Unless otherwise stated, you may use anything in Munkres's book-but be careful to make it clear what fact you are using.

When you use a set theoretic fact that isn't obvious, be careful to give a clear explanation.

1. Let X be a Hausdorff space and let A be a compact subset of X. Prove from the definitions that A is closed.
2. Let X be a Hausdorff space and let A and B be disjoint compact subsets of X. Prove that there are open sets U and V such that U and V are disjoint, $A \subset U$ and $B \subset V$.
3. Show that if Y is compact, then the projection map $X \times Y \rightarrow X$ is a closed map.
4. Let X be a compact space and suppose we are given a nested sequence of subsets

$$
C_{1} \supset C_{2} \supset \cdots
$$

with all C_{i} closed. Let U be an open set containing $\cap C_{i}$.
Prove that there is an i_{0} with $C_{i_{0}} \subset U$.
5. Let X be a compact space, and suppose there is a finite family of continuous functions $f_{i}: X \rightarrow \mathbb{R}, i=1, \ldots, n$, with the following property: given $x \neq y$ in X there is an i such that $f_{i}(x) \neq f_{i}(y)$. Prove that X is homeomorphic to a subspace of \mathbb{R}^{n}.
6. Let X be a compact metric space and let \mathcal{U} be a covering of X by open sets.

Prove that there is an $\epsilon>0$ such that, for each set $S \subset X$ with diameter $<\epsilon$, there is a $U \in \mathcal{U}$ with $S \subset U$. (This fact is known as the "Lebesgue number lemma.")
7. Let S^{1} denote the circle

$$
\left\{x^{2}+y^{2}=1\right\}
$$

in \mathbb{R}^{2}. Define an equivalence relation on S^{1} by

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow(x, y)=\left(x^{\prime}, y^{\prime}\right) \text { or }(x, y)=\left(-x^{\prime},-y^{\prime}\right)
$$

(you do not have to prove that this is an equivalence relation). Prove that the quotient space S^{1} / \sim is homeomorphic to S^{1}.
One way to do this is by using complex numbers.
8. Let X be a compact Hausdorff space and let $f: X \rightarrow X$ be a continuous function. Suppose f is 1-1. Prove that there is a nonempty closed set A with $f(A)=A$.
9. Let \sim be the equivalence relation on \mathbb{R}^{2} defined by $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if and only if there is a nonzero t with $(x, y)=\left(t x^{\prime}, t y^{\prime}\right)$. Prove that the quotient space \mathbb{R}^{2} / \sim is compact but not Hausdorff.
10. Let X be a locally compact Hausdorff space. Explain how to construct the one-point compactification of X, and prove that the space you construct is really compact (you do not have to prove anything else for this problem).
11. Show that if $\prod_{n=1}^{\infty} X_{n}$ is locally compact (and each X_{n} is nonempty), then each X_{n} is locally compact and X_{n} is compact for all but finitely many n.
12. Let X be a locally compact Hausdorff space, let Y be any space, and let the function space $\mathcal{C}(X, Y)$ have the compact-open topology.

Prove that the map

$$
e: X \times \mathcal{C}(X, Y) \rightarrow Y
$$

defined by the equation

$$
e(x, f)=f(x)
$$

is continuous.
13. Let I be the unit interval, and let Y be a path-connected space. Prove that any two maps from I to Y are homotopic.
14. Let X be a topological space and $f:[0,1] \rightarrow X$ any continuous function. Define \bar{f} by $\bar{f}(t)=f(1-t)$. Prove that $f * \bar{f}$ is path-homotopic to the constant path at $f(0)$.
15. Let X be a topological space and let $x_{0}, x_{1} \in X$. Recall that any path α from x_{0} to x_{1} gives a homomorphism $\hat{\alpha}$ from $\pi_{1}\left(X, x_{0}\right)$ to $\pi_{1}\left(X, x_{1}\right)$ (you do not have to prove this). Suppose that for every pair of paths α and β from x_{0} to x_{1} the homomorphisms $\hat{\alpha}$ and $\hat{\beta}$ are the same. Prove that $\pi_{1}\left(X, x_{0}\right)$ is abelian.
16. Let $p: E \rightarrow B$ be a covering map with B connected. Suppose that $p^{-1}\left(b_{0}\right)$ is finite for some $b_{0} \in B$. Prove that, for every $b \in B, p^{-1}(b)$ has the same number of elements as $p^{-1}\left(b_{0}\right)$.
17. Let B be a Hausdorff space.

Let $p: E \rightarrow B$ be a covering map.
Prove that E is Hausdorff.
18. Let $p: E \rightarrow B$ be a covering map. Prove that p takes open sets to open sets.
19. Let X be a topological space and let $f: X \rightarrow X$ be a homeomorphism for which $f \circ f$ is the identity map.
Suppose also that each $x \in X$ has an open neighborhood V_{x} for which $V_{x} \cap f\left(V_{x}\right)$ is empty.
Define an equivalence relation \sim on X by: $x \sim y$ if and only if $x=y$ or $f(x)=y$. (You do not have to prove that this is an equivalence relation; this is the only place where the assumption that $f \circ f$ is the identity is used).
(a) Prove that the quotient map $q: X \rightarrow X / \sim$ takes open sets to open sets.
(b) Prove that q is a covering map. (You may use part (a) even if you didn't prove it.)
20. Let $p: E \rightarrow B$ be a covering map with E path-connected. Let $p\left(e_{0}\right)=b_{0}$.
(a) Give the definition of the standard map $\phi: \pi_{1}\left(B, b_{0}\right) \rightarrow p^{-1}\left(b_{0}\right)$ constructed in Munkres (you do NOT have to prove that this is well-defined).
(b) Suppose that α and β are two elements of $\pi_{1}\left(B, b_{0}\right)$ with $\phi(\alpha)=\phi(\beta)$. Prove that there is an element γ of $\pi_{1}\left(E, e_{0}\right)$ with $\beta=p_{*}(\gamma) \cdot \alpha$.
21. Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a continuous function. Let $x_{0} \in X$ and let $y_{0}=f\left(x_{0}\right)$.
(a) Give the definition of the function $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$, including the proof that it is well-defined.
(b) Prove that if f is a covering map then f_{*} is one-to-one.
22. Let X be a path-connected space.

Let x_{0} and x_{1} be two different points in X.
Suppose that every path from x_{0} to x_{1} is path-homotopic to every other path from x_{0} to x_{1}.
Prove that X is simply-connected.
23. Let X and Y be topological spaces, let $x_{0} \in X, y_{0} \in Y$, and let $f: X \rightarrow Y$ be a continuous function which takes x_{0} to y_{0}.
Is the following statement true? If f is 1-1 then $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ is 1-1. Prove or give a counterexample (and if you give a counterexample justify it). You may use anything in Munkres's book.
24. Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a continuous function. Let $x_{0} \in X$ and let $y_{0}=f\left(x_{0}\right)$.
Find an example in which f is onto but $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ is not onto. Prove that your example really has this property. You may use any fact from Munkres.
25. Let D^{2} be the unit disk $\left\{x^{2}+y^{2} \leq 1\right\}$ and let S^{1} be the unit circle $\left\{x^{2}+y^{2}=1\right\}$. Prove that S^{1} is not a retract of D^{2} (that is, prove that there is no continuous function $f: D^{2} \rightarrow S^{1}$ whose restriction to S^{1} is the identity function). You may use anything in Munkres for this.
26. Let X and Y be topological spaces and let $x \in X, y \in Y$.

Prove that there is a $1-1$ correspondence between

$$
\pi_{1}(X \times Y,(x, y))
$$

and

$$
\pi_{1}(X, x) \times \pi_{1}(Y, y)
$$

(You do not have to show that the 1-1 correspondence is compatible with the group structures.)
27. Let $p: Y \rightarrow X$ be a covering map, let $y \in Y$, and let $x=p(y)$.

Let σ be a loop beginning and ending at x and let $[\sigma]$ be the corresponding element of $\pi_{1}(X, x)$.
Let $\tilde{\sigma}$ be the unique lifting of σ to a path starting at y.
Prove that if $[\sigma] \in p_{*} \pi_{1}(Y, y)$ then $\tilde{\sigma}$ ends at y.
28. Let $p: \mathbb{R} \rightarrow S^{1}$ be the usual covering map (specifically, $p(t)=(\cos 2 \pi t, \sin 2 \pi t)$). Let $b_{0} \in S^{1}$ be the point $(1,0)$. Recall that the standard map

$$
\phi: \pi_{1}\left(S^{1}, b_{0}\right) \rightarrow \mathbb{Z}
$$

is defined by $\phi([f])=\tilde{f}(1)$, where \tilde{f} is a lifting of f with $\tilde{f}(0)=0$.
(a) Prove that ϕ is 1-1.
(b) Prove that ϕ is a group homomorphism.

29 . Let S^{2} be the 2-sphere, that is, the following subspace of \mathbb{R}^{3} :

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\} .
$$

Let x_{0} be the point $(0,0,1)$ of S^{2}.
Use the Seifert-van Kampen theorem to prove that $\pi_{1}\left(S^{2}, x_{0}\right)$ is the trivial group. You may use either of the two versions of the Seifert-van Kampen theorem given in Munkres's book. You will not get credit for any other method.
30. Let X be the quotient space obtained from an 8 -sided polygonal region P by pasting its edges together according to the labelling scheme aabbcdc $c^{-1} d^{-1}$.
i) Calculate $H_{1}(X)$. (You may use any fact in Munkres, but be sure to be clear about what you're using.)
ii) Assuming X is homeomorphic to one of the standard surfaces in the classification theorem, which surface is it?

