Review Sheet for Mid 1

Math 266
Ralph Kaufmann
Disclaimer: This sheet is neither claimed to be complete nor indicative and may contain typos.

1. Types of equations and techniques

1.1. First order Linear Equations.

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} t}+p(t) y=g(t) \tag{1}
\end{equation*}
$$

Solution:

$$
\begin{align*}
\mu(t) & :=\exp \left(\int p(t) \mathrm{d} t\right) \tag{2}\\
y(t) & =\frac{1}{\mu(t)}\left(\int \mu(t) g(t) \mathrm{d} t+c\right) \tag{3}
\end{align*}
$$

The initial condition determines c. E.g. $y(0)=y_{0}$.
1.2. Separable Equations.

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=g(x) / h(y) \tag{4}
\end{equation*}
$$

Solution:

$$
\begin{align*}
h(y) \mathrm{d} y & =g(x) \mathrm{d} x \tag{5}\\
\int h(y) d y & =\int g(x) \mathrm{d} x+c \tag{6}
\end{align*}
$$

Get implicit solution: $\int h(y) d y-\int g(x) d x=c$.

1.3. Exact Equations.

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{7}
\end{equation*}
$$

Criterion:

$$
\begin{equation*}
M_{y}=N_{x} \tag{8}
\end{equation*}
$$

Conditions: M, N, M_{y}, N_{x} continuous on simply connected region (e.g. rectangle).

Solution:

$$
\begin{equation*}
Q(x, y)=\int_{x_{0}}^{x} M(s, y) \mathrm{d} s, \quad \text { defines } Q \text { and solves } Q_{x}=M \tag{9}
\end{equation*}
$$

$$
\psi(x, y)=Q(x, y)+h(y), \quad \text { defines } \psi \text { in terms of } Q \text { and } h
$$

$$
\psi_{y}=Q_{y}+h^{\prime}(y)=N_{x}, \quad \text { gives differential eq. for } h
$$

$$
h(y)=\int Q_{y}-N_{x} \mathrm{~d} y, \quad \text { defines } h
$$

$$
\psi=c, \quad \text { gives the answer }
$$

Get implicit solution.
1.4. Integrating factors. Multiply equation (7) by $\mu(x, y)$

$$
\begin{equation*}
\mu(x, y) M(x, y) \mathrm{d} x+\mu(x, y) N(x, y) \mathrm{d} y=0 \tag{14}
\end{equation*}
$$

Criterion:

$$
\begin{equation*}
(\mu M)_{y}=(\mu N)_{x} \tag{15}
\end{equation*}
$$

Special case
$\mu(x, y)=\mu(x)$ depends only on x. Test: $\left(M_{y}-N_{x}\right) / N$ only depends on x.
Solution:
(1)

$$
\begin{equation*}
\frac{\mathrm{d} \mu}{\mathrm{~d} x}=\frac{M_{y}-N_{x}}{N} \mu \tag{16}
\end{equation*}
$$

gives ODE for μ. Solve!
(2) With $\tilde{M}(x, y):=\mu(x) M(x, y), \tilde{N}(x, y)=\mu(x) N(x, y)$, get new exact equation:

$$
\begin{equation*}
\tilde{M}(x, y) \mathrm{d} x+\tilde{N}(x, y) \mathrm{d} y=0 \tag{17}
\end{equation*}
$$

Use algorithm above for exact equations.

2. Qualitative behavior of autonomous equations

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(y) \tag{18}
\end{equation*}
$$

2.1. Phase line.

(1) Find constant/equilibrium solutions: $y: f(y)=0$.
(2) Draw vertical line and mark off constant solutions.
(3) In each interval between constant solutions determine the sign of $f(y)$ and draw arrow (up if $f(y)>0$, down if $f(y)<0$). This means that the graph of y is going up or down for values of y in the respective interval.
(4) Constant solutions are:
stable if both arrows point towards
unstable if both arrows point away
semi-stable if one arrow points toward and one away
from the particular point of constant solution
2.2. Second order behavior of solutions. Need to consider $f(y)$ and $f^{\prime}(y)$ for behavior of graph of $y(x)$

$$
\begin{array}{ll}
f(y) f^{\prime}(y)>0 & \text { convex } \\
f(y) f^{\prime}(y)<0 & \text { concave } \\
f(y) f^{\prime}(y)=0 & \text { may be an inflection point. }
\end{array}
$$

Notice $f(y)=0$ means constant (equilibrium) solution so $f^{\prime}(y)=0$ are the interesting points of inflection.

3. Setting up equations

3.1. Growth. Determine population P as a function of time given r rate of reproduction and k "kill" rate.

$$
\begin{equation*}
\frac{\mathrm{d} P}{\mathrm{~d} t}=r P-k \tag{19}
\end{equation*}
$$

Special case: Rate r given indirectly: e.g. Population increases by factor s after each time interval if system is unperturbed.

Solution: unperturbed equation $\frac{\mathrm{d} P}{\mathrm{~d} t}=r P$ has solution $P(t)=P_{0} e^{r t}$ so $s=$ $P(t+1) / P(t)=e^{r}$ and hence $r=\ln (s)$.
3.2. Flow. Amount of substance Q in a liquid system with liquid inflow rate $r_{i n}$ and outflow rate $r_{\text {out }}$. Let $V(t)$ be the volume of system and C the inflow concentration.

$$
\begin{align*}
\frac{\mathrm{d} Q}{\mathrm{~d} t} & =\text { substance in rate }- \text { substance out rate } \tag{20}\\
& =r_{i n} C-\frac{r_{o u t}}{V(t)} Q \tag{21}
\end{align*}
$$

Special cases:
(1) $V(t)=V_{0}$ fixed $r_{\text {in }}=r_{\text {out }}$
(2) V_{0} initial volume: $V(t)=V_{0}+\left(r_{\text {in }}-r_{\text {out }}\right) t$

4. Theorems on existence and continuity

4.1. Linear first order equations.

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} t}+p(t) y=g(t) \tag{22}
\end{equation*}
$$

If $p(t)$ and $q(t)$ are continuous on I then solutions exist, are unique and continuous on I.

Discontinuous or singular points can only appear at discontinuities or singular points of $p(t)$ and $g(t)$. You do not have to solve the equation to determine the maximum intervals of definition and continuity of the solution given an initial time t_{0}.

4.2. Non-linear first order.

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} t}=f(t, y) \tag{23}
\end{equation*}
$$

If f and $\partial f / \partial y$ are continuous on rectangle R then solutions with initial conditions $\left(t_{0}, y_{0}\right)$ exist and are unique in an interval J, s.t. $t_{0} \in J$ and all points $\left(t, y_{0}\right) \in R$ for $t \in J$.

Notice J may not be maximal, i.e. it does not have to include all points t with $\left(t, y_{0}\right) \in R$. You have to solve the equation to know the maximal domains of continuity and definition of the solution given an initial point $\left(t_{0}, y_{0}\right)$ often given as $y\left(t_{0}\right)=y_{0}$. The important data is t_{0}.

At points of discontinuity of $\partial f / \partial y$ with f continuous, existence is guaranteed, but more that one solution can exist.

