Unless otherwise stated, you may use anything in Munkres’s book—but be care-
ful to make it clear what fact you are using.

When you use a set theoretic fact that isn’t obvious, be careful to give a clear
explanation.

1. Let X be a Hausdorff space and let A be a compact subset of X. Prove from the
definitions that A is closed.

2. Let X be a Hausdorff space and let A and B be disjoint compact subsets of X. Prove
that there are open sets U and V' such that U and V' are disjoint, A C U and B C V.

3. Show that if Y is compact, then the projection map X x Y — X is a closed map.

4. Let X be a compact space and suppose we are given a nested sequence of subsets
CiDCyD -

with all C; closed. Let U be an open set containing NC;.
Prove that there is an iy with C;, C U.

5. Let X be a compact space, and suppose there is a finite family of continuous functions
fi: X =R, 1=1,...,n, with the following property: given x # y in X there is an ¢
such that f;(x) # fi(y). Prove that X is homeomorphic to a subspace of R™.

6. Let X be a compact metric space and let U be a covering of X by open sets.

Prove that there is an € > 0 such that, for each set S C X with diameter < ¢, there
isa U €U with § C U. (This fact is known as the “Lebesgue number lemma.”)

7. Let S* denote the circle

{2 +y* =1}

in R2. Define an equivalence relation on S! by

(,y) ~ (2"y) & (z,y) = (@' y) or (z,y) = (=2, =)
(you do not have to prove that this is an equivalence relation). Prove that the quotient
space S/ ~ is homeomorphic to S*.
One way to do this is by using complex numbers.

8. Let X be a compact Hausdorff space and let f : X — X be a continuous function.
Suppose f is 1-1. Prove that there is a nonempty closed set A with f(A) = A.

9. Let ~ be the equivalence relation on R? defined by (z,y) ~ (2/,y') if and only if there
is a nonzero t with (z,y) = (t2/,ty’). Prove that the quotient space R?/~ is compact
but not Hausdorff.
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Let X be a locally compact Hausdorff space. Explain how to construct the one-point
compactification of X, and prove that the space you construct is really compact (you
do not have to prove anything else for this problem).

Show that if H X, is locally compact (and each X,, is nonempty), then each X,, is
n=1
locally compact and X,, is compact for all but finitely many n.

Let X be a locally compact Hausdorff space, let Y be any space, and let the function
space C(X,Y’) have the compact-open topology.
Prove that the map
e: X xCX,)Y)—-Y
defined by the equation
e(z, f) = f(x)
is continuous.

Let I be the unit interval, and let Y be a path-connected space. Prove that any two
maps from [ to Y are homotopic.

Let X be a topological space and f : [0,1] — X any continuous function. Define f by

f(t) = f(1 —t). Prove that f x f is path-homotopic to the constant path at f(0).

Let X be a topological space and let xy, z; € X. Recall that any path « from z to z;
gives a homomorphism & from (X, zg) to m (X, z1) (you do not have to prove this).
Suppose that for every pair of paths o and (3 from z¢ to 21 the homomorphisms & and

(3 are the same. Prove that m; (X, z¢) is abelian.

Let p: E — B be a covering map with B connected. Suppose that p~!(by) is finite for
some by € B. Prove that, for every b € B, p~!(b) has the same number of elements as

P~ (bo)-

Let B be a Hausdorff space.

Let p: E — B be a covering map.
Prove that E is Hausdorff.

Let p: E — B be a covering map. Prove that p takes open sets to open sets.

Let X be a topological space and let f : X — X be a homeomorphism for which f o f
is the identity map.

Suppose also that each € X has an open neighborhood V, for which V, N f(V,) is
empty.

Define an equivalence relation ~ on X by: x ~ y if and only if z = y or f(z) = v.
(You do not have to prove that this is an equivalence relation; this is the only place
where the assumption that f o f is the identity is used).
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a) Prove that the quotient map ¢ : X — X/~ takes open sets to open sets.

(
(b) Prove that ¢ is a covering map. (You may use part (a) even if you didn’t prove
it.)

Let p: E — B be a covering map with E path-connected. Let p(eq) = by.
(a) Give the definition of the standard map ¢ : m(B,by) — p~'(by) constructed in
Munkres (you do NOT have to prove that this is well-defined).
(b) Suppose that a and [ are two elements of 71 (B, by) with ¢(a)) = ¢(3). Prove that
there is an element v of w1 (FE, eg) with 5 = p.(7) - a.

Let X and Y be topological spaces and let f : X — Y be a continuous function. Let
xo € X and let yo = f(x0).

(a) Give the definition of the function f, : m (X, z¢) — m1 (Y, 40), including the proof
that it is well-defined.

(b) Prove that if f is a covering map then f, is one-to-one.

Let X be a path-connected space.
Let xq and x; be two different points in X.

Suppose that every path from zy to x; is path-homotopic to every other path from z
to xI1.

Prove that X is simply-connected.
Let X and Y be topological spaces, let xg € X, yp € Y, and let f : X — Y be a
continuous function which takes zq to yq.

Is the following statement true? If f is 1-1 then f. : m (X, z9) — m (Y, yo) is 1-1. Prove
or give a counterexample (and if you give a counterexample justify it). You may use
anything in Munkres’s book.

Let X and Y be topological spaces and let f : X — Y be a continuous function. Let
xo € X and let yo = f(xo).

Find an example in which f is onto but f, : m1(X,z9) — m1(Y, 4o) is not onto. Prove
that your example really has this property. You may use any fact from Munkres.

Let D? be the unit disk {2? + y?> < 1} and let S’ be the unit circle {z? + y> = 1}.
Prove that S is not a retract of D? (that is, prove that there is no continuous function
f: D* — S' whose restriction to S* is the identity function). You may use anything
in Munkres for this.

Let X and Y be topological spaces and let x € X, y € Y.

Prove that there is a 1-1 correspondence between

71—1()( XY, (l’,y))
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and
m (X, z) x m (Y, y).

(You do not have to show that the 1-1 correspondence is compatible with the group
structures.)
Let p: Y — X be a covering map, let y € Y, and let x = p(y).

Let o be a loop beginning and ending at x and let [0] be the corresponding element of
(X, ).

Let ¢ be the unique lifting of o to a path starting at y.
Prove that if [o] € p.m(Y,y) then ¢ ends at y.

Let p : R — S! be the usual covering map (specifically, p(t) = (cos 2wt sin 2t)). Let
by € S be the point (1,0). Recall that the standard map

¢ m (St by) — Z

is defined by ¢([f]) = f(1), where f is a lifting of f with f(0) = 0.
(a) Prove that ¢ is 1-1.

(b) Prove that ¢ is a group homomorphism.

Let S? be the 2-sphere, that is, the following subspace of R3:
{(z,y,2) eR¥ 2 +y" + 2" =1}

Let xo be the point (0,0,1) of S2.

Use the Seifert-van Kampen theorem to prove that m(S? o) is the trivial group.
You may use either of the two versions of the Seifert-van Kampen theorem given in
Munkres’s book. You will not get credit for any other method.

Let X be the quotient space obtained from an 8-sided polygonal region P by pasting
its edges together according to the labelling scheme aabbede=td=!.

i) Calculate H;(X). (You may use any fact in Munkres, but be sure to be clear about
what you're using.)

ii) Assuming X is homeomorphic to one of the standard surfaces in the classification
theorem, which surface is it?



