockstein operations are induced by multiplication with suitable KK elements and
since the Kasparov product is associative, we obtain a map

Γ : KK(A,B)→ HomΛ(K(A),K(B)).

Our main result is the following universal coefficient theorem. Denote by N the
“bootstrap” category of Rosenberg and Schochet [RS].
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Theorem. (UMCT). Let A, B be C*-algebras. Suppose that A ∈ N and B is
σ-unital. Then there is a short exact sequence

0 −→ Pext(K∗(A),K∗(B))
δ−→ KK(A,B)

Γ−→ HomΛ(K(A),K(B)) −→ 0

which is natural in each variable.

Here Pext denotes the subgroup of Ext1Z consisting of classes of pure extensions
[F]. The map δ is the restriction of the map

Ext1Z(K∗(A),K∗(B))
δ−→ KK(A,B)

from the universal coefficient theorem UCT of [RS]. If A = B then Γ is a ring
morphism. The proof of the UMCT uses techniques from [RS] and is based on the
UCT. To identify the kernel of Γ we use certain recent results of Schochet [Sc3-4].
The group of pure extensions is relevant for questions related to quasidiagonal-
ity and approximately unitary equivalence of ∗-homomorphisms [Br2], [KS], [Sa],
[BrD], [Rø], [D]. The theorem is a consequence of Propositions 2.3 and 2.7 proved
in the next section. By replacing A by its suspension SA in the UMCT and using
the Bott periodicity one obtains the odd-dimensional version of the UMCT.

2. The proof of the UMCT

Proposition 2.1. Let A1, A2 ∈ N and let be B a σ-unital C*-algebra. Suppose
that the UMCT holds for the pair (A1, B). If A1 is KK-equivalent to A2, then the
theorem also holds for (A2, B).

Proof. This very similar to the proof of Proposition 7.1 of [RS] due to Cuntz. Given
an invertible element α ∈ KK(A2, A1), the Kasparov product with α induces a
commutative diagram

Pext(K∗(A1),K∗(B))
δ−−−−→ KK(A1, B)

Γ−−−−→ HomΛ(K(A1),K(B))

γ0(α)∗
y y yΓ(α)∗

Pext(K∗(A2),K∗(B))
δ−−−−→ KK(A2, B)

Γ−−−−→ HomΛ(K(A2),K(B))

with all vertical arrows isomorphisms. The naturality of the UCT is used here. The
pullback of a pure extension is pure. �

Lemma 2.2. Suppose A is the inductive limit of a sequence A1 → A2 → . . . of
separable C*-algebras. Then

(i) K(A) = lim−→K(Aj) as Λ modules.

(ii) HomΛ(K(A),K(B)) = lim←−HomΛ(K(Aj),K(B)).

Proof. We omit the elementary proof based on the continuity of K-theory and the
naturality of the Bockstein operations. �

If K∗(A) is finitely generated, then any pure extension of K∗(A) is trivial and
the UMCT reduces to the assertion that Γ is an isomorphism.
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Proposition 2.3. Let B be a σ-unital C*-algebra. Suppose that the UMCT holds
for the pair (A,B) whenever K∗(A) is finitely generated. Then the theorem holds
for arbitrary A ∈ N .

Proof. Let A ∈ N . Since A is separable, K∗(A) is a countable group. Using
Proposition 7.3 of [RS], we find a C*-algebra D ∈ N that is the inductive limit of
a sequence A1 → A2 → . . . with K∗(Aj) finitely generated for all j, and such that
D is KK-equivalent to A. By Proposition 2.1 we may assume that A itself is the
inductive limit of the (Aj). Consider the following commutative diagram

lim←−
1 KK(Aj , B)

σ−−−−→ KK(A,B) −−−−→ lim←−KK(Aj , B)

ΓA,B

y ylim←−ΓAj,B

HomΛ(K(A),K(B))
∼=−−−−→ lim←−HomΛ(K(Aj),K(B))

where the upper row is the Milnor lim←−
1 exact sequence [Br1], [Sc1, Thm.7.1 ]. The

maps ΓAj ,B are bijections by hypothesis. It follows that ΓA,B is surjective with

kernel lim←−
1KK(Aj , B). By Theorem 4 in [Sc3], there is an exact sequence

0 −→ lim←−
1KK(Aj , B)

ψ−→ Ext1Z(K∗(A),K∗(B))
τ−→ lim←−Ext

1
Z(K∗(Aj),K∗(B)) −→ 0

and a commutative diagram

lim←−
1KK(Aj , B)

σ−−−−→ KK(A,B)

ψ

y yid
Ext1Z(K∗(A),K∗(B))

δ−−−−→ KK(A,B)

Since all K∗(Aj) are finitely generated and K∗(A) = lim−→K∗(Aj), the kernel of τ and
hence the image of ψ is exactly Pext(K∗(A),K∗(B)). This was explain in the proof
of Theorem 4.5 in [Sc4]. The general fact used here is that if G = lim−→Gj where Gj
are finitely generated abelian groups, then an extension x ∈ Ext(G,H) is pure if
and only if all its restrictions xj ∈ Ext(Gj , H) are trivial. Let ψ′ denote inverse
of the corestriction of ψ to its image. By the commutative diagram from above it
is then clear that σψ′ is given by the restriction of δ to Pext(K∗(A),K∗(B)). The
naturality of Γ is a consequence of the associativity of the Kasparov product. The
naturality of δ is proved in [RS]. �

Proposition 2.4. Let A and B be as in the statement of the UMCT. Suppose that
K∗(A) is a finitely generated free group. Then Γ is an isomorphism.

Proof. Consider the commutative diagram

KK(A,B)
id−−−−→ KK(A,B)

Γ

y yγ
HomΛ(K(A),K(B))

α0−−−−→ Hom(K∗(A),K∗(B))

where
9



α0((φn)) = φ0 = (φi0, φ
i+1
0 ).

By the UCT, γ is an isomorphism, hence α0 is surjective. It remains to prove that
α0 is injective. Suppose that (φn) ∈ HomΛ(K(A),K(B)) is such that φ0 = 0.
We are going to show that φn = 0 for all n. Consider the following commutative
diagram with exact rows.

Ki(A)
ρin−−−−→ Ki(A;Z/n)

βi
n−−−−→ Ki+1(A)

×n−−−−→ Ki+1(A)

φi
0

y yφi
n

y y
Ki(B)

ρin−−−−→ Ki(B;Z/n)
βi
n−−−−→ Ki+1(B)

×n−−−−→ Ki+1(B)

Since Ki+1(A) is free, the multiplication by n is an injective map. Thus βin = 0
and hence ρin is surjective. Therefore from the equation φinρ

i
n = ρinφ

i
0 = 0 we can

conclude that φin = 0. �

The next two Lemmas are direct consequences of the examples computed in 1.3.

Lemma 2.5. Let A be a C*-algebra in N with Ki(A) = Z/k and Ki+1(A) = 0.
Consider the Bockstein operation

κi+1
n,mn : Ki+1(A;Z/mn)→ Ki+1(A;Z/n)

where m,n, k ≥ 2.

(i) If m is divisible by k then κi+1
n,mn = 0.

(ii) If k is divisible by (m, k)(n, k) then κi+1
n,mn is surjective.

Proof. By 1.3. κi+1
n,mn : Z/(mn, k)→ Z/(n, k) is given by

κi+1
n,mn(1) =

m(n, k)

(mn, k)
1.

The conclusions of the Lemma follow immediately. �

Lemma 2.6. Let A be a C*-algebra in N with Ki(A) = Z/k and Ki+1(A) = 0.
Consider the Bockstein operation

κin,mn : Ki(A;Z/mn)→ Ki(A;Z/n)

where m,n, k ≥ 2.

(i) κin,mn is surjective.

(ii) If (mn, k) = (n, k) then κin,mn is injective.

Proof. By 1.3. κin,mn : Z/(mn, k) → Z/(n, k) is given by κin,mn(1) = 1. The
conclusions of the Lemma are now obvious. �
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Proposition 2.7. Let A, B be C*-algebras. Suppose that A ∈ N and B is σ-
unital. Suppose that Ki(A) = Z/k and Ki+1(A) = 0 where k = pa, p is a prime
and a ≥ 1. Then the restriction map

HomΛ(K(A),K(B))
αi+1

k−−−→ Hom(Ki+1(A;Z/k),Ki+1(B;Z/k))

is injective.

Proof. Let φ = ((φin, φ
i+1
n )) ∈ HomΛ(K(A),K(B)) and assume that φi+1

k = 0. We
will show that this implies that φ = 0. For the first two parts of the proof our
arguments rely on the following commutative diagrams with exact rows.

Ki+1(A;Z/m)
κi+1
mn,m−−−−→ Ki+1(A,Z/mn)

κi+1
n,mn−−−−→ Ki+1(A;Z/n)

βi+1
m,n−−−−→ Ki(A,Z/m)yφi+1

m

yφi+1
mn φi+1

n

y φi
m

y
Ki+1(B;Z/m)

κi+1
mn,m−−−−→ Ki+1(B,Z/mn)

κi+1
n,mn−−−−→ Ki+1(B;Z/n)

βi+1
m,n−−−−→ Ki(B,Z/m)

Ki+1(A;Z/n)
βi+1
m,n−−−−→ Ki(A;Z/m)

κi
mn,m−−−−→ Ki(A;Z/mn)

κi
n,mn−−−−→ Ki(A;Z/n)

φi+1
n

y yφi
m

yφi
mn

yφi
n

Ki+1(B;Z/n)
βi+1
m,n−−−−→ Ki(B;Z/m)

κi
mn,m−−−−→ Ki(B;Z/mn)

κi
n,mn−−−−→ Ki(B;Z/n)

We show first that φi+1
r = 0 for all r ≥ 2. Write r = pbs with (s, p) = 1. If

b ≥ a, set m = k = pa and n = pb−as. Since m is divisible by k , Lemma 2.5 (i)
shows that κi+1

n,mn = 0 and therefore κi+1
mn,m is surjective. Since φi+1

m = φi+1
k = 0,

φi+1
mnκ

i+1
mn,m = κi+1

mn,mφ
i+1
m = 0 hence φi+1

mn = φi+1
r = 0. If b ≤ a, set n = r = pbs

and m = pa−b. Then (m, k)(n, k) = pa−bpb = pa. By Lemma 2.5 (ii), it follows
that κi+1

n,mn is surjective. Since φi+1
n κi+1

n,mn = κi+1
n,mnφ

i+1
mn = 0, this implies that

φi+1
n = φi+1

r = 0.
In the second part of the proof we show that that φir = 0 for all r ≥ 2. Set

m = r and n = k. Then (mn, k) = k = (n, k), hence κin,mn is injective by Lemma
2.6 (ii). By the exactness of the upper row of the second diagram, this implies that
κimn,m = 0. Therefore βi+1

m,n must be surjective. Since φi+1
n = 0 by the first part of

the proof, φimβ
i+1
m,n = βi+1

m,nφ
i+1
n = 0. We conclude that φir = φim=0.

In the last part of the proof we show that φ0
0 = φ1

0 = 0. It is clear that φi+1
0 = 0

since Ki+1(A) = 0. From the commutative diagram

Ki+1(A;Z/k)
βi+1
k−−−−→ Ki(A)

×k−−−−→ Ki(A)

φi+1
k

y yφi
0

y
Ki+1(B;Z/k)

βi+1
k−−−−→ Ki(B)

×k−−−−→ Ki(B)

it follows that φi0β
i+1
k = βi+1

k φi+1
k = 0 since we have already seen that φi+1

k = 0.

The map βi+1
k is surjective since kKi(A) = 0. We conclude that φi0 = 0. �
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Proposition 2.8. Let A1, A2 ∈ N and let B be a σ-unital C*-algebra. Suppose
that ΓA1,B and ΓA2,B are isomorphisms. Then ΓA1⊕A2,B is an isomorphism.

Proof. We leave the proof for the reader. One uses the fact that both KK(A,B)
and HomΛ(K(A),K(B)) are additive in the first variable. �

Proposition 2.9. Let A ∈ N and let B be a σ-unital C*-algebra. Suppose that
K∗(A) is finitely generated. Then the map

Γ : KK(A,B)→ HomΛ(K(A),K(B))

is an isomorphism.

Proof. By Proposition 2.1 and Proposition 7.3 of [RS] we may assume that A is
isomorphic to a finite sum of C*-algebras Aj such that each K∗(Aj) is a primary
cyclic group supported in one dimension or isomorphic to Z. By Proposition 2.8 we
may further assume that A is equal to some Aj and therefore it is enough to consider
the case when Ki+1(A) = 0 and Ki(A) = Z or Ki(A) = Z/pa for some prime p
and a ≥ 1. The torsion free case was settled in Proposition 2.4. Therefore we only
need to prove the statement in the case when Ki+1(A) = 0 and Ki(A) = Z/pa.
Set k = pa. By Proposition 2.1 we may assume that A = Si+1Ik. Consider the
commutative diagram

KK(A,B)
id−−−−→ KK(A,B)

Γ

y yγi+1
k

HomΛ(K(A),K(B))
αi+1

k−−−−→ Hom(Ki+1(A;Z/k),Ki+1(B;Z/k))

First we show that γi+1
k is a bijection. Via the identifications

Ki+1(Si+1Ik;Z/k) ∼= KK(Ik, S2i+2Ik) ∼= KK(Ik, Ik)

Ki+1(B;Z/k) ∼= KK(Ik, Si+1B) ∼= KK(Si+1Ik, B)

the map γi+1
k is induced by the Kasparov product

KK(Ik, Ik)×KK(Si+1Ik, B)→ KK(Si+1Ik, B).

This clearly shows that γi+1
k is a bijection. From the above commutative diagram,

it follows that αi+1
k is surjective. By Proposition 2.7, αi+1

k is injective. We conclude
that Γ is bijective. �

Let P ⊂ N be the set consisting of the positive powers of all the primes. We
define

FPK(A) = K∗(A)⊕
⊕
k∈P

K∗(A;Z/k).

There is a canonical subcategory of Λ acting on FPK(A). Similarly for any positive
integer n we define

FnK(A) = K∗(A)⊕
⊕
k|n

K∗(A;Z/k).

F ′nK(A) = K∗(A)⊕
⊕
k ∈ P
k|n

K∗(A;Z/k).

Again there are suitable subcategories of Λ acting on these groups and which are
maximal with respect this property.
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Proposition 2.10. Let A ∈ N and let B be a σ-unital C*-algebra. Then the
natural restriction map

HomΛ(K(A),K(B))→ HomΛ(FPK(A), FPK(B))

is an isomorphism of groups.

Proof. The both groups in the statement can be regarded as contravariant functors
in the A variable. These functors preserve the direct sums, are continuous and
behave nicely with respect KK-equivalences. The restriction map can be regarded
as a natural transformation between the two functors which is compatible with
the above operations. Therefore, as in the proof of Proposition 2.9, it is enough
to deal with the particular case when Ki+1(A) = 0 and Ki(A) = Z or Ki(A) =
Z/pa with p prime and a ≥ 0. The statement now follows by reasoning as in the
proofs of Propositions 2.4, 2.7 and 2.9 with HomΛ(FPK(A), FPK(B)) replacing
HomΛ(K(A),K(B)). �

The next result is derived by similar arguments.

Corollary 2.11. Let A ∈ N and let B be a σ-unital C*-algebra. Suppose that
there is a positive integer n such that the torsion subgroup T of K∗(A) satisfies
nT = 0. Then the natural restriction maps induce isomorphisms

HomΛ(K(A),K(B))→ HomΛ(FnK(A), FnK(B))→ HomΛ(F ′nK(A), F ′nK(B)).

3. A new invariant, applications

All the C*-algebras in this section are assumed to be σ-unital. Throughout this
section the KK-class of a ∗-homomorphism ϕ : A→ B will be denoted by [ϕ] and
this should not be confused with the homotopy class of ϕ.

In [DL3] we introduced a preorder structure on the groups

K0(A;Z⊕ Z/n) = K0(A)⊕K0(A;Z/n)

and
K∗(A;Z⊕ Z/n) = K∗(A)⊕K∗(A;Z/n).

There are isomorphisms

K0(A;Z⊕ Z/n) ∼= KK(Ĩn, A)

and
K∗(A;Z⊕ Z/n) ∼= KK(Ĩn, A⊗ C(T))

induced by the split-exact sequence

0 −→ In −→ Ĩn −→ C −→ 0.

Treating these as identifications, we define the positive elements as those that are
represented by ∗-homomorphisms from Ĩn to A⊗K, or to A⊗ C(T)⊗K.

13



These preorder structures share many of the properties held by the preorder
structure on K0(A). Notice that

K∗(A;Z⊕ Z/n)+ = K0(A⊗ C(T);Z⊕ Z/n)+

under the usual identification of the underlying groups. The preoder structure
on K0(A;Z ⊕ Z/n) encompasses that on K0(A) in the sense that if (x0, xn) is in
K0(A;Z⊕ Z/n)+ then x0 is in K0(A)+.

Recall from [DL3] that

[In, A⊗K] ∼= KK(In, A) = K0(A;Z/n).

The fact that In and Ĩn have stable relations tells us moreover that

lim−→[In,Mr(A)] = [In, A⊗K] = K0(A;Z/n)

and
lim−→[̃In,Mr(A)] = [̃In, A⊗K].

A more general consequence is that [In,−] and [̃In,−] are continuous.
In what follows a C*-algebra A will be called stably unital if A has an approx-

imate unit consisting of projections. (Note that this definition is slightly more
restrictive than the one given in [Bl1].)

Proposition 3.1. Suppose that A is a stably unital C*-algebra. Then
(i) KK(Ĩn, A) = {[ϕ]− [ψ] : ϕ,ψ ∈ Hom(Ĩn, A⊗K)}
(ii) [ϕ] = [ψ] if and only if there is η ∈ Hom(Ĩn, A⊗K) vanishing on In such that

ϕ⊕η is homotopic to ψ⊕η. Therefore KK(Ĩn, A) ∼= K0(A;Z⊕Z/n) is isomorphic

to the Grothendieck group of the semigroup [̃In, A⊗K].

Proof. We give the proof only for unital C*-algebras A. The general case will follow
by writing A as an inductive limit of unital C*-algebras and by using the continuity
of [̃In,−] and KK(Ĩn,−).

(i) Essentially, this part is contained in Proposition 2.2 of [DL3]. Let x = (x0, xn)
be an element of K0(A) ⊕KK(In, A). Let p, q be projections in Ms(A) such that
x0 = [p]−[q]. For some s there is an elememt ϕ0 of Hom(In,Mr(A)) with [ϕ0] = xn.

Extend ϕ0 to a ∗-homomorphism ϕ : Ĩn →Mr+s(A) by setting ϕ(1) = 1r⊕p where

1r denotes the unit of Mr(A). Let ψ : Ĩn → Mr+s be a ∗-homomorphism with
kernel In and such that ψ(1) = 1r ⊕ q. It is then clear that [ϕ]− [ψ] = x.

(ii) We begin be reducing the proof to the case when ϕ(1) = ψ(1). By the

discussion above we may assume that ϕ,ψ ∈ Hom(Ĩn,Mr(A)) for some r. If [ϕ] =
[ψ], then [ϕ(1)] = [ψ(1)] inK0(A). It follows that there exist a projection q ∈Ms(A)
and a unitary u ∈ Ur+s(A) homotopic to the identity, such that

u(ϕ(1)⊕ q)u∗ = ψ(1)⊕ q.

Let η : Ĩn → Ms be a ∗-homomorphism with kernel In and such that η(1) = q. It
is then clear that ϕ⊕ η is homotopic to u(ϕ⊕ η)u∗. This shows that without any
loss of generality we may assume that ϕ(1) = ψ(1) = e ≤ 1r. Since [ϕ|In ] = [ψ|In ],
there exist R ≥ r and a homotopy Γt : In → MR(A) from ϕ|In to ψ|In . Extend Γt
to Ĩn by setting Γt(1) = 1R. It is then obvious that Γt is a homotopy from ϕ⊕ η1

to ψ⊕ η1, where η1 is a ∗-homomorphism vanishing on In with η1(1) = 1R− e. �
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Proposition 3.2. Suppose that A is a stably unital, stably finite C*-algebra. Then

(K0(A;Z⊕ Z/n),K0(A;Z⊕ Z/n)+)

is an ordered group. Moreover if (x0, xn) is in K0(A;Z⊕ Z/n)+ and x0 = 0, then
xn = 0.

Proof. If G = K0(A;Z ⊕ Z/n), then G+ − G+ = G by Proposition 3.1 (i). It
remains to show that G+ ∩ (−G+) = 0. If x ∈ G+ ∩ (−G+) = 0, then there exist

∗-homomorphisms ϕ,ψ : Ĩn → Mr(A) with x = [ϕ] = −[ψ], hence [ϕ ⊕ ψ] = 0 in

KK(Ĩn, A). Therefore [ϕ(1)⊕ψ(1)] = 0 in K0(A). Under the same assumptions it
is proved in Proposition 6.3.3 of [Bl1] that (K0(A),K0(A)+) is an ordered group.
It follows that ϕ(1) = ψ(1) = 0, hence ϕ = ψ = 0. To prove the second part of

the statement, write (x0, xn) = [ϕ] for some ∗-homomorphism ϕ : Ĩn → Mr(A).
If x0 = [ϕ(1)] = 0, then as above ϕ(1) = 0, hence ϕ = 0. We conclude that
xn = [ϕ|In ] = 0. �

Under the assumptions of Proposition 3.2 it easily seen that A⊗ C(T) is stably
unital and stably finite. Therefore

(K∗(A;Z⊕ Z/n),K∗(A;Z⊕ Z/n)+)

is also an ordered group.

Definition 3.3. Let K(A)+ denote the semigroup in K(A) generated by union of
K∗(A;Z ⊕ Z/n)+ taken over all n ∈ N. A morphism in HomΛ(K(A),K(B)) is
called positive if it maps K(A)+ into K(B)+.

Let x be an element of K(A) so that x = (x0, x1, . . .) with x0 ∈ K∗(A) and
xn ∈ K∗(A;Z/n) for n > 0. By definition, x is positive if and only if there are yn
in K∗(A) such that (yn, xn) is a positive element of K∗(A;Z ⊕ Z/n)+ for n > 0,
with all but finitely many equal to zero, and x0 =

∑
j>0 yj . As explained before

Proposition 3.1, each yk must be in K∗(A)+, hence (x0, xn) ≥ (yn, xn). This shows
that if x is positive, then all (x0, xn) are positive. An obvious consequence is that
a morphism Φ = (Φn) : K(A)→ K(B) is positive if and only if all its restrictions

(Φ0,Φn) : K∗(A;Z⊕ Z/n)→ K∗(B;Z⊕ Z/n)

are positive.
Let G denote one of the groups K0(A), K∗(A), K0(A;Z ⊕ Z/n). Then G is

natural direct summand of K∗(A;Z ⊕ Z/n) and the projection onto G is given
by composition with a suitable ∗-homomorphism. This shows immediately that
K∗(A;Z⊕ Z/n)+ ∩G = G+. It follows that if Φ is positive, then its restriction to
G is also positive.

Proposition 3.4. Suppose that A is a stably unital, stably finite C*-algebra. Then
(K(A),K(A)+) is an ordered group.

Proof. K(A) = K(A)+ −K(A)+ since the corresponding property is true for each
of the subgroups K∗(A;Z⊕Z/n) and these subgroups generate K(A). It remains to
prove that K(A)+ ∩ (−K(A)+) = 0. To this purpose we show that if x, y ∈ K(A)+

and x + y = 0, then x = y = 0. Write x = (xn) and y = (yn) with xn, yn ∈
15



K∗(A;Z/n). Since both x and y are positive, (x0, xn), (y0, yn) ∈ K∗(A;Z⊕Z/n)+.
Since this is an ordered group and (x0, xn) + (y0, yn) = (0, 0), both elements must
be zero, hence x = y = 0. �

Recall that the scale Σ(A) of a C*-algebra A is defined as the image of [C, A] in
K0(A) = KK(C, A). The scale of A ⊗ C(T) is denoted by Σ∗(A). For unital C*-
algebras A with cancellation of projections, the scale is equal to the order interval
of those x in K0(A) such that 0 ≤ x ≤ [1] (see [Bl1]). We extend this notion by

defining Σ(A) to be the union of the images of Hom(Ĩn, A⊗ C(T)) in K(A).
While in general Σ(A) is a stronger invariant than Σ(A), for stably unital, stable

finite C*-algebras A such that A⊗C(T) has cancellation of projections, K(A)+ and
Σ∗(A) do determine Σ(A) . More precisely, if x is in K∗(A;Z ⊕ Z/n)+ ⊂ K(A)+,
then x is in Σ(A) if and only if its K∗(A) component x0 is in Σ∗(A). Indeed,

let us suppose that x = [ϕ] for some ∗-homomorphism ϕ : Ĩn → Mr(A ⊗ C(T)).
Then x0 ∈ Σ∗(A) if and only if [ϕ(1)] = [p] for some projection p in A ⊗ C(T). If
A ⊗ C(T) has cancellation of projections then ϕ(1) and p are equivalent via some
partial isometry v ∈ A ⊗ C(T) ⊗ K, hence [ϕ] = [vϕv∗] ∈ Σ(A). It can be shown
that for many approximately subhomogeneous C*-algebras of real rank zero K(A)+

and Σ(A) determine Σ(A), but we don’t need this fact here.

Definition 3.5. The K-invariant of a C*-algebra A is the preordered scaled group
(K(A),K(A)+,Σ(A)) together with the action of the Bockstein operations on K(A).

We define HomΛ(K(A),K(B))+ to consist of all positive morphisms in
HomΛ(K(A),K(B)), andKK(A,B)+ to consist of all those elements α ∈ KK(A,B)
such that Γ(α) ∈ HomΛ(K(A),K(B))+.

Before going to applications it is worth mentioning that are alternative ways to
put a preorder structure on K(A). Let Xn be the space obtained by attaching the
disk to the circle via a degree n selfmap of the circle. Since K∗(A;Z ⊕ Z/n) is
isomorphic to the Grothendieck group of the semigroup

[C, A⊗ C(T)⊗ C(Xn)⊗K]

we can simply define K∗(A;Z⊕Z/n)+ to be the image of the semigroup in K∗(A;Z⊕
Z/n). While in general different from the preorder given in Definition 3.1, this
preorder carries similar information in the case of AH algebras. Naturally, the
definition of the K-invariant in this setting will use the Bockstein operations as
defined in [Sc2].

Recall that an AD algebra is a C*-algebra isomorphic to an inductive limit of
direct sums of matrices over circle algebras and dimension-drop algebras [Ell]. If
A is an AD algebra, then A is stably unital and stably finite, hence then the K-
invariant becomes an ordered, scaled group. The next result shows that K is a
complete invariant for the AD algebras of real rank zero.

Theorem 3.6. Suppose that A and B are AD algebras of real rank zero. Suppose
that there is a graded isomorphism of ordered, scaled groups φ : K(A) → K(B)
that commutes with the Bockstein operations. Then φ lifts to a ∗-isomorphism
ϕ : A→ B.

Proof. Write A = lim−→(An, pm,n) and B = lim−→(Bn, qm,n) where An and Bn are
basic blocks and pm,n, qm,n are the connecting maps. Let pn : An → A and
qn : Bn → B be the obvious mappings of An, Bn into A, B. By the discussion
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following Definition 3.3, φ induces isomorphisms of ordered groups K∗(A)→ K∗(B)
and K0(A;Z ⊕ Z/n) → K0(B;Z ⊕ Z/n). Using the UMCT we can lift φ to a KK
equivalence α ∈ KK(A,B). By Theorem 4.1 of [DL3] it follows now that there
is a ∗-isomorphism ϕ : A → B. It remains to show that Γ([ϕ]) = φ, where [ϕ]
denotes the KK class of ϕ. Let us recall the construction of ϕ. First we produced
a commutative KK diagram

B1 −−−−→ B2 −−−−→ . . . −−−−→ B

α1

x α2

x α

x
A1 −−−−→ A2 −−−−→ . . . −−−−→ A

Several times during the proof we did reindex the two inductive systems. Using
positivity arguments we showed that the αi are induced by ∗-homomorphisms ϕi :
Ai → Bi and as in [Ell] one produces an approximately commutative diagram

B1 −−−−→ B2 −−−−→ . . . −−−−→ B

ϕ1

x ϕ2

x ϕ

x
A1 −−−−→ A2 −−−−→ . . . −−−−→ A

with the isomorphism ϕ being obtained as the pointwise limit of the ϕi taken in a
suitable sense. More precisely,

ϕpn(a) = lim
m→∞

qmϕmpm,n(a)

for all a ∈ An. Therefore

Γ([ϕpn])(x) = lim
m→∞

Γ([qm])Γ([ϕm])Γ([pm,n])(x)

in the discrete topology, for all x ∈ K(An). Since Γ([ϕm]) = Γ(αm) and since the
first diagram is commutative we see that

Γ([ϕ])Γ([pn])(x) = lim
m→∞

Γ([qm]αm)Γ([pm,n])(x) =

= lim
m→∞

Γ(α[pm])Γ([pm,n])(x) = Γ(α)Γ([pn])(x)

for all x ∈ K(An). We conclude that Γ([ϕ]) = Γ(α) = φ since
K(A) = lim−→(K(An),Γ([pm,n])). �

Let A and B be as in Theorem 3.6. Suppose that A and B are unital and pn,
qm are unit-preserving. We show that two ∗-homomorphisms ϕ,ψ : A → B which
induce the same map K(A)→ K(B) are approximately unitarily equivalent. Using
the semiprojectivity of the An, we find sequences of ∗-homomorphisms ϕn, ψn :
An → Bn yielding approximations for ϕ and ψ and such that [ϕn] = [ψn] in

KK(An, B) = HomΛ(K(An),K(B)).

Then using the step four in the Theorem 7.1 of [Ell] one shows that for any finite
subset F ⊂ An and any ε > 0, there exist m, r ≥ n and a unitary u ∈ U(Am) such
that

‖uqm,rϕmpm,n(a)u∗ − qm,rψmpm,n(a)‖ < ε
17



for all a ∈ F . Since
ϕpn(a) = lim

m→∞
qmϕmpm,n(a),

ψpn(a) = lim
m→∞

qmψmpm,n(a),

we conclude that ϕ is approximately unitarily equivalent to ψ.
Conversely, if ϕ is approximately unitarily equivalent to ψ, then by using the

semiprojectivity of In, C0(0, 1) and C, it follows that the two ∗-homomorphisms
induce the same map K(A)→ K(B).

For a unital C*-algebra A let Inn(A) denote the group of approximately-inner
automorphisms of A.

Corollary 3.7. Let A be a unital AD algebra of real rank zero. Then there is a
short exact sequence of groups

1 −→ Inn(A) −→ Aut(A) −→ AutΛ(K(A), [1])+ −→ 1.

This exact sequence is interesting even for simple AD algebras, as we are going
to explain in a moment. We need a preliminary discussion. Following Rørdam
[Rø], we let KL(A,B) and ext(K∗(A),K∗(A)) denote the quotient of KK(A,B)
and respectively Ext(K∗(A),K∗(A)) by Pext(K∗(A),K∗(A)). Using the UCT and
the UMCT we see that the map Γ induces an isomorphism

Γ̂ : KL(A,B)→ HomΛ(K(A),K(B)).

If A = B this is an isomorphism of rings. It follows that we can identify AutΛ(K(A))
with the group of units of the ring KL(A,A). The ring structure of KL(A,A) can
be described using [RS, Thm. 7.10].

KL(A,A) ∼= Hom(K∗(A),K∗(A))⊕ ext(K∗(A),K∗(A)).

The multiplication is induced by the usual action of Hom on Ext which passes to
an action of Hom on ext since the pullback and the pushout of a pure extension are
pure. The product of any two elements in ext is zero. For more details the reader
is refered to [RS], [Rø], [Sc3]. It follows that

AutΛ(K(A)) ∼= Aut(K∗(A))× ext(K∗(A),K∗(A)).

Now suppose that A is a simple, unital, infinite-dimensional AD algebra of real
rank zero. Then ext(K0(A),K1(A)) = 0 since K0(A) is an inductive limit of finitely
generated free abelian groups [Sc3]. An element x ∈ K(A) is positive if and only
if it is zero or its K0 component is positive [DL3]. Therefore it is easily seen that
there is a bijection

AutΛ(K(A), [1])+ ∼= Aut(K0(A), [1])+ ×Aut(K1(A))× ext(K1(A),K0(A)).

The product of two elements is given by:

(α0, α1, x) ◦ (β0, β1, y) = (α0β0, α1β1, (α0)∗(y) + (β1)∗(x)).
18



If for instance A is a simple real rank zero AD algebra with K0(A) = Z[1/3],
K0(A)+ = Z[1/3]+, and K1(A) = Z/2, then Aut(K∗(A), [1])+ = {1} and

ext(K1(A),K0(A)) ∼= K0(A)/2K0(A) ∼= Z/2,

hence

AutΛ(K(A), [1])+ ∼= Z/2.

In particular there exists an automorphism of A that acts identically on K-theory,
but whose KK class is not equal to the class of idA.

3.8. Corollary The classification Theorem 3.6 and Corollary 3.7 are true for
C*-algebras of real rank zero which are inductive limits of C*-algebras of the form

An =
m⊕
i=1

Mk(i)(C(Xi))

where Xi are finite CW complexes with K0(Xi) torsion free and the dimensions of
the spectra of An form a bounded sequence.

Proof. Let A be a C*-algebra as in the statement of the Corollary. By Theorem
2.4 in [D], A is isomorphic to an AD algebra. �
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