
Math. Ann. 297, 671-676 (1993) 

tmaea 
�9 Springer-Verlag 1993 

On the asymptotic homotopy type 
of inductive limit C*-algebras 

Marius Dadarlat 
Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA 

Received May 3, 1993 

Mathematics Subject Classification (1991): 46L80, 46L85 

Let X, Y be compact, connected, metrisable spaces with base points Xo, Yo and let 
denote the compact operators. It is shown that Co(X\xo)|  is asymp- 

totically homotopic (or shape equivalent) to Co(Y~yo) @ Yi r if and only if X and 
Y have isomorphic K-groups. Similar results are obtained for certain inductive 
limits of nuclear C*-algebras. 

Let ~r denote the category whose objects are all the separable C*-algebras and 
whose set of morphisms from A to B, denoted [[A, B]], consists of homotopy 
classes of asymptotic morphisms. The construction of this category is due to 
Connes and Higson [CH], who defined a bivariant homology theory 
E(A, B) = lISA, SB | ~ff]] and have shown how to define the intersection prod- 
uct for arbitrary extensions of separable C*-algebras. If A is K-nuclear then 
E-theory agrees with Kasparov's bivariant K-theory [K]. 

On the other hand the asymptotic homotopy category d appears to be the 
"right" framework for the homotopy theory of separable C*-algebras. This point of 
view is supported by results in [H; CH; D; CHI; CK; D1]. For instance we have 
shown in [D1] that asymptotic homotopy is equivalent to a strong shape theory 
and hence is intimately related to the shape theories of [EK1] and [B] which were 
intended as homotopy theories for noncommutative singular spaces. In particular 
it turned out that two separable C*-algebras are shape equivalent if and only if they 
are asymptotically homotopic i.e. isomorphic in ~r The isomorphism class in sr of 
a separable C*-algebra A is called the asymptotic homotopy type of A. 

In this note we exhibit large classes of (projeetionless) stable, nuclear C*- 
algebras whose asymptotic homotopy type is determined by K-theoretical data 
(Theorem 6). This is done via a suspension isomorphism 

[[A, B |  rl] lisA, SB | 

which, by the main result in [DL] holds whenever [[idA]] is invertible in 
[[A, A | A:]]. We show in the paper that among A for which this isomorphism 
holds true are the inductive limits of direct sums of C*-algebras of the form 



672 M. Dadarlat 

Co(X\,xo, D) where X is a connected polyhedron, Xo a point in X and D is any 
separable C*-algebra. The technique employed in the proof is based on the 
approximation of asymptotic morphisms by homotopies of ,-homomorphisms. 

For C*-algebras A, B let Hom(A, B) denote the space of ,-homomorphisms 
from A to B equipped with the topology of pointwise convergence. The path 
components of Hom (A, B) correspond to the homotopy classes of ,-homomor- 
phisms denoted by [A, B]. Let ~e" denote the C*-algebra of compact operators 
acting on an infinite dimensional separable Hilbert space, rA, B | ~ ]  has a natu, 
ral structure of abelian semigroup with addition induced by the direct sum of 
�9 -homomorphisms and unit given by the class of the null homomorphism (see 
Theorem 3.1 in [R]). 

Lemma 1 Let A, B be C*-algebras and let rio E Hom(A, B | X'). Suppose that [rio] 
is an invertible element of the semigroup [A, B | 3ff ]. Then the map 

F:Hom(A, B| ~ Hom(A,B|  | M2) , 

F(),) = ~ (3 rlo is a homotopy equivalence. 

Proof. Let 710 e Hom(A, B | o~) such that rio @ 71o is homotopic to 0. Let 0o be an 
isomorphism of o~ | M3 onto X and set 0 = ida | 0o. Then the map 

G:Hom(A, B | 1 7 4  --~ Horn(A, B |  

given by G(9) = 0o(~0 ~ 71o) is a homotopy inverse of F. First we compute 

GF (y) = G(y O) rlo ) = 0 o (Y ~9 rio t~ 71o). 

Thus G o F is homotopic to the map 7 ~ 0~ ~ 0  @ 0) which in its turn is 
homotopic to the identity map of Horn(A, B | ~g'), as in the proof of Theorem 3.1 
a) in rR] or Lemma 1.3.1 1 in IJT], where a slightly weaker result is stated. Next we 
compute 

FG(tp) = F(Oo(cp~?1o)) = (0o (q~ ~) 71o)) �9 rio 

= (0 @ idB | or) o (9 �9 ~o �9 rio). 

It follows that F o G is homotopic to the map 

9 v-~ (0 @idB| o (9 @0@0)  = 0(9 @ 0) @0 

which is homotopic to the identity map of Horn(A, B | X" | M2) by the same 
argument as above. [] 

Corollary 2 Let A, B, rio and F be as in Lemraa 1. For any base point 70 e 
Horn(A, B | ~r), F induces an isomorphism of fundamental groups 

F ,  : ~tl (Hom(A, B | :~r), ~o ) -~ nl (Hom(A, B | ~t" | M2 ), yo ~ rio ) . 

Proof. If f : X ~  Y is a homotopy equivalence then for any x o ~ X ,  
f ,  :rq (X, xo) ~ rq (Y , f (xo))  is an isomorphism of groups. [] 

As with ,-homomorphisms, the homotopy classes of asymptotic morphisms 
[[A, B, | . ~ ] ]  form an abelian semigroup. The main technical result of this note is 
the following. 
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Theorem 3 Let A be a C*-algebra that is the inductive limit of a sequence (An) of 
separable C*-algebras. Suppose that [[idA.] is invertible in [[A., A. | oF]for each n. 
Then [['[idA]] is invertible in [[A, A @oF]].  

Proof. For any C*-algebra D there are natural isomorphisms I-D, D |  -~ 
[D | oF, D | oF] and I-[[D, D | ~ f ] ]  - [[-[[O | oF, D | 3f'33 induced by tensor- 
ization with OF. Therefore we may assume that each A. is stable. We are going to 
produce an asymptotic morphism opt :A ~ A such that []-cp,]] + [[lida]] = 0 in 
[rA, A]]. By hypothesis there aref. z Hom(A., A.) such that [-f.] + [[ida.] = 0 in 
[A., A. ]. The idea of the proof is to assemble the .-homomorphismsf~ along with 
properly chosen connecting homotopies into a strong shape map (A.) ~ (A.). Via 
the homotopy inductive limit functor of ID 1] this strong shape map gives rise to an 
inverse of [[[[ida]] in [[A, A]]. Corollary 2 will be used to eliminate certain 
topological obstructions that may appear in the process. 

For stable C*-algebras B, C, D the multiplication I-B, C] x [C, D] ~ [B, D] 
is bilinear. Thus if [[idB] is invertible in [B, B] then I-B, C] is a group. Let 
P. + 1. :An -'+ A.+ x denote the connecting maps in the inductive system (A.). We 
compute 

[[P.+lnf.] + l-p.+l.] = I-p.+ t.]([[f~] + [ida.]) = 0 

[ f .+lP.+a. ]  + [P.+l .]  = ( [ f .+ l ]  + [[idA.+l])[P.+l.] = 0 

We find that 

[ p . + 1 . L ]  = [ [ L + , p . + l . ]  

since [A.,A.+1] is a group. Therefore for any n there is a homotopy h. e 
Hom(A.,A.+l[[0,1]),  h.=(h~,)~to, a] such that h~ and h.l= 
f .+lP.+l . .  

In the terminology of [[D1] the sequences (f.) and (h.) form a strong map of 
inductive systems (f., hn): (A.) -~ (A.). There is a natural notion of homotopy for 
such maps and there is a homotopy inductive limit functor L from the homotopy 
classes of strong maps to the homotopy classes of asymptotic morphisms (see 
section 1 and 2 in [D1]). It is obvious from the definition that the functor L is 
compatible with direct sums i.e. 

Ll-[(f~,, h'n)~(f'n', h~')33 = L[[[[f'., h~,33 + L[[[f'.', h~,'33, 

Thus all we have to prove is that the strong map (A.) ~ (A. | M2) consisting of 
.-homomorphisms 

and homotopies 
f ~ i d a . : A n  ~ A.@M2 

h'.~Bp.+i.:A. "+ A.+1 @M2 

is homotopic to the null strong map (0, 0). Indeed this will imply 

L [ [ f . ,  h .]]  + [[ ida]]  = L [ [ f . ,  h .]]  + L[[idA., P.+x.]] 

= L [ [ f .  ~Bida.,/~, ~BP.+I.]] 

= L f r o ,  033 = 0. 



674 M. Dadarlat 

To conclude the proof we produce a homotopy of strong maps from 
(f~, h . ) ~  (ida., p. + ~.) to (0, 0), This homo topy denoted by (v., #.) is a strong map 
(A.) ~ (A. |  [0, 1]) consisting of .-homomorphisms 

v.:A. ~ An| 1], v. = (vs)ae[0 ,1]  

and two-horn| 

#. :A.  ~ A.+I |  1Ix [0, 1], #. = (/~,'~),,~[o.q 

such that for all z, s ~ I0, 1] and all n: 

/ t [  '0  = ( P . + I .  | 

j.L~, I s 
= V n + l P n + l .  

#o,~ = h~ ~p .+l .  

#~'" = O . 

This is done as follows. For any n we take (v~,)~to, tl to be any continuous path 
in H o m ( A . , A . |  from f~) id . t ,  to 0. We regard #. as a map 
lz.: [0, 1] x [0, 1] ~ Hom(A., A.+I |  whose values on the boundary of the 
unit square are prescribed by the above equations. One can fill the square 
by a continuous function #. if and only if the loop in Hom(A.,A.+~ |  
given by the boundary conditions corresponds to the zero element of 
rq (Horn (A., A. + 1 | M2 ),/z ~ o). Using Corollary -2 for 

F:(Hom(A., A.+I), P~+t.f.) --* (Hom(A., A.+I |  P.+ x.f. �9 P.+ 1.), 

F(y) = ? ~ P . + I . ,  we replace h~ (if necessary) by another path with the same 
endpoints such that the corresponding obstruction vanishes and we can fill the 
square. This completes the proof. [] 

Let A, B be separable C*-algebras. By Theorem 4.3 in EDL] if [ [ ida]]  is 
invertible in [[A, A | aY]] then [[A, B | oF]] = E(A, B). In conjunction with 
Theorem 3 this gives the following. 

Theorem 4 Let A be the inductive limit of a sequence (A.) of separable C*-algebras 
such that [ida.] is invertible in [A., A. | 0 f ]  for each n. Then for any separable 
C*-aloebra B the suspension map 

[[A, B | a t ] ]  --, [[SA, SB | ~ 3 3  = E(A, B) 

is an isomorphism. 

Corollary 5 Let X be a compact, connected, metrisable space and let x| ~ X. For any 
separable C*-aloebra B 

[[Co(X\xo), B | ~ KK(Co(X\xo),  B) , 

Proof. By Theorem 10.1 p. 284 in [ES] (X, x0) can be written as the projective limit 
of a sequence of polyhedra (X., x.). An inspection of the proof shows that if X is 
connected then all X. can be chosen connected. If Yis a connected polyhedron then 
[Co(Y\Yo), Co(Y'\Yo)| is a group by Proposition 3.1.3 in [DN]. Therefore 
we may apply Theorem 4 with A = Co(X\xo) and A. = Co(X.\x.).  For nuclear 
A, E(A, B) is isomorphic to KK (A, B) [CH], [] 
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For spaces X having the homotopy type of a finite, connected CW-complex, 
Corollary 5 was proven in [DL]. It is clear that Corollary 5 does not hold true for 
the two-point space X = (0, 1}. This shows that it is necessary to assume that X is 
connected. 

Theorem 6 Let A, B be C*-algebras that are inductive limits of direct sums of 
C*-algebras of the form Co(X\xo,D) for connected polyhedra X, x| ~ X and 
separable nuclear C*-algebras D. The following are equivalent 

(i) A is KK-equivalent to B. 
(ii) A | ~" is asymptotically homotopic to B @ :cal. 

(iii) A | ~ is shape equivalent to B | :r 
I f  A and B belong to the category of"nice" nuclear C*-al#ebras introduced in 

I-RS] then the above conditions are equivalent to 
(iv) K.(A) ~- K.(B) as Z/2-graded groups. 

Proof. (ii) o (iii) by Theorem 3.9 in [DI] .  

For "nice" A, B (i) o (iv) by ERS]. 

(i) ,~  (ii). Since A, B are nuclear C*-algebras, KK(A, B) is isomorphic to E(A, B) 
by an isomorphism that preserves the multiplicative structure. Therefore A is 
KK-equivalent to B if and only if SA | is asymptotically hem| to 
SB| d .  Since A | :of and B |  ~ satisfy the hypotheses of Theorem 4, this 
happens if and only if A | X" is asymptotically equivalent to B | X'. [] 

Remark 7 Let X, Y be compact, connected, metrisable space. Then Co(X\xo) is 
shape equivalent to Co(Y\yo) if and only if (X, Xo) is shape equivalent to (Y, Yo) 
[MS, EK1, B]. Tens| with the compact operators we get a completely different 
situation. Indeed, by Theorem 6, Co(X\xo)|  is shape equivalent to 
Co (Y\Yo) | X" if and only if K* (X) - K * (Y) as g/2-graded groups. Recall that 
a functor that preserves the inductive limits is called continuous. It was shown in 
[D1] that any hem| continuous functor on the category of separable C*- 
algebras factors through the category M. Hence if X and Y have isomorphic 
K-groups then such a functor cannot distinguish Co(X\xo)| from 
Co(Y\yo) | X'. However these C*-algebras need not be homotopy equivalent. 
Indeed their homotopy type is essentially determined by the connective K-theory 
groups of their spectra rather than by the K-groups. (see [D2; D3]), In particular 
this shows that there are no continuous extensions of connective K-theory to the 
category of separable C*-algebras. 
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