
Unless otherwise stated, you may use anything in Munkres’s book—but be care-
ful to make it clear what fact you are using.

When you use a set theoretic fact that isn’t obvious, be careful to give a clear
explanation.

1. Let X be a Hausdorff space and let A be a compact subset of X. Prove from the
definitions that A is closed.

2. Let X be a Hausdorff space and let A and B be disjoint compact subsets of X. Prove
that there are open sets U and V such that U and V are disjoint, A ⊂ U and B ⊂ V .

3. Show that if Y is compact, then the projection map X × Y → X is a closed map.

4. Let X be a compact space and suppose we are given a nested sequence of subsets

C1 ⊃ C2 ⊃ · · ·

with all Ci closed. Let U be an open set containing ∩Ci.

Prove that there is an i0 with Ci0 ⊂ U .

5. Let X be a compact space, and suppose there is a finite family of continuous functions
fi : X → R, i = 1, . . . , n, with the following property: given x 6= y in X there is an i
such that fi(x) 6= fi(y). Prove that X is homeomorphic to a subspace of Rn.

6. Let X be a compact metric space and let U be a covering of X by open sets.

Prove that there is an ε > 0 such that, for each set S ⊂ X with diameter < ε, there
is a U ∈ U with S ⊂ U . (This fact is known as the “Lebesgue number lemma.”)

7. Let S1 denote the circle
{x2 + y2 = 1}

in R2. Define an equivalence relation on S1 by

(x, y) ∼ (x′, y′) ⇔ (x, y) = (x′, y′) or (x, y) = (−x′,−y′)

(you do not have to prove that this is an equivalence relation). Prove that the quotient
space S1/ ∼ is homeomorphic to S1.

One way to do this is by using complex numbers.

8. Let X be a compact Hausdorff space and let f : X → X be a continuous function.
Suppose f is 1-1. Prove that there is a nonempty closed set A with f(A) = A.

9. Let ∼ be the equivalence relation on R2 defined by (x, y) ∼ (x′, y′) if and only if there
is a nonzero t with (x, y) = (tx′, ty′). Prove that the quotient space R2/∼ is compact
but not Hausdorff.



10. Let X be a locally compact Hausdorff space. Explain how to construct the one-point
compactification of X, and prove that the space you construct is really compact (you
do not have to prove anything else for this problem).

11. Show that if
∞∏

n=1

Xn is locally compact (and each Xn is nonempty), then each Xn is

locally compact and Xn is compact for all but finitely many n.

12. Let X be a locally compact Hausdorff space, let Y be any space, and let the function
space C(X, Y ) have the compact-open topology.

Prove that the map
e : X × C(X, Y ) → Y

defined by the equation
e(x, f) = f(x)

is continuous.

13. Let I be the unit interval, and let Y be a path-connected space. Prove that any two
maps from I to Y are homotopic.

14. Let X be a topological space and f : [0, 1] → X any continuous function. Define f̄ by
f̄(t) = f(1− t). Prove that f ∗ f̄ is path-homotopic to the constant path at f(0).

15. Let X be a topological space and let x0, x1 ∈ X. Recall that any path α from x0 to x1

gives a homomorphism α̂ from π1(X, x0) to π1(X, x1) (you do not have to prove this).

Suppose that for every pair of paths α and β from x0 to x1 the homomorphisms α̂ and
β̂ are the same. Prove that π1(X, x0) is abelian.

16. Let p : E → B be a covering map with B connected. Suppose that p−1(b0) is finite for
some b0 ∈ B. Prove that, for every b ∈ B, p−1(b) has the same number of elements as
p−1(b0).

17. Let B be a Hausdorff space.

Let p : E → B be a covering map.

Prove that E is Hausdorff.

18. Let p : E → B be a covering map. Prove that p takes open sets to open sets.

19. Let X be a topological space and let f : X → X be a homeomorphism for which f ◦ f
is the identity map.

Suppose also that each x ∈ X has an open neighborhood Vx for which Vx ∩ f(Vx) is
empty.

Define an equivalence relation ∼ on X by: x ∼ y if and only if x = y or f(x) = y.
(You do not have to prove that this is an equivalence relation; this is the only place
where the assumption that f ◦ f is the identity is used).



(a) Prove that the quotient map q : X → X/∼ takes open sets to open sets.

(b) Prove that q is a covering map. (You may use part (a) even if you didn’t prove
it.)

20. Let p : E → B be a covering map with E path-connected. Let p(e0) = b0.

(a) Give the definition of the standard map φ : π1(B, b0) → p−1(b0) constructed in
Munkres (you do NOT have to prove that this is well-defined).

(b) Suppose that α and β are two elements of π1(B, b0) with φ(α) = φ(β). Prove that
there is an element γ of π1(E, e0) with β = p∗(γ) · α.

21. Let X and Y be topological spaces and let f : X → Y be a continuous function. Let
x0 ∈ X and let y0 = f(x0).

(a) Give the definition of the function f∗ : π1(X, x0) → π1(Y, y0), including the proof
that it is well-defined.

(b) Prove that if f is a covering map then f∗ is one-to-one.

22. Let X be a path-connected space.

Let x0 and x1 be two different points in X.

Suppose that every path from x0 to x1 is path-homotopic to every other path from x0

to x1.

Prove that X is simply-connected.

23. Let X and Y be topological spaces, let x0 ∈ X, y0 ∈ Y , and let f : X → Y be a
continuous function which takes x0 to y0.

Is the following statement true? If f is 1-1 then f∗ : π1(X, x0) → π1(Y, y0) is 1-1. Prove
or give a counterexample (and if you give a counterexample justify it). You may use
anything in Munkres’s book.

24. Let X and Y be topological spaces and let f : X → Y be a continuous function. Let
x0 ∈ X and let y0 = f(x0).

Find an example in which f is onto but f∗ : π1(X, x0) → π1(Y, y0) is not onto. Prove
that your example really has this property. You may use any fact from Munkres.

25. Let D2 be the unit disk {x2 + y2 ≤ 1 } and let S1 be the unit circle {x2 + y2 = 1 }.
Prove that S1 is not a retract of D2 (that is, prove that there is no continuous function
f : D2 → S1 whose restriction to S1 is the identity function). You may use anything
in Munkres for this.

26. Let X and Y be topological spaces and let x ∈ X, y ∈ Y .

Prove that there is a 1-1 correspondence between

π1(X × Y, (x, y))



and
π1(X, x)× π1(Y, y).

(You do not have to show that the 1-1 correspondence is compatible with the group
structures.)

27. Let p : Y → X be a covering map, let y ∈ Y , and let x = p(y).

Let σ be a loop beginning and ending at x and let [σ] be the corresponding element of
π1(X, x).

Let σ̃ be the unique lifting of σ to a path starting at y.

Prove that if [σ] ∈ p∗π1(Y, y) then σ̃ ends at y.

28. Let p : R → S1 be the usual covering map (specifically, p(t) = (cos 2πt, sin 2πt)). Let
b0 ∈ S1 be the point (1, 0). Recall that the standard map

φ : π1(S
1, b0) → Z

is defined by φ([f ]) = f̃(1), where f̃ is a lifting of f with f̃(0) = 0.

(a) Prove that φ is 1-1.

(b) Prove that φ is a group homomorphism.

29. Let S2 be the 2-sphere, that is, the following subspace of R3:

{ (x, y, z) ∈ R3 |x2 + y2 + z2 = 1 }.

Let x0 be the point (0, 0, 1) of S2.

Use the Seifert-van Kampen theorem to prove that π1(S
2, x0) is the trivial group.

You may use either of the two versions of the Seifert-van Kampen theorem given in
Munkres’s book. You will not get credit for any other method.

30. Let X be the quotient space obtained from an 8-sided polygonal region P by pasting
its edges together according to the labelling scheme aabbcdc−1d−1.

i) Calculate H1(X). (You may use any fact in Munkres, but be sure to be clear about
what you’re using.)

ii) Assuming X is homeomorphic to one of the standard surfaces in the classification
theorem, which surface is it?


