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Abstract. We prove new bounds on the Betti numbers of real varieties and
semi-algebraic sets that have a more refined dependence on the degrees of

the polynomials defining them than results known before. Our method also

unifies several different types of results under a single framework, such as
bounds depending on the total degrees, on multi-degrees, as well as in the

case of quadratic and partially quadratic polynomials. The bounds we present

in the case of partially quadratic polynomials offer a significant improvement
over what was previously known.

We give several applications of our results, including a generalization of the

polynomial partitioning theorem due to Guth and Katz, which has become a
very important tool in discrete geometry in the multi-degree setting, and give

an application of this result proving a theorem that interpolates between two
different kinds of partitions of the plane.

Finally, we extend a result of Basu and Barone on bounding the number of

connected components of real varieties defined by two polynomials of differing
degrees to the sum of all Betti numbers, thus making progress on an open

problem posed in their paper – on extending their bounds on the number of

connected components to higher Betti numbers as well.

Contents

1. Introduction 2
1.1. Background 2
1.2. Prior Results 4
2. Main Results 9
2.1. Betti numbers of sets defined by polynomials of bounded total degree 9
2.2. Betti numbers of sets defined by polynomials of bounded multi-degrees 11
2.3. Betti numbers of semi-algebraic sets defined by polynomials with

different multi-degrees 12
2.4. Betti numbers of sets defined by quadratic and partially quadratic

polynomials 13
2.5. Betti numbers of semi-algebraic sets defined by partially quadratic

polynomials with several blocks of variables 15
3. Preliminaries 16

Date: July 28, 2015.

1991 Mathematics Subject Classification. Primary 14P10, 14P25; Secondary 68W30.
Key words and phrases. Multidegree bounds, Betti numbers, Smith inequalities, semi-algebraic

sets, polynomial partitioning, incidence problems.
Basu was partially supported by NSF grants CCF-1319080 and DMS-1161629. Rizzie was

partially supported by NSF grant CCF-1319080.

1



2 SAUGATA BASU AND ANTHONY RIZZIE

3.1. Real algebraic preliminaries 16
3.2. Topological preliminaries 16
3.3. Mixed volume 18
3.4. Topology of complex varieties 19
3.5. Some applications of Khovanskĭı’s theorem 21
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1. Introduction

Throughout this paper R will denote a fixed real closed field and C the algebraic
closure of R. For any semi-algebraic subset S ⊂ Rk we denote by bi(S,Z2) the
dimension of the i-th homology group, Hi(S,Z2), and by b(S,F) =

∑
i≥0 bi(S,F)

(we refer the reader to [17, Chapter 6] for definition of homology groups of semi-
algebraic sets defined over arbitrary real closed fields).

Remark 1. Notice that by the universal coefficient formula, bi(S,Z2) ≥ bi(S) (where
bi(S) denotes the rank of the i-th homology group of S with integer coefficients),
and thus an upper bound on bi(S,Z2) is automatically an upper bound on bi(S).

1.1. Background. The problem of bounding the Betti numbers of real algebraic
varieties as well as semi-algebraic subsets of Rk, in terms of the format of their
defining formulas, has been an active topic of investigation for a long time start-
ing from the first results bounding the Betti numbers of real varieties proved by
Olĕınik and Petrovskĭı [47], Thom [53] and Milnor [44]. Later these results were
extended to more general semi-algebraic sets [12, 27, 29]. These results were based
on Morse-theoretic arguments involving bounding the number of critical points of
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a Morse function on a bounded, non-singular real algebraic hypersurface, using
Bezout’s theorem, arguments involving infinitesimal perturbations, and use of in-
equalities coming from the Mayer-Vietoris exact sequence. The bounds were singly
exponential in the dimension of the ambient space and polynomial in the number
of polynomials used in the definition of the given semi-algebraic set, and also in the
maximum of the total degrees of these polynomials (see Theorems 1, 2, 3, below for
precise statements).

In another direction, bounds which are polynomial in the dimension were proved
for a restricted class of semi-algebraic sets. Barvinok [10] proved a polynomial
bound on the Betti numbers of semi-algebraic sets (see Theorem 4 for a precise
statement), which were sharpened in [15, 40], and also extended to a more general
setting in [19] (see Theorem 8 for a precise statement). These results were proved
using different techniques than a simple counting of critical points. A spectral
sequence argument first proposed by Agrachev [6, 5, 4] plays an important role in
some of the latter results.

Much more recently, because of certain new techniques developed in incidence
geometry, more refined bounds than those mentioned above were needed. In par-
ticular, it was not enough to prove bounds which depended on the maximum of
the degrees of the polynomials, and it was necessary to prove bounds with a more
refined dependence on the sequence of degrees. Nearly optimal bounds on the zero-
th Betti numbers (i.e. the number of connected components) of semi-algebraic sets
was proved later in [9, 8] which has proved useful in applications. However, the
techniques used to prove the results in [9, 8] are not sufficient for bounding the
higher Betti numbers. Extending the bounds proved in [9, 8] to sum of all the
Betti numbers (i.e. not just the zero-th Betti number) remains a challenging open
problem in real algebraic geometry.

The first contribution of the current paper is to develop a single framework
which allows one to prove the bounds on general semi-algebraic sets, as well as
those defined by quadratic or even partially quadratic polynomials (Theorems 11
16, 17, 18, 19). Moreover, we improve the known bounds in all of these cases. In the
process, we also answer an open question of Lerario [40] on the asymptotic behavior
of the Betti numbers of generic complete intersections of projective quadrics over
C (Remark 23).

Additionally, the framework allows us to prove bounds in terms of the multi-
degrees of the polynomials instead of the total degrees (Theorems 12, 13, 14, 15, 20,
21). We give several applications in which this new flexibility proves to be important
(Theorems 26, 27, 28, 29). Note that there have been some other applications of
multi-degree bounds in special cases (see for instance [32] for a recent algorithmic
application).

As mentioned above, extending the bounds proved in [9, 8] to sum of all the
Betti numbers remains an open problem. The second contribution of the current
paper is extending the result [9] to the sum of all the Betti numbers to the case of
degree sequence of length bounded by 2 (Theorems 31 and 32).

Finally, we give another application in which “multi-degree” bounds play an im-
portant role. We prove a generalization of the polynomial partitioning theorem of
Guth and (N.H.) Katz [33] in the plane. This theorem and its various generaliza-
tions has proved to be very useful in proving tight bounds on several quantitative
problems on bounding the number of incidences between finite sets of points and
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varieties in Rk (generalizing the classic result of Szemerédi and Trotter [52] on point-
line incidences in R2). The polynomial partitioning theorem is proved using another
classical partitioning result due to Stone and Tukey [51], often referred to as the
“polynomial ham-sandwich” theorem, and produces for every finite subset S ⊂ Rk

and a parameter r > 0, a “partitioning-polynomial” of total degree bounded by r1/k

(see Definition 5 and Theorem 36 for the exact statement). We prove multi-degree
analogs of both the polynomial ham-sandwich theorem and Theorem 36 (see Theo-
rems 39 and 40). The resulting flexibility allows us to prove (in the case k = 2), the
existence of a parametrized family of partitions with two competing measures of
quality (see Definition 4 and Theorem 38). While this result does not immediately
produce an improvement in any incidence problem, the new flexibility in producing
partitions could potentially be useful in such problems (especially if it is possible
to extend this theorem to higher dimensions).

1.2. Prior Results. In this section we state more precisely the prior results men-
tion in the previous section. We first fix some notation that we will use for the rest
of the paper.

1.2.1. Basic notation and definition.

Notation 1. For P ∈ R[X1, . . . , Xk] (resp. P ∈ C[X1, . . . , Xk]) we denote by
Zer(P,Rk) (resp. Zer(P,Ck)) the set of zeros of P in Rk(resp. Ck). More generally,
for any finite set P ⊂ R[X1, . . . , Xk] (resp. P ⊂ C[X1, . . . , Xk]), we denote by
Zer(P,Rk) (resp. Zer(P,Ck)) the set of common zeros of P in Rk (resp. Ck).

For a homogeneous polynomial P ∈ R[X0, . . . , Xk], (resp. P ∈ C[X0, . . . , Xk])
we denote by Zer(P,PkR) (resp. Zer(P,PkC)) the set of zeros of P in PkR. (resp.
PkC). And, more generally, for any finite set of homogeneous polynomials P ⊂
R[X0, . . . , Xk], (resp. P ⊂ C[X0, . . . , Xk]), we denote by Zer(P,PkR) (resp. Zer(P,PkC))
the set of common zeros of P in PkR. (resp. PkC).

Notation 2. For any finite family of polynomials P ⊂ R[X1, . . . , Xk], we call an
element σ ∈ {0, 1,−1}P , a sign condition on P. For any semi-algebraic set Z ⊂ Rk,
and a sign condition σ ∈ {0, 1,−1}P , we denote by Reali(σ, Z) the semi-algebraic
set defined by

{x ∈ Z | sign(P (x)) = σ(P ), P ∈ P},
and call it the realization of σ on Z. More generally, we call any Boolean formula
Φ with atoms, P{=, >,<}0, P ∈ P, to be a P-formula. We call the realization of
Φ, namely the semi-algebraic set

Reali
(
Φ,Rk

)
=

{
x ∈ Rk | Φ(x)

}
a P-semi-algebraic set. Finally, we call a Boolean formula without negations, and
with atoms P{≥,≤}0, P ∈ P, to be a P-closed formula, and we call the realization,
Reali

(
Φ,Rk

)
, a P-closed semi-algebraic set.

1.2.2. General Bounds. The first results on bounding the Betti numbers of real
varieties were proved by Olĕınik and Petrovskĭı [47], Thom [53] and Milnor [44].
Using a Morse-theoretic argument and Bezout’s theorem they proved:

Theorem 1. [47, 53, 44] Let Q ⊂ R[X1, . . . , Xk] with deg(Q) ≤ d,Q ∈ Q. Then,

(1.1) b(Zer(Q,Rk),Z2) ≤ d(2d− 1)k−1.
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Remark 2. Theorem 1 is proved (see for example proof of Theorem 11.5.3 in [21]
for an exposition) by first replacing the given variety by a bounded basic, closed
semi-algebraic set having the same homotopy type as Zer(Q,Rk) defined by a single
polynomial inequality of total degree at most twice the maximum of the degrees of
the polynomials in Q. Moreover, the critical points of the coordinate function X1

are shown to be non-degenerate and their number can be bounded using Bezout’s
theorem. If one wants to obtain a bound in terms of the multi-degrees (i.e. the
tuple of degrees in each of the variables) of the polynomials in Q, it is possible
to mimic the same proof as above, and finally use the multi-homogeneous Bezout’s
theorem in order to bound the number of critical points. The method used in this
paper (see proof of Theorem 11) is different, and gives slightly better bounds (see
Remark 18).

Remark 3. Also, note that the bound in Theorem 1 holds for dimensions of the
homology groups with coefficients in any field and was proved in that generality.
The same is true for some of the other results surveyed below. However, the new
results in this paper give bounds only for Betti numbers over the field Z2 (because
our technique for proving them involves using Smith inequalities cf. Theorem 22),
and are thus correspondingly weaker. On the other hand they do imply via the
universal coefficients theorem (see Remark 1) the same bounds on the ranks of the
homology groups with integer coefficients. Moreover, Z2-homology is very natural
in the context of real algebraic geometry. We will state all bounds for the Z2-Betti
numbers from now on without comment (except in Section 6 below).

Theorem 1 was later generalized to arbitrary semi-algebraic sets defined by
quantifier-free formulas in two steps. In the first step, Theorem 1 was extended
to a particular – namely P-closed semi-algebraic sets, where P ⊂ R[X1, . . . , Xk] is
a finite family of polynomials. The following theorem (which makes more precise
an earlier result appearing in [12]) appears in [16].

Theorem 2. [16] If S ⊂ Rk is a P-closed semi-algebraic set, then

b(S,Z2) ≤
k∑
i=0

k−i∑
j=0

(
s+ 1

j

)
6jd(2d− 1)k−1,(1.2)

where s = card(P) > 0 and d = maxP∈P deg(P ).

Using an additional ingredient (namely, a technique to replace an arbitrary semi-
algebraic set by a locally closed one with a very controlled increase in the number of
polynomials used to describe the given set), Gabrielov and Vorobjov [27] extended
Theorem 2 to arbitrary P-semi-algebraic sets with only a small increase in the
bound. Their result in conjunction with Theorem 2 gives the following theorem.

Theorem 3. [29] If S ⊂ Rk is a P-semi-algebraic set, then

b(S,Z2) ≤
k∑
i=0

k−i∑
j=0

(
2ks+ 1

j

)
6jd(2d− 1)k−1,(1.3)

where s = card(P) and d = maxP∈P deg(P ).
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1.2.3. Quadratic and partially quadratic case. Semi-algebraic sets defined by few
quadratic inequalities are topologically simpler. This was first noticed by Agrachev
[6, 5, 4] who proved a bound which is polynomial in the number of variables and
exponential in the number of inequalities for generic quadratic inequalities. The
technique introduced by Agrachev was very important in later developments as well.
Independently, using a different technique (closer to the spirit of Morse theoretic
arguments) Barvinok [10] proved the following theorem (no genericity assumption
is required).

Theorem 4. [10] Let S ⊂ Rk be defined by P1 ≥ 0, . . . , Ps ≥ 0, deg(Pi) ≤ 2, 1 ≤
i ≤ s. Then,

b(S,Z2) ≤ kO(s).

This bound was later sharpened in [15] and further sharpened in the case of
algebraic sets by Lerario in [40, Theorem 15], where the following nearly optimal
result was proved.

Theorem 5. [40] Let Q ⊂ R[X0, . . . , Xk] be a set of ` quadratic forms, and V =
Zer(Q,PkR) be the projective variety defined by Q. Then,

b(V,Z2) ≤ (O(k))`−1.

Theorem 4 was later extended in [14] where the following theorem was proved.
Notice that this bound is polynomial even in the number of inequalities (for fixed
`).

Theorem 6. [14] Let ` be any fixed number and let R be a real closed field. Let
S ⊂ Rk be defined by P1 ≥ 0, . . . , Ps ≥ 0, deg(Pi) ≤ 2. Then,

bk−`(S,Z2) ≤
(
s

`

)
kO(`).

Theorem 6 was further improved using bounds on the Betti numbers of non-
singular complete intersections and the Smith inequality (Theorem 22) in [15] where
the following theorem is proved.

Theorem 7. [15] Let P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk], s ≤ k. Let S ⊂ Rk be
defined by

P1 ≥ 0, . . . , Ps ≥ 0

with deg(Pi) ≤ 2. Then, for 0 ≤ i ≤ k − 1,

bi(S,Z2) ≤ 1

2

min{s,k−i}∑
j=0

(
s

j

)(
k + 1

j

)
2j

 .

In particular, for 2 ≤ s ≤ k/2, we have

bi(S,Z2) ≤ 1

2
3s
(
k + 1

s

)
≤ 1

2

(
3e(k + 1)

s

)2

.

Finally, in [19] the authors also prove a result that generalizes the bounds on Betti
numbers of general semi-algebraic sets (defined by s polynomials having degrees
bounded by d, cf. Theorem 2), as well as the bounds in the quadratic case (cf.
Theorems 4, 6 and 7). More precisely they prove:
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Theorem 8. [19] Let P1 ⊂ R[X1, . . . , Xk1 ], a finite set of polynomials with

degX(P ) ≤ d, P ∈ P1, card(P1) = s,

and let P2 ⊂ R[X1, . . . , Xk1 , Y1, . . . , Yk2 ], a finite set of polynomials with

degX(P ) ≤ d,degY (P ) ≤ 2, P ∈ P2, card(P2) = m,

Let S ⊂ Rk1+k2 be a (P1 ∪ P2)-closed semi-algebraic set. Then

b(S,Z2) ≤ k22(O(k2 + s+m)k2d)k1+2m.(1.4)

In particular, for m ≤ k2, b(S,Z2) ≤ k22(O(s+ k2)k2d)k1+2m.

Remark 4. In particular, if in Theorem 8, P1 = ∅ (and hence s = 0), and m, k1 < k2,
we get

b(S,Z2) ≤ k22(O(m+ k2)k2d)k1+2m.(1.5)

Remark 5. The main tool used in the proof of Theorem 8 was a technique intro-
duced by Agrachev in [4, 5, 6] and later exploited by several authors [19, 3, 41, 40]
for bounding the Betti numbers of semi-algebraic sets defined by quadratic polyno-
mials.

The techniques used in the proof of the theorems corresponding to Theorem 8 in
the current paper (namely, Theorems 16, 18 and 19) are quite different – involving
the method of infinitesimal perturbations, Mayer-Vietoris inequalities as explained
in [17, Chapter 7], and bounds on the Betti numbers of real affine varieties defined
by partially quadratic polynomials proved in Proposition 12 below.

1.2.4. Generic vs special. In many quantitative results in algebraic geometry, one
assumes that the given system of polynomials is generic. Bounding the topological
complexity of varieties defined by generic systems of polynomials (over R as well as
C) is often easy. However, such a result does not imply a bound in the non-generic
situation. The following example which appears in [26] is very well-known and
shows that even for the zero-th Betti number, the “generic” bound might not hold
for all special systems.

Example 1. [26] Let k = 3 and let

Q1 = X3,

Q2 = X3,

Q3 =

2∑
i=1

 d∏
j=1

(Xi − j)2
 .

The real variety defined by Q = {Q1, Q2, Q3} is 0-dimensional, and has d2

isolated (in R3) points. However, a “generic” system of three polynomials in
R[X1, X2, X3] having degrees 1, 1, 2d will have by Bezout’s theorem at most 2d iso-
lated points as its real zeros. Observe, that even though the real variety Zer(Q,R3)
is zero-dimensional, the complex variety Zer(Q,C3) is not, which accounts for this
discrepancy. We refer the reader to [8] for a Bezout-type inequality that works over
R as well.

There has been some work on bounding the number of connected components of
real algebraic varieties defined by systems of polynomials satisfying certain gener-
icity conditions. For example, the following theorem appears in [25].
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Theorem 9. [25] Let (P1, . . . , Ps) ⊂ Q[X1, . . . , Xk] (with s ≤ k − 1) generate a
radical ideal and define a smooth algebraic variety V ⊂ Ck of dimension k′. Denote
by d1, . . . , ds the respective degrees of P1, . . . , Ps and by d the maximum of d1, . . . , ds.
The number of connected components of V ∩ Rk is bounded by

d1 · · · ds
k′∑
i=0

(d− 1)k−s−i
(

k − i
k − i− s

)
.

Moreover, if (P1, . . . , Ps) is a regular sequence, the number of connected components
of V ∩ Rk is bounded by

d1 · · · ds
k′∑
i=0

(d− 1)k−s−i
(
k − i− 1

k − i− s

)
.

Even though, bounds on generic systems do not immediately produce a bound
on the Betti numbers of general semi-algebraic sets, with extra effort such bounds
can be used to prove (possibly worse) bounds for general semi-algebraic sets. This
is in fact the approach taken in this paper, but the approach already appears in
the paper by Benedetti, Loeser and Risler [20], which is the starting point of the
results presented in the current paper. Using a clever reduction from the general
case to the generic case they prove the following theorem.

Theorem 10. [20, Proposition 2.6] Let P = {P1, . . . , P`} with deg(Pi) ≤ d, 1 ≤
i ≤ `, Pi ∈ R[X1, . . . , Xk]. Then,

b0(Zer(P,Rk),Z2) ≤ λ(d, k, `),

where

λ(d, k, `) = Q1(d, k) + 2Q2(d, k) + · · ·+ 2k−`−1Qk−`(d, k) + 2k−`µd(`),

and each Qi is a polynomial in d of degree k − i + 1, the leading coefficient of Qi
is a polynomial in k of degree `− 1 with leading coefficient (`+ 1)/2, and the other
terms polynomials in k of degree max{`− 1, 1}, and µd(`) = d(2d− 1)`−1.

Remark 6. Of special interest here is that for every fixed `, and k large enough
(depending on `), and for d tending to infinity, λ(d, k, `) is asymptotically equal
to
(
1
2 (`+ 1)k`−1 +O`(k

`−2)
)
dk +Ok,`(d

k−1) [20, Corollary 2.7] where the implied
constant in the notation O` (resp. Ok,`) depends only on ` (resp. k, `) (compare
with Theorem 11 and Remark 7 below).

In this paper, we consider the problem of bounding the sum of all the Betti
numbers of real varieties and semi-algebraic sets with a more refined dependence
on the degrees of the polynomials. These refinements are of two kinds. First, we
allow different blocks of variables to have different degrees (see Theorems 12 and
13). Second, we allow different polynomials to have different degrees (see Theorems
14 and 15) We also improve using our techniques existing bounds on the sum of
the Betti numbers of real varieties and semi-algebraic sets in terms of the number
and total degrees of polynomials defining them (Theorem 11) as well as in the
partially quadratic case (Theorems 16, 18 19, 20, and 21). We apply the results
mentioned above to prove refined bounds on the Betti numbers of pull-backs and
direct images under polynomial maps (Theorems 26, 27, 28), and as an application
of the last result (i.e. Theorem 28) give a better bound (than possible below) on
the Betti numbers of the space of affine subspaces of a fixed dimension that meet
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a given semi-algebraic subset of Rk (related to an important problem studied in
discrete geometry). As another application of our results we give a multi-degree
generalization of the polynomial partitioning theorem of Guth and Katz (Theorem
37) and use it to prove a theorem that interpolates between different polynomial
partitions of the plane (Theorem 38). Some of the definitions regarding the measure
of “quality” of partitions introduced here might be of independent interest. Finally,
we make some progress on extending the theorem on refined bounds on the number
of connected components of real varieties defined by polynomials having different
degrees, to a bound on the sum of the Betti numbers using results proved in this
paper and some other ingredients (namely stratified Morse theory and Lefschetz
duality from topology of manifolds). This is reported in Theorem 32.

The rest of the paper is organized as follows. In Section 2 we state the main
results proved in this paper. In Section 3, we state some preliminary results that
are needed in the proofs of the man theorems. In Section 4, we prove the main
theorems of the paper. In Section 5 , we prove bounds on the Betti numbers of
pull-backs, direct images, and the space of transversals of semi-algebraic sets. In
Section 6, we prove a refined bound on the Betti numbers of varieties defined by
polynomials having two different degree bounds. Finally, in Section 7 we discuss
an application of the results of our paper to the polynomial partitioning problem
and state and prove a generalization of a well-known theorem of Guth and Katz in
the plane.

2. Main Results

2.1. Betti numbers of sets defined by polynomials of bounded total de-
gree. We begin with the classical case of bounding the sum of the Betti numbers
of varieties and semi-algebraic sets in terms of the total degrees of the polynomials
defining them. This is the classical situation already considered by many authors
and already surveyed in Section 1.2, but our methods produce slight improvements
which we record here. We prove the following theorems.

Theorem 11. Let Q = {Q1, . . . , Q`} ⊂ R[X1, . . . , Xk] be a finite set of polynomials
whose (total) degrees are bounded by d with ` > 0. Let V denote Zer(Q,Rk). Then,
b(V,Z2) is bounded by
(2.1)

min

k−1∑
j=1

(
`

j

)
2j(F1(d′, k, j) + F2(d′, k, j)) +

(
`

k

)
2kd′k + 3,

1

2
(1 + (2d− 1)k)

 ,
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where

F1(d′, k, j) = 1 + (−1)k−j+1 +

2d′j−1 ·

(
k−j∑
h=0

h∑
i=0

(−1)k−j+h
(

k

h+ j

)(
j + i− 2

i

)
2h−id′i

)

≤ 2

(
k − 2

j − 2

)
dk−1 + (O(d))k−2,

F2(d, k, j) = 1 + (−1)k−j+1 +

(
k − 1

j − 1

)
(d′k + k − 1)

≤
(
k − 1

j − 1

)
dk +O(1)k,

and d′ is the least even integer ≥ d.
In particular, if k is fixed and ` ≤ k, then for large d we have

b(V,Z2) ≤
∑̀
j=1

2j
(
`

j

)(
k − 1

j − 1

)
dk + (O(d))k−1.(2.2)

Remark 7. Writing the bound in Theorem 11 as a polynomial in d, the leading
coefficient is ∑̀

j=1

2j
(
`

j

)(
k − 1

j − 1

)
≤ (3` − 1)

∑̀
j=1

(
k − 1

j − 1

)
≤ `(3` − 1)

(
k − 1

`− 1

)
for ` < k/2.

Thus, for every fixed ` and every k sufficiently large (depending on `), and as d
tends to infinity, the bound in (2.2) is asymptotically equal to(

`(3` − 1)

(`− 1)!
k`−1 +O`(k

`−2)

)
dk +Ok,`(d

k−1),

where the implied constant in the notation O` (resp. Ok,`) depends only on ` (resp.
k, `). Notice that for ` > 8,

`(3` − 1)

(`− 1)!
<

1

2
(`+ 1)

(cf. Remark 6 following Theorem 10). Thus, for fixed ` and k (sufficiently large)
the bound in Theorem 11 is asymptotically better (as d tends to infinity) than the
bound in Theorem 10.

Remark 8. Notice that the bound in Theorem 11 is strictly better than the Olĕınik-
Petrovskĭı-Thom-Milnor bound (Theorem 1) for all values of `, d and k, with d, k >
1, with equality in the case d = 1 or k = 1. Assuming that d, k > 1, we have that

1

2
(1 + (2d− 1)k) < d(2d− 1)k−1

since

1 + (2d− 1)k < (2d− 1)k−1 + (2d− 1)k = 2d(2d− 1)k−1.
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Remark 9. Even though the results are incomparable, it is still interesting to note
that using earlier results of Adolphson and Sperber [1] (who used methods involving
bounding exponential sums), (N. M.) Katz [38] proved a bound of

(2.3) 6 · 2r · (2 + (1 + rd))k+1

on
∑
i≥0 dimQ`

Hi
c(V,Q`) (here H∗c(V,Q`) denotes the `-adic cohomology groups

with compact support), where V ⊂ Ck is an affine variety defined by r polynomials
in C[X1, . . . , Xk] of total degrees bounded by d. While this result is incomparable
with the results proved in this paper, and cannot be derived using our methods,
notice that the bound in (2.3) has an exponent of k + 1 which is worse than the
bound in Theorem 11 (in the case `, k are fixed and d is large).

2.2. Betti numbers of sets defined by polynomials of bounded multi-
degrees. We now consider the multi-degree case.

Notation 3. Given, k = (k1, . . . , kp),d = (d1, . . . , dp) ∈ Np, and j > 0, we denote
by k =

∑p
i=1 ki and

Ggen(d,k, j) = 1+(−1)k−j+1+(k−j+2)2
(

k

j − 1

)(
k

k

)−1
(1 + p)3k−j+1

p(p+ 2)
dk11 · · · dkpp .

Theorem 12. Let Q = {Q1, . . . , Q`} ⊂ R[X(1), . . . ,X(p)] be a finite set of polyno-

mials with ` > 0, where for 1 ≤ i ≤ p, X(i) = (X
(i)
1 , . . . , X

(i)
ki

), and degX(i)(Q) ≤
di, di ≥ 2, for all Q ∈ Q. Let also V = Zer(Q,Rk), where k =

∑p
i=1 ki. Denote by

d = (d1, . . . , dp) and k = (k1, . . . , kp). Then,

b(V,Z2) ≤ Gmin(d,k, `)

≤ O(1)kp3kdk11 · · · dkpp ,

where Gmin(d,k, `) equals

min

3 +

k∑
j=1

(
`

j

)
2j(Ggen(d′,k, j) +Ggen(d′,k, j + 1)),

1

2
Ggen(2d,k, 1)

 ,

d′ = (d′1, . . . , d
′
p), and for 1 ≤ i ≤ p, d′i is the least even integer ≥ di.

Theorem 13. Let P = {P1, . . . , Ps} ⊂ R[X(1), . . . ,X(p)] be a finite set of polyno-

mials with s > 0, where for 1 ≤ i ≤ p, X(i) = (X
(i)
1 , . . . , X

(i)
ki

), and degX(i)(P ) ≤
di, di ≥ 2, for all P ∈ P. Denote by d = (d1, . . . , dp) and k = (k1, . . . , kp). Then,
for each i, 0 ≤ i ≤ k − 1,∑

σ∈{0,1,−1}P
bi(Reali(σ,Rk),Z2) ≤

k−i∑
j=1

(
s

j

)
4jGmin(d,k, j)

≤ O(1)ksk−ip3kdk11 · · · dkpp .

Furthermore, if S is any P-closed semi-algebraic set, then

b(S,Z2) ≤
k∑
i=0

k−i∑
j=1

(
s+ 1

j

)
6jGmin(d,k, j)

≤ O(1)kskp3kdk11 · · · dkpp .
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2.3. Betti numbers of semi-algebraic sets defined by polynomials with
different multi-degrees. We now consider the case when different polynomials
are allowed to have different multi-degrees.

Notation 4. For a matrix d ∈ Z`×k and I ⊂ [1, . . . `], J ⊂ [1, k], denote by dI,J the
sub-matrix extracted from d by taking the rows indexed by I and columns indexed
by J . We denote

Kgen(d) =


k∑
j=`

∑
J∈([1,k]

j )

(−1)k−j
∑

α=(α1,...,α`)∈Z`
>0

α1+···+α`=j

N(d[1,`],J ,α)

 ,(2.4)

where the function N is defined in Eqn. (3.5).

Theorem 14. Let d = Z`×k≥2 . Let for 1 ≤ i ≤ `, Bi = [0, di,1] ×· · ·× [0, di,k] ⊂ Zk.

Let Q = {Q1, . . . , Q`} ⊂ R[X1, . . . , Xk], with supp(Qi) ⊂ Bi, 1 ≤ i ≤ `, and let
V = Zer(Q,Rk).

Then,

b(V,Z2) ≤ K(d),

where

K(d) = 3 +

k∑
i=1

∑
I⊂[1,`],card(I)=i

2i+1Kgen(d′′I,[1,k]),

d′′ =

[
d′

d′

]
,

and d′ = [d′i,j ]1≤i≤`
1≤j≤k

, with d′i,j the least even number ≥ di,j for 1 ≤ i ≤ `, 1 ≤ j ≤ k.

Theorem 15. Let d = Z`×k≥2 . Let for 1 ≤ i ≤ `, Bi = [0, di,1] ×· · ·× [0, di,k] ⊂ Zk.

Let P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk], with supp(Pi) ⊂ Bi, 1 ≤ i ≤ s, s > 0.
Then, for each i, 0 ≤ i ≤ k − 1,

∑
σ∈{0,1,−1}P

bi(Reali(σ,Rk),Z2) ≤
k−i∑
j=1

(
s

j

)
4jK(d).

Furthermore, if S is any P-closed semi-algebraic set, then

b(S,Z2) ≤
k∑
i=0

k−i∑
j=1

(
s+ 1

j

)
6jK(d).

Example 2. We give here an example in which Theorem 14 can be applied. Let
Q = {Q1, . . . , Q`} ⊂ R[X1, . . . , Xk] with ` ≤ k. Suppose that for each i, 1 ≤ i ≤ `,
degXi

(Qi) ≤ di,degXj
(Qi) = O(1), j 6= i. Moreover, assume that d1 ≤ d2 ≤

· · · ≤ d`. (Such systems are not as unnatural as it might seem at first glance. In
fact, polynomials having a similar degree structure, i.e. with supports which are
contained in parallelepipeds that are long in one direction and short in the others,
play an important role in the proof of Theorem 38 in Section 7 below.)
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Then using Theorem 14, one obtains immediately that

(2.5) b(Zer(Q,Rk),Z2) ≤ O(1)k

 ∑
α∈Z`

>0

α1+···+α`=k

Cont(`, k,α,1)

 d1 · · · dk−`+1
` ,

where for any m,n > 0, and r = (r1, . . . , rm) ∈ Zm>0, c = (c1, . . . , cn) ∈ Zn>0,
∑
i ri =∑

j cj , Cont(m,n, r, c) denotes the number of matrices in Zm×n≥0 with the vector of

row-sums equal to r, and the vector of column-sums equal to c (such matrices are
often referred to as contingency tables). Note that the quantity ∑

α∈Z`
>0

α1+···+α`=k

Cont(`, k,α,1)


appearing in (2.5) depends only on k and `, is independent of the di’s, and is

bounded by 2O(k2) using results in [11] on the asymptotic number of contingency
tables.

Notice that the dependence on the various degrees di in the bound above is
similar to the bound proved in [8] on the number of semi-algebraically connected
components of a real variety defined by polynomials of increasing total degrees, with
some added assumptions on the dimensions of the intermediate varieties defined by
some of the subsets of the polynomials. There are no dimensional restrictions for
the bound in (2.5) to hold, and moreover the inequality in (2.5) gives a bound on
the sum of all Betti numbers not just on the zero-th one. However, the degree
restrictions in the assumption for (2.5) is much stronger than just requiring that
for each i, the total degree of the polynomial Qi is bounded by di + O(1) which
would suffice for the result in [8] to hold.

Finally, note that using Alexander duality, the bound in (2.5) is also an upper
bound on b(Rk \ Zer(Q,Rk),Z2).

2.4. Betti numbers of sets defined by quadratic and partially quadratic
polynomials. In the following theorems we improve the result in Theorem 8. In
Theorems 16 and 18, we assume that the set P1 is empty, and we are able to provide
more precise bounds in this situation. In Theorem 19 the hypothesis is the same as
in Theorem 8, and we improve the bound in Theorem 8 a significant way – namely
the dependence of the bound on m.

We first introduce the following notation.

Notation 5. In the following theorems, we will denote by k = k1 + k2 and

Hgen(d, k1, k2, j) = 2 + (−1)k−j+1 + j2j(k1 + k2)j−1 (2d(k1 + k2) + 1)
k1 .

Remark 10. Notice that for j, k1 < k2,

Hgen(d, k1, k2, j) ≤ (O(k2))j−1(O(dk2))k1 .

Theorem 16. Let Q = {Q1, . . . , Q`} ⊂ R[X1, . . . , Xk1 , Y1, . . . , Yk2 ] be a finite set
of polynomials with ` > 0, degX(Q) ≤ d, d ≥ 2, and degY(Q) ≤ 2 for all Q ∈ Q.
Let V denote Zer(Q,Rk). Then,

b(V,Z2) ≤ H(d, k1, k2, `),
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where

(2.6) H(d, k1, k2, `) = 3 +

k∑
j=1

(
`

j

)
2j(Hgen(d′, k1, k2, j) +Hgen(d′, k1, k2, j + 1)),

where d′ is the least even integer ≥ d. In particular, for `, k1 ≤ k2,

b(V,Z2) ≤ (O(k2))`+k1dk1 .(2.7)

Remark 11. Notice that in the case k1 = 0 (thus the polynomials in Q are fully
quadratic), the bound in inequality (2.7) reduces to (O(k2))` almost recovering (i.e.
up to a factor k) the bound in Theorem 5 (albeit for affine varieties).

Remark 12. It might also be possible with more work (using the same ideas as in
the proof of Theorem 25 taking into account signs) to remove a factor of k2 from
the bound in Theorem 16 (cf. Remark 24), and we leave this as an open question.

For projective varieties in PkR defined by a fixed number of homogeneous qua-
dratic polynomials we have the following bound that is asymptotically a slight
improvement over the tightest bound known previously [40, Theorem 15] (namely,
the bound (O(k))`−1).

Theorem 17. For each fixed ` > 0, and for each set P ⊂ R[X0, . . . , Xk] of homo-
geneous polynomials of degree 2 of card(P) ≤ `,

b(Zer(P,PkR) ≤ 3 +

k∑
i=1

(
`

i

)
2iH ′gen(k, i)

≤
(
O

(
k

`

))`−1
,(2.8)

where

H ′gen(k, i) = (1 + (−1)k−i+1)(k − i+ 1)+

(−1)k−i

 i−1∑
h=0

(−2)h

 k∑
j=i

(−1)j+1

(
j

h

)+ (k − i+ 1)

 .

Theorem 18. Let P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk1 , Y1, . . . , Yk2 ] be a finite set
of polynomials with s > 0, degX(P ) ≤ d, d ≥ 2, and degY(P ) ≤ 2 for all P ∈ P.

Then, for each i, 0 ≤ i ≤ k − 1,∑
σ∈{0,1,−1}P

bi(Reali(σ,Rk),Z2) ≤
k−i∑
j=1

(
s

j

)
4jH(d′, k1, k2, j)

≤ (O(k2))s+k1dk1 for s, k1 < k2.(2.9)

where d′ is the least even integer ≥ d. Furthermore, if S is any P-closed semi-
algebraic set, then

b(S,Z2) ≤
k∑
i=0

k−i∑
j=1

(
s+ 1

j

)
6jH(d′, k1, k2, j)

≤ (k1 + k2 + 1)(O(k2))s+k1+1dk1 , for k1 < k2,(2.10)

= (O(k2))s+k1+2dk1 .
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where d′ is the least even integer ≥ d.

Remark 13. Notice that the bound in inequality (2.10) in Theorem 18 is significantly
better than the previous best bound known on this quantity (namely, inequality
(1.5) in Remark 4).

Theorem 19. With the same notation as in Theorem 8, for each i, 0 ≤ i ≤ k − 1
and assuming m ≤ k2,

∑
σ∈{0,1,−1}P1∪P2 bi(Reali(σ,Rk),Z2) is bounded by

k−i∑
j=1

∑
0≤j1≤min(s,k1)

0≤j2≤min(m+1,k1+k2−j1)
j1+j2=j

(
s

j1

)(
m+ 1

j2

)
5jH(2d, k1, k2, j2 + 1)

≤ (O(k2))k1+m+2(O(sd))k1 ,(2.11)

for m, k1 < k2.
Furthermore, if S is any (P1 ∪ P2)-closed semi-algebraic set, then

b(S,Z2) ≤
k∑
i=0

∑
0≤j1≤min(s,k1)

0≤j2≤min(m+1,k1+k2−j1)
j1+j2=j≤k−i

(
s

j1

)(
m+ 1

j2

)
7jH(2d, k1, k2, j2 + 1)

≤ (O(k2))k1+m+3(O(sd))k1 , for m, k1 < k2.(2.12)

Remark 14. Notice that the bound in inequalities (2.11) and (2.12) in Theorem 19
is significantly better than the corresponding bounds in Theorem 8 (namely, in the
dependence on m and the exponent of k2).

2.5. Betti numbers of semi-algebraic sets defined by partially quadratic
polynomials with several blocks of variables. Lastly, we consider the case
of partially quadratic polynomials, with the non-quadratically bounded variables
allowed to have different degrees.

Notation 6. In the following theorems, we will denote by k = k1 + k2, d =
(d1, . . . , dk1) ∈ Nk1 and

Mgen(d, k1, k2, j) = 2 + (−1)k−j+1 + j2jk1!(k1 +k2)j−1 (2(k1 + k2) + 1)
k1 d1 · · · dk1 .

Theorem 20. Let Q = {Q1, . . . , Q`} ⊂ R[X1, . . . , Xk1 , Y1, . . . , Yk2 ] be a finite set
of polynomials with ` > 0, degXi

(Q) ≤ di, di ≥ 2, and degY(Q) ≤ 2 for all Q ∈ Q.

Let V denote Zer(Q,Rk). Then,

b(V,Z2) ≤M(d, k1, k2, `)

where

M(d, k1, k2, `) = 3 +

k∑
j=1

(
`

j

)
2j(Mgen(d′, k1, k2, j) +Mgen(d′, k1, k2, j + 1)),

and where d′ = (d′1, . . . , d
′
k1

) and for 1 ≤ i ≤ k1, d′i is the least even integer ≥ di.
In particular, for `, k1 ≤ k2,

b(V,Z2) ≤ (O(k2))`+k1d1 · · · dk1 .
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Theorem 21. Let P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk1 , Y1, . . . , Yk2 ] be a finite set
of polynomials with s > 0, degXi

(P ) ≤ di, di ≥ 2, and degY(P ) ≤ 2 for all P ∈ P.
Then, for each i, 0 ≤ i ≤ k − 1,∑

σ∈{0,1,−1}P
bi(Reali(σ,Rk),Z2) ≤

k−i∑
j=1

(
s

j

)
4jM(d′, k1, k2, j)

≤ (O(k2))s+k1d1 · · · dk1 for s, k1 < k2,

where d′ = (d′1, . . . , d
′
k1

) and for 1 ≤ i ≤ k1, d′i is the least even integer ≥ di.
Furthermore, if S is any P-closed semi-algebraic set, then

b(S,Z2) ≤
k∑
i=0

k−i∑
j=1

(
s+ 1

j

)
6jM(d′, k1, k2, j)

≤ (O(k2))s+k1+2d1 · · · dk1 , for s, k1 < k2,

where d′ = (d′1, . . . , d
′
k1

) and for 1 ≤ i ≤ k1, d′i is the least even integer ≥ di.

3. Preliminaries

We first recall some preliminary results that we will need in the paper.

3.1. Real algebraic preliminaries.

Notation 7. For R a real closed field we denote by R 〈ε〉 the real closed field of al-
gebraic Puiseux series in ε with coefficients in R. We use the notation R 〈ε1, . . . , εm〉
to denote the real closed field R 〈ε1〉 〈ε2〉 · · · 〈εm〉. Note that in the unique ordering
of the field R 〈ε1, . . . , εm〉, 0 < εm � εm−1 � · · · � ε1 � 1.

Notation 8. For elements x ∈ R 〈ε〉 which are bounded over R we denote by limε x
to be the image in R under the usual map that sets ε to 0 in the Puiseux series x.

Notation 9. If R′ is a real closed extension of a real closed field R, and S ⊂ Rk

is a semi-algebraic set defined by a first-order formula with coefficients in R, then
we will denote by Ext (S,R′) ⊂ R′k the semi-algebraic subset of R′k defined by the
same formula. It is well-known that Ext (S,R′) does not depend on the choice of
the formula defining S [17].

Notation 10. For x ∈ Rk and r ∈ R, r > 0, we will denote by Bk(x, r) the open
Euclidean ball centered at x of radius r. If R′ is a real closed extension of the real
closed field R and when the context is clear, we will continue to denote by Bk(x, r)
the extension Ext (Bk(x, r),R′). This should not cause any confusion. We also

denote by Sk−1(x, r) the (k − 1)-dimensional sphere in Rk, centered at x and of
radius r.

3.2. Topological preliminaries.

3.2.1. Mayer-Vietoris inequalities. Let S1, S2 be two closed semi-algebraic sets, and
F any field of coefficients. We will use heavily the following inequalities which are
consequences of the exactness of the Mayer-Vietoris sequence.

bi(S1 ∪ S2,F) ≤ bi(S1,F) + bi(S2,F) + bi−1(S1 ∩ S2,F),(3.1)

bi(S1 ∩ S2,F) ≤ bi(S1,F) + bi(S2,F) + bi+1(S1 ∪ S2,F),(3.2)

bi(S1,F) + bi(S2,F) ≤ bi(S1 ∪ S2,F) + bi(S1 ∩ S2,F).(3.3)
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The following generalization in the case of more than two sets will also be useful
for us (see for example [17, Proposition 7.33]).

Proposition 1. Let S1, . . . , Ss ⊂ Rk, s ≥ 1, be closed semi-algebraic sets contained
in a closed semi-algebraic set T of dimension k′. For S≤t =

⋂
1≤j≤t Sj, and S≤t =⋃

1≤j≤t Sj. Also, for J ⊂ {1, . . . , s}, J 6= ∅, let SJ =
⋂
j∈J Sj, and SJ =

⋃
j∈J Sj.

Finally, let S∅ = T . Then

(A) For 0 ≤ i ≤ k′,

bi(S
≤s,F) ≤

i+1∑
j=1

∑
J⊂{1,...,s}
card(J)=j

bi−j+1(SJ ,F).

(B) For 0 ≤ i ≤ k′,

bi(S≤s,F) ≤
k′−i∑
j=1

∑
J⊂{1,...,s}
card(J)=j

bi+j−1(SJ ,F) +

(
s

k′ − i

)
bk′(S

∅,F).

3.2.2. Smith inequality. Let X be a compact space (or a regular complex) equipped
with an involution map c : X → S. Let Fix(c) ⊂ X denote the subspace of fixed
points of X. The Smith exact sequence (see for example [22, page 126]) then implies
that

b(Fix(c),Z2) ≤ b(X,Z2).(3.4)

Taking the involution c to be the complex conjugation we obtain:

Theorem 22 (Smith inequality for affine sub-varieties of Ck defined over R). Let
Q ⊂ R[X1, . . . , Xk] be a finite set of polynomials. Then,

b(Zer(Q,Rk),Z2) ≤ b(Zer(Q,Ck),Z2).

Remark 15. Even though the Smith exact sequence from which the Smith inequality
is derived is usually stated (see (see for example [22, page 126]) for regular complexes
(and thus compact spaces) X, it has been extended to non-compact but finitistic
(see [22, page 133] for definition) spaces using Čech cohomology. We avoid this
complication by giving a direct reduction to the closed and bounded case for affine
sub-varieties of Ck defined over R, the only case that is of interest to us in this
paper.

Proof of Theorem 22. See Appendix. �

3.2.3. Descent spectral sequence. The following theorem proved in [28] allows one
to bound the Betti numbers of the image of a closed and bounded semi-algebraic set
S under a polynomial map F in terms of the Betti numbers of the iterated fibered
product of S over F. More precisely:

Theorem 23. [28] Let S ⊂ Rk be a closed and bounded semi-algebraic set, and
F = (F1, . . . , Fm) : Rk → Rm be a polynomial map. For for all p, 0 ≤ p ≤ m,

bp(F(S),Z2) ≤
∑
i,j≥0
i+j=p

bi(S ×F · · · ×F S︸ ︷︷ ︸
(j+1)

,Z2).



18 SAUGATA BASU AND ANTHONY RIZZIE

3.3. Mixed volume. Mixed volumes of (Newton) polytopes of polynomials play
a very important role in the role of toric varieties, and will play an important role
in this paper (see Theorem 24 below). We recall here the definition and certain
elementary property of mixed volumes that we will need later in the paper referring
the reader to [46, Section A.4] for any missing detail.

3.3.1. Definition of mixed volume.

Definition 1 (Mixed volume). Given compact, convex sets K1, . . . ,Km ⊂ Rm,
and λ1, . . . , λm ≥ 0, λ1K1 + · · · + λmKm is also a compact, convex subset of Rm,
and 1

m!volm(λ1K1 + · · · + λmKm) is given by a polynomial in λ1, . . . , λm. The

coefficient of λ1 · · ·λm in the polynomial 1
m!volm(λ1K1 + · · ·+λmKm) is called the

mixed volume of K1, . . . ,Km and denoted by MV(K1, . . . ,Km).

We will use a few basic properties of mixed volume that we list below (see [46,
Section A.4] for an exposition).

(A) (Linearity)

MV(K1, . . . ,Ki−1, λ
′K ′i + λ′′K ′′i ,Ki+1, . . . ,Km) =

λ′MV(K1, . . . ,K
′
i, . . . ,Km) + λ′′MV(K1, . . . ,K

′′
i , . . . ,Km).

(B) (Monotonicity) K ′i ⊂ K ′′i implies that

MV(K1, . . . ,Ki−1,K
′
i,Ki+1, . . . ,Km) ≤ MV(K1, . . . ,Ki−1,K

′′
i ,Ki+1, . . . ,Km).

(C) If K1 = · · · = Km = K, then

MV(K1, . . . ,Km) = volm(K).

Since in many of our applications we will be interesting in obtaining upper
bounds on mixed-volumes of certain special polytopes – namely products of sim-
plices or boxes, the following simple consequences of Properties (A), (B) and (C)
will be useful.

Lemma 1. For ai ≥ 0, 1 ≤ i ≤ m, let

Ki = {0} × {0}︸ ︷︷ ︸
i−1

×[0, ai]× {0} × {0}︸ ︷︷ ︸
m−i−1

.

Then,

MV(K1, . . . ,Km) =
a1 · · · am

m!
.

Proof. First observe that

1

m!
volm(λ1K1 + · · ·+ λmKm) =

1

m!
volm([0, λ1a1]× · · · × [0, λmam])

=
(a1 · · · am

m!

)
λ1 · · ·λm.

It then follows from Definition 1 that

MV(K1, . . . ,Km) =
a1 · · · am

m!
.

�
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Proposition 2. Let B1, . . . , B` ⊂ Rk, 1 ≤ ` ≤ k, and for 1 ≤ i ≤ `, Bi =
[0, di,1] × · · · × [0, di,k]. We denote by d = (di,j)1≤i≤`

1≤j≤k
. Let α1, . . . , α` ∈ Z>0, with∑`

i=1 αi = k, and denote α = (α1, . . . , α`). Let

N(d,α) = MV(B1, . . . , B1︸ ︷︷ ︸
α1

, . . . , B`, . . . , B`︸ ︷︷ ︸
α`

).

Then,

N(d,α) =
∑

A=(aij)∈{0,1}`×k∑
1≤j≤k aij=αi,1≤i≤`∑
1≤i≤` aij=1,1≤j≤k

dA.(3.5)

Denoting by
(
[1,k]
α

)
the set of all partitions of [1, k] into disjoint subsets J1, . . . , J`

with card(Ji) = αi, 1 ≤ i ≤ `,

N(d,α) ≤ max
(J1,...,J`)∈([1,k]

α )

 ∏
1≤i≤`
j∈Ji

di,j

 .(3.6)

In the special case, when for 1 ≤ i ≤ `, 1 ≤ j ≤ k, di,j = di,

N(d,α) = dα1
1 · · · d

α`

` .(3.7)

Proof. Eqns. (3.5) and (3.6) follow from Lemma 1 and properties (A), (B), and
(C) of mixed volumes stated previously. Eqn. (3.7) is a simple consequence of
properties (A), and (C) of mixed volumes stated earlier. �

Corollary 1. With the same notation as in Proposition 2, denoting for 1 ≤ i ≤ `,

di = max
J⊂[1,k],card(J)=αi

∏
j∈J

di,j ,

N(d,α) ≤ dα1
1 · · · d

α`

` .(3.8)

Proof. Immediate from Eqn. (3.5) in Proposition 2. �

3.4. Topology of complex varieties.

3.4.1. Euler-Poincaré characteristics of generic intersections in Cn. In this section
we recall a fundamental result due to Khovanskĭı [35] that we will exploit heavily
later in the paper. This result in conjunction with Theorem 22 (Smith inequality)
allows us to bound the Betti numbers of generic algebraic varieties in Rk in terms
of the Newton polytopes of the defining polynomials (under a weak hypothesis on
the Newton polytopes stated in Property 1 below).

Before recalling Khovanskĭı’s result we first introduce some more notation.

Notation 11. Let k be any field. For P =
∑
ααα∈Nk cαααXααα ∈ k[X1, . . . , Xk], we

denote by supp(P ) ⊂ Qk the convex hull of the set {ααα ∈ Nk | cααα 6= 0}.

Property 1. Given a tuple ∆∆∆ = (∆1, . . . ,∆`), where for i = 1, . . . , `, ∆i ⊂ Qk
is a convex polytope, we say that ∆∆∆ satisfies Property 1 if for each non-empty
subset L ⊂ [1, `], dim(

∑
i∈L ∆i) is at least k − `+ card(L). We say that a tuple of

polynomials P = (P1, . . . , P`), Pi ∈ k[X1, . . . , Xk] satisfies the same property if the
tuple supp(P) = (supp(P1), . . . , supp(P`)) satisfies the above property.
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The following two special cases where Property 1 holds will be important later
and we record this fact here.

Remark 16. Notice that if each ∆i is a standard k-dimensional simplex in Rk of
side length di (i.e. the convex hull of 0, (di, 0 . . . , 0), . . . , (0, . . . , 0, di), with di > 0),
then the tuple (∆1, . . . ,∆`) satisfies Property 1. The same is true if each ∆i =

[0, di,1]× · · · × [0, di,k], where d = (di,j)1≤i≤`
1≤j≤k

∈ Z`×k>0 .

We first need a notation.

Notation 12. For α ∈ Zp≥0, and polytopes ∆1, . . . ,∆p ⊂ Rk, and any monomial

M(X1, . . . , Xp) = Xα of degree k,

M(∆1, . . . ,∆p) = k! MV(∆1, . . . ,∆1︸ ︷︷ ︸
α1

, . . . ,∆p, . . . ,∆p︸ ︷︷ ︸
αp

),

and the definition is extended to any form H ∈ Q[X1, . . . , Xp] of degree k, by linear-
ity. Finally, for any rational function F (X1, . . . , Xp), we define F (∆1, . . . ,∆p) =
Fk(∆1, . . . ,∆p) where Fk is the degree k homogeneous component of the Taylor
expansion of F at 0.

Theorem 24. [35] Let P = (P1, . . . , P`), where each Pj ∈ C[X1, . . . , Xk], and such
that P satisfies Property 1, and the coefficients of the polynomials Pj are generic.
Let V = Zer(P,Ck). Then,

χ(V ) =
∑

I⊂[1,k]

∏̀
j=1

∆I
j

1 + ∆I
j

,

where ∆I
j is the face of ∆j obtained by setting Xi = 0 for all i ∈ I (cf. Notation

12).

3.4.2. Betti numbers of smooth complete intersections in Ck. The following propo-
sition is well known but we include a proof in the Appendix for the sake of com-
pleteness, and also because one finds usually the corresponding statement for non-
singular projective varieties only in standard textbooks of algebraic geometry (see
for example [55]).

Proposition 3. Let V ⊂ Ck be either a zero-dimensional variety or a connected
non-singular affine variety of dimension k − ` ≥ 0. Then,

(3.9) b(V,Z2) = 1 + (−1)k−`+1 + (−1)k−`χ(V,Z2).

Proof. See Appendix. �

A similar result also holds for non-singular projective complete intersection va-
rieties as well, which we state without proof since this fact is very well known.

Proposition 4. Let V ⊂ PkC be a connected non-singular projective variety of
dimension k − `. Then, for k ≥ 1,

b(V,Z2) = (1 + (−1)k−`+1)(k − `+ 1) + (−1)k−`χ(V,Z2).

Remark 17. Note that there are well-known formulas (see for example [34, 20])
for the Betti numbers of projective varieties which are non-singular complete in-
tersections, in terms of the degree sequence defining them. The formulas for the
Betti numbers for the affine parts of these varieties are then easily deducible (by
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subtracting the part at infinity using Lefschetz duality). However, this approach
is not applicable in many of the situations considered in the current paper since
the generic affine intersections that we consider might necessarily be singular at
infinity. For example, let k = 3, and ∆ = [0, 1] × [0, 1] × [0, 1]. Then, a generic
polynomial P ∈ C[X1, X2, X3] with supp(P ) ⊂ ∆, defines a non-singular hypersur-
face in C3, but defines a singular curve in the projective plane at infinity defined
by the (homogeneous) equation X1X2X3 = 0 (with three singular points – namely,
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)). One could take more complicated compactifica-
tions of affine space – for example, multi-projective spaces – which would solve this
problem, at the cost of increasing the complexity of the process of subtracting the
added part, a process which moreover would be different in each of the cases that
we consider. Because of these reasons it is convenient for us to have directly an
expression for the Betti numbers of generic complex affine intersections – which is
afforded by Theorem 24 in conjunction with Proposition 3.

We stated previously that one of our main tools that we are going to exploit
heavily is Theorem 24, and this what we proceed to do in this section. We use The-
orem 24 in conjunction with Proposition 3 and Theorem 22 (Smith inequalities)
to obtain bounds on the sum of the (Z2) Betti numbers of certain generic affine
complete intersection sub-varieties of Ck and Rk that are of interest to us. These
include varieties defined by generic polynomials having prescribed total degrees,
or multi-degrees, or with a fixed block of variables appearing at most quadrati-
cally with the remaining having prescribed degrees etc. These results are stated
separately since the precise calculations and the bounds obtained in each case is
different (though the main idea used to obtain these bounds is the same).

3.5. Some applications of Khovanskĭı’s theorem. In this section we use The-
orem 24 to obtain bounds on the Betti numbers of generic affine intersections in
several cases of interest to us. Since some of the calculations are long and technical,
for the sake of readability, we defer the proofs of some of the propositions to the
Appendix.

We begin by observing that as a special case, when ` = k, Theorem 24 gives us
a theorem of Bernstein and Kouchnirenko, namely:

Proposition 5. [39] Let P = {P1, . . . , Pk} ⊂ C[X1, . . . , Xk] be a finite set such
that P satisfies Property 1, and the coefficients of the polynomials Pi are sufficiently
generic. Then, Zer(P,Ck) is a finite set, and

card(Zer(P,Ck)) = k! MV(∆1, . . . ,∆k),

where ∆i = supp(Pi), 1 ≤ i ≤ k. Moreover, if additionally P ⊂ R[X1, . . . , Xk],
then

card(Zer(P,Rk)) ≤ k! MV(∆1, . . . ,∆k).

Proof. Immediate from Theorem 24. �

Proposition 5 deals with the generic zero-dimensional case. Another result that
follows immediately from Theorem 24 is the following well known expression giving
the sum of the Betti numbers of a generic affine hypersurface in Ck defined by one
polynomial of degree d. Note that this proposition could be also be deduced using
an argument involving counting multiplicities of Milnor fibers (see for example, [24,
page 152]).
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Proposition 6. Let P ∈ C[X1, . . . , Xk], k > 0 be a generic polynomial of total
degree d. Then,

b(Zer(P,Ck),Z2) = 1 + (d− 1)k.(3.10)

If P ∈ R[X1, . . . , Xk],

b(Zer(P,Rk),Z2) ≤ 1 + (d− 1)k.(3.11)

Proof. See Appendix. �

Remark 18. Notice that if P ∈ R[X1, . . . , Xk] and defines a bounded, non-singular
hypersurface in Rk, then Proposition 6 gives a better bound than just counting
critical points of a linear functional on Zer(P,Rk). The latter gives a bound of
d(d− 1)k−1 > 1 + (d− 1)k for all d, k > 1, since

d(d− 1)k−1 − (1 + (d− 1)k) = (d− 1)k−1 − 1

> 0, for all d, k > 1.

We now consider the case of generic affine intersections of hypersufaces in Ck de-
fined by polynomials of possibly different degrees. The same result as in Proposition
7 could in principle be deduced from Hirzebruch’s formula for the Euler-Poincaré
characteristics of generic complex intersections in PkC, but the calculation would be
much more complicated (see for example [20, 40]). We did not find the explicit ex-
pression (as opposed to being given implicitly via recurrence relations or generating
functions) given in (3.12) below in the existing literature.

Proposition 7. Let P = {P1, . . . , P`} ⊂ C[X1, . . . , Xk], k ≥ ` > 0 be a set of
generic polynomials with deg(Pi) = di.

Then,
(3.12)

b(Zer(P,Ck),Z2) = 1+(−1)k−`+1+d1 · · · d`·

k−∑̀
j=0

(−1)k+j+1

(
k

j + `

)
hj(d1, . . . , d`)

 ,

if ` < k, and

(3.13) b(Zer(P,Ck),Z2) = d1 · · · dk
if ` = k, where we denote by

hd(X1, . . . , Xn) =
∑

i1,...,in≥0
i1+···+in=d

Xi1
1 · · ·Xin

n ,

the complete homogeneous symmetric function of degree d.
Moreover, if d1 = · · · = d` = d then

(3.14) b(Zer(P,Ck),Z2) ≤ 1 + (−1)k−`+1 +

(
k − 1

`− 1

)
(dk + k − 1) if ` < k,

(3.15) b(Zer(P,Ck),Z2) ≤ dk if ` = k.

Additionally, if P ⊂ R[X1, . . . , Xk], then
(3.16)

b(Zer(P,Rk),Z2) ≤ 1+(−1)k−`+1+d1 · · · d`·

k−∑̀
j=0

(−1)k+j+1

(
k

j + `

)
hj(d1, . . . , d`)

 ,
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if ` < k, and

(3.17) b(Zer(P,Rk),Z2) ≤ d1 · · · dk,
if ` = k.

In the case d1 = · · · = d` = d,

(3.18) b(Zer(P,Rk),Z2) ≤ 1 + (−1)k−`+1 +

(
k − 1

`− 1

)
(dk + k − 1),

if ` < k, and

(3.19) b(Zer(P,Rk),Z2) ≤ dk,
if ` = k.

Proof. See Appendix. �

Remark 19. A special case of Proposition 7 will be used later, and we record it
here for future use. Let P ⊂ R[X1, . . . , Xk] be generic and equal to the disjoint
union of P1 and P2, with card(Pi) = `i, and the total degrees of the polynomials
in Pi equal di, i = 1, 2. Applying Proposition 7 to this special case we obtain that
b(Zer(P,Rk),Z2) is bounded by

1 + (−1)k−`+1 + d`11 d
`2
2 ·

k−∑̀
j=0

(−1)k−`+j
(

k

j + `

)
hj(d1, . . . , d1︸ ︷︷ ︸

`1

, d2, . . . , d2︸ ︷︷ ︸
`2

)


= 1 + (−1)k−`+1 + d`11 d

`2
2 ·

k−∑̀
j=0

j∑
i=0

(−1)k−`+j
(

k

j + `

)(
`+ i− 2

i

)
dj−i1 di2


≤

(
k − 2

`− 2

)
d`11 d

k−`1
2 +O(1)kd`1+1

1 dk−`1−12 .

In particular if `1 = 1, and d1 = 2, b(Zer(P,Rk),Z2) is bounded by

1 + (−1)k−`+1 + 2d`−1 ·

k−∑̀
j=0

j∑
i=0

(−1)k−`+j
(

k

j + `

)(
`+ i− 2

i

)
2j−idi

(3.20)

≤ 2

(
k − 2

`− 2

)
dk−1 + (O(d))k−2.

Proposition 8. Let P ⊂ C[X(1), . . . ,X(p)], for 1 ≤ i ≤ p, X(i) = (X
(i)
1 , . . . , X

(i)
ki

)

and degX(i)(P ) ≤ di, P ∈ P, with ` = card(P) > 0. Suppose also that the polyno-
mials in P are generic.

Then,
(3.21)

b(Zer(P,Ck),Z2) ≤ 1+(−1)k−`+1+(k−`+2)2
(

k

`− 1

)(
k

k

)−1
(1 + p)3k−`+1

p(p+ 2)
dk11 · · · dkpp .

In case, P ⊂ R[X(1), . . . ,X(p)], then
(3.22)

b(Zer(P,Rk),Z2) ≤ 1+(−1)k−`+1+(k−`+2)2
(

k

`− 1

)(
k

k

)−1
(1 + p)3k−`+1

p(p+ 2)
dk11 · · · dkpp .
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Proof. See Appendix. �

In order to investigate the tightness of the inequalities in Proposition 8, it is
instructive to consider the special case of Proposition 8 when the block sizes are all
equal to one (i.e. p = k) and ` = 1.

Proposition 9. Let P be a generic polynomial in C[X1, . . . , Xk], and degXi
(P ) ≤

di with d1 ≥ d2 ≥ · · · ≥ dk ≥ 0. We denote by d̄ = (d1, . . . , dk), and for J ⊂ [1, k],
we denote d̄J =

∏
i∈J di. Then,

(3.23) b(Zer(P,Ck),Z2) ≤ 1 + (−1)k +

 k∑
j=1

(−1)k−j
∑

J⊂[1,k]
card(J)=j≤k

j!d̄J

 ,

and if P ∈ R[X1, . . . , Xk], then

(3.24) b(Zer(P,Rk),Z2) ≤ 1 + (−1)k +

 k∑
j=1

(−1)k−j
∑

J⊂[1,k]
card(J)=j≤k

j!d̄J

 .

Proof. See Appendix. �

Remark 20 (Comparison with the Olĕınik-Petrovskĭı-Thom-Milnor bound). The-
orem 1 gives a bound of D(2D − 1)k−1 in the context of Proposition 9 with the
total degree D = d1 + · · · + dk. This bound is in general much worse than the
bound in inequality (3.24) in Proposition 9. For example, take k = 2, d̄ = (d, d).
Then the bound from Theorem 1 (i.e. the Olĕınik-Petrovskĭı-Thom-Milnor bound)
is 2d(4d− 1), while Proposition 9 yields a bound of

1 + 1− 2d+ 2d2 = 2d2 − 2d+ 2 < 2d(4d− 1)

for all d > 0.

Remark 21. Proposition 9 is tight when k1 = k2 = 1 and d̄ = (2, 2). Then, the
bound in Proposition 9 is (using the formula in Remark 20)

2 · 22 − 2 · 2 + 2 = 6.

Consider the polynomial

Pε = (X2
1 − 1)(X2

2 − 1)− ε,

and let V = Zer(Pε,R
2). Then, for all sufficiently small ε > 0, b0(V,Z2) = 5, and

b1(V,Z2) = 1 (see Figure 1), so that b(V,Z2) = 6.
Notice that the Olĕınik-Petrovskĭı-Thom-Milnor bound of d(2d − 1)k−1, where

d is the total degree, yields in this case 4 · (8− 1) = 28, which is much worse than
the bound in Proposition 9.

Proposition 10. Let B1, . . . , B` ⊂ Rk, 1 ≤ ` ≤ k, and for 1 ≤ i ≤ `, Bi =
[0, di,1] × · · · × [0, di,k]. We denote by d = (di,j)1≤i≤`

1≤j≤k
. Let P = {P1, . . . , P`} ⊂
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Figure 1. The set of real zeros in R2 of Pε = (X2
1 −1)(X2

2 −1)−ε
for small ε.

C[X1, . . . , Xk, with supp(Pi) = Bi, P generic.

b(Zer(P,Ck),Z2) ≤ 1 + (−1)k−`+1 +


k∑
j=`

∑
J∈([1,k]

j )

(−1)k−j
∑

α=(α1,...,α`)∈Z`
>0

α1+···+α`=j

N(dJ ,α)



≤ O(`)k · max
α=(α1,...,α`)∈Z>0

α1+···+α`=k

max
(J1,...,J`)∈([1,k]

α )

 ∏
1≤i≤`
j∈Ji

di,j

 ,(3.25)

and if P ∈ R[X1, . . . , Xk], then

b(Zer(P,Rk),Z2) ≤ 1 + (−1)k−`+1 +


k∑
j=`

∑
J∈([1,k]

j )

(−1)k−j
∑

α=(α1,...,α`)∈Z`
>0

α1+···+α`=j

N(dJ ,α)



≤ O(`)k · max
α=(α1,...,α`)∈Z>0

α1+···+α`=k

max
(J1,...,J`)∈([1,k]

α )

 ∏
1≤i≤`
j∈Ji

di,j

 ,(3.26)

where for J ⊂ [1, k], dJ is the ` × card(J) sub-matrix obtained by extracting the
columns corresponding to J in d, and N(dJ ,α) is defined in (3.5).

Proof. See Appendix. �

3.5.1. Quadratic and partially quadratic case. We now use Theorem 24 to obtain
bounds on the Betti numbers of generic intersections of quadratic and partially qua-
dratic polynomials. Since the dependence of the bounds on the different parameters
in this case are rather different from the previous cases, we start by explaining the
most simple case in detail.

Proposition 11. Let P1, P2 be two generic quadratic polynomials in C[X1, . . . , Xk].
Then,

b(Zer({P1, P2},Ck),Z2) = 2k.(3.27)
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Proof. First note that supp(P1), supp(P2) are both equal to the convex hull of
0, (2, 0, . . . , 0), . . . , (0, . . . , 0, 2). It follows applying Theorem 24 that for k ≥ 2,

χ(Zer({P1, P2},Ck),Z2) =

k∑
j=2

(
k

j

)
(−1)j(j − 1)j!

2j

j!

= 1 +

k∑
j=0

(
k

j

)
(−1)j(j − 1)2j

= 1 +

k∑
j=0

(
k

j

)
(−1)jj2j −

k∑
j=0

(
k

j

)
(−1)j2j

= 1 + 2

k∑
j=0

(
k

j

)
(−1)jj2j−1 −

k∑
j=0

(
k

j

)
(−1)j2j

= 1 + 2k(1− 2)k−1(−1)− (1− 2)k

= 1 + (−1)k2k − (−1)k

= 1 + (−1)k(2k − 1).

This implies (using Eqn. (3.9)) that

b(V,Z2) = 1 + (−1)k(χ(Vk,Z2)− 1)

= 1 + (−1)k+1 + (−1)kχ(Vk,Z2)

= 1 + (−1)k+1 + (−1)k
(
1 + (−1)k(2k − 1)

)
= 2k.

�

Remark 22. In particular, when k = 2, b(Zer({P1, P2},Ck),Z2) = 4, agreeing with
the fact that two generic quadratic polynomials in two variables will have 4 points
in their intersection.

In the case k = 3, notice that intersection, W of two generic quadric surfaces in
P3
C is topologically a torus S1×S1. The intersection of W with the plane at infinity

is 4 points. Hence, Zer({P1, P2},Ck) in this case is homeomorphic to S1×S1 minus
4 points. This gives,

b0(Zer({P1, P2},Ck),Z2) = 1,

b1(Zer({P1, P2},Ck),Z2) = 5.

This gives, χ(V,Z2) = −4 which agrees with the formula above.

We now consider a more general situation.

Proposition 12. Let P = {P1, . . . , P`} be a finite set of generic polynomials in
C[X1, . . . , Xk1 , Y1, . . . , Yk2 ] with 0 < ` ≤ k = k1+k2, and degX(Pi) ≤ d,degY(Pi) ≤
2.

Then,

(3.28) b(Zer(P,Ck),Z2) ≤ 2 + (−1)k−`+1 + `2`(k1 + k2)`−1 (2d(k1 + k2) + 1)
k1 .

If additionally P ⊂ R[X1, . . . , Xk1 , Y1, . . . , Yk2 ], then

(3.29) b(Zer(P,Rk),Z2) ≤ 2 + (−1)k−`+1 + `2`(k1 + k2)`−1 (2d(k1 + k2) + 1)
k1 .
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Proof. See Appendix. �

3.5.2. Generic intersections of quadrics in affine and projective spaces. Since the
intersections of quadrics is a very well studied topic [6, 40] we investigate the special
case of Proposition 12 where k1 = 0. In particular, we calculate the leading coeffi-
cient of the polynomial in k giving the sum of the Betti numbers of the intersection
of ` generic quadrics in PkC for every fixed `, thus solving a problem posed in [40]
(see Eqn. 3.32 below).

Setting k1 = 0 and k2 = k, in the above calculation and keeping the same
notation, we obtain that

χ(Zer(P,Ck),Z2) = 1 + (−1)k+1

(
`−1∑
h=0

(
k

h

)
(−2)h

)
.(3.30)

In order to calculate the Euler-Poincaré characteristic of a generic complete
intersection of dimension k−` in PkC in terms of a fixed degree sequence (d1, . . . , d`),
it suffices to take the sum of the Euler-Poincaré characteristics of the corresponding
affine varieties in Ck,Ck−1, . . . ,C` (with the same degree sequence). Applying
this in our situation we obtain that if P = {P1, . . . , P`} are generic homogeneous
quadrics in C[X0, . . . , Xk] then it follows from the above and (3.30) that

χ(Zer(P,PkC),Z2) =

k∑
j=`

(
1 + (−1)j+1

(
`−1∑
h=0

(
j

h

)
(−2)h

))

=

`−1∑
h=0

(−2)h

 k∑
j=`

(−1)j+1

(
j

h

)+ (k − `+ 1),(3.31)

and using Proposition 4

(3.32) b(Zer(P,PkC),Z2) = (1 + (−1)k−`+1)(k− `+ 1) + (−1)k−`χ(Zer(P,PkC),Z2)

for ` < k.

Remark 23. It is easy to deduce directly from (3.31) and (3.32) that for ` ≥ 3

b(Zer(P,PkC),Z2) =
2`−2

(`− 1)!
k`−1 +O(k`−2),(3.33)

for fixed ` and k large.
To see this define,

B(h, k, `) = 2h

 k∑
j=`

(−1)j+1

(
j

h

) .

B(`− 1, k, `) is the absolute value of the term corresponding to h = `− 1 in the
expression in (3.31). We have

B(`− 1, k, `) = 2`−1
((

k

`− 1

)
−
(
k − 1

`− 1

)
+ · · ·+ (−1)k−`−1

(
`− 1

`− 1

))
= 2`−1

((
k − 1

`− 2

)
+

(
k − 3

`− 2

)
+ · · ·

)
.(3.34)
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Lemma 2. For p ≥ 0, and all large n,

b(n−p)/2c∑
i=0

(
n− 2i

p

)
=

1

2

(
n+ 1

p+ 1

)
+O(np).

Proof. Let

A(n, p) =

b(n−p)/2c∑
i=0

(
n− 2i

p

)
.

From standard binomial identities we deduce

A(n, p) +A(n− 1, p) =

b(n−p)c∑
i=0

(
n− i
p

)
=

(
n+ 1

p+ 1

)
,

and

A(n, p)−A(n− 1, p) = A(n− 1, p− 1) ≤ A(n, p− 1).

The lemma now follows by induction on p, the case p = 0 being trivial. �

It follows from Lemma 2 and (3.34) that

B(`− 1, k, `) = 2`−2
(

k

`− 1

)
+O(k`−2).(3.35)

Moreover,

`−2∑
h=0

B(h, k, `) = O(k`−2).(3.36)

It follows from (3.35), (3.36), Proposition 4 that

b(Zer(P,PkC),Z2) = 2`−2
(

k

`− 1

)
+O(k`−2),

which implies inequality (3.33).
This answers a question raised in [40, page 4], where the first few values of the

leading coefficients were given, and the problem of calculating it exactly was posed.

Notice that this coefficient, 2`−2

(`−1)! , goes to zero exponentially fast with `.

Using Theorem 22 (Smith inequality) and (3.33) we obtain the following theorem
(cf. [40]).

Theorem 25. Let P ⊂ R[X0, . . . , Xk] be a set of ` generic homogeneous polyno-
mials of degree 2. Then for every fixed ` ≥ 3,

b(Zer(P,PkR),Z2) ≤ 2`−2
(

k

`− 1

)
+O(k`−2).

Remark 24. Note that a more naive approach using a bound of (O(k))`−1 on the
Betti numbers of generic intersections of ` affine quadrics in Ck, the fact that PkC
is the disjoint union of Ck,Ck−1, . . . ,C0, and the additivity property of the Euler-
Poincaré characteristics, yields a slightly coarser bound of (O(k))`. The signs thus
play an important role in the proof of Theorem 25.
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3.5.3. One quadratic block and multi-degree case. We now consider the case of
generic intersections of polynomials having one block of variables of degree 2, while
the other variables are allowed to have different degrees. More precisely, we prove:

Proposition 13. Let P = {P1, . . . , P`} ⊂ C[X1, . . . , Xk1 , Y1, . . . , Yk2 ] be a finite
set of generic polynomials with degXi

(P ) ≤ di and degY(P ) ≤ 2 for all P ∈ P with
d1 ≥ d2 ≥ · · · ≥ dk1 and 0 < ` ≤ k = k1 + k2. Then,
(3.37)

b(Zer(P,Ck),Z2) ≤ 2 + (−1)k−`+1 + `2`k1!(k1 + k2)`−1 (2(k1 + k2) + 1)
k1 d1 · · · dk1 .

If additionally P ⊂ R[X1, . . . , Xk1 , Y1, . . . , Yk2 ], then
(3.38)

b(Zer(P,Rk),Z2) ≤ 2 + (−1)k−`+1 + `2`k1!(k1 +k2)`−1 (2(k1 + k2) + 1)
k1 d1 · · · dk1 .

Proof. See Appendix. �

4. Proofs of the main theorems

4.1. Summary of the methods. Our main tools are the bounds on the Betti
numbers of generic intersections proved in Section 3.5 above, which are all con-
sequences of Theorem 24 and Theorem 22 (Smith inequality), the techniques of
infinitesimal perturbations ([17, Chapter 7]), and the inequalities derived from the
Mayer-Vietoris exact sequence (Proposition 1). Using the techniques of infinitesi-
mal perturbations, and the inequalities in Proposition 1, we reduce the problem of
bounding the Betti numbers of semi-algebraic sets defined by general (non-generic)
polynomials P ∈ P ⊂ R[X1, . . . , Xk] with support contained in given Newton poly-
topes ∆P , P ∈ P (the tuple (∆P )P∈P satisfying Property 1), to bounding the Betti
numbers of a collection of real affine algebraic varieties defined by generic poly-
nomials with (nearly) the same support. The proofs of Theorems 11, 12, 14, 16,
and 20 (i.e. the cases of different classes of algebraic sets) are very similar to each
other, differing only in the application of the appropriate generic bounds. Because
of this reason we explain only the proof of Theorem 11 in full detail. Similarly, the
proofs of Theorems 13, 15, 18, and 21 (the semi-algebraic cases) are all similar in
structure to the proof of [17, Theorem 7.30] and [17, Theorem 7.38], again differing
only in the application of the appropriate generic bounds. We refer the reader to
[17] for any missing detail.

4.2. Proof of Theorem 11.

Proof of Theorem 11. We first prove

(4.1) b(V,Z2) ≤ 1

2
(1 + (2d− 1)k).

Let
F (X1, . . . , Xk) = (Q2

1 + · · ·+Q2
`)/(r

2 − ‖X‖2).

The set of critical values of F is finite, so there exists c0 ∈ R, c0 > 0 so that
Zer(Q̃,Rk) is a non-singular hypersurface in Rk, where

(4.2) Q̃ = Q2
1 + · · ·+Q2

` + c(‖X‖2 − r2) = 0,

for all c ∈ (0, c0).

Denote by Ṽ = Zer(Q̃,Rk). Since deg(Q̃) ≤ 2d, we have by Proposition 6 that

(4.3) b(Ṽ,Z2) ≤ 1 + (2d− 1)k.
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Notice that the the closed and bounded semi-algebraic set, S defined by Q̃ ≤ 0,
is semi-algebraically homotopy equivalent to V .

Since S is bounded by Ṽ ,

(4.4) b(S,Z2) ≤ 1

2
b(Ṽ,Z2)

(using for example [17, Proposition 7.27]).
Combining (4.3) and (4.4) we obtain

b(V,Z2) = b(S,Z2) ≤ 1

2
b(Ṽ,Z2) ≤ 1

2
(1 + (2d− 1)k),

which proves (4.1).
We now prove that

(4.5) b(V,Z2) ≤
(
`

k

)
2kd′k +

k−1∑
j=1

(
`

j

)
2j(F1(d′, k, j) + F2(d′, k, j)) + 3,

where d′ is the least even integer ≥ 0.
Denote for every even d′′ ≥ 0, by Hd′′,k ⊂ R〈ε0〉[X1, . . . , Xk] the subspace of

polynomials of degree ≤ d′′, and observe that there is a non-empty, open semi-
algebraic subset Ud′′,k ⊂ Hd′′,k such that for every H ∈ Ud′′,k, H is strictly positive

on R〈ε0〉k.
Let

Q̃0 = ‖X‖2 − 1/ε20 − δ0H0,

and for 1 ≤ i ≤ `, let

Q̃i,+ = Qi + δiH2i−1,

Q̃i,− = Qi − δiH2i,

where the polynomials H0 ∈ U2,k, and H1, . . . ,H2` ∈ Ud′,k are chosen to be suffi-
ciently generic.

Also, let R′ = R〈ε0, δ0, δ1, . . . , δ`〉.
We need the following lemma.

Lemma 3. The real algebraic variety Ext(V,R′) (cf. Notation 9) is semi-algebraically

homotopy equivalent to the semi-algebraic set S̃ ⊂ R′k defined by

(Q̃0 < 0) ∧
∧

1≤i≤`

((Q̃i,+ > 0) ∧ (Q̃i,− < 0)).

Proof. Follows from [17, Lemma 16.17]. �

Let

W̃ = Zer(Q̃0,R
′k) ∪

⋃
1≤i≤`
ε∈{+,−}

Zer(Q̃i,ε,R
′k).

Note that R′k \W̃ is an open semi-algebraic set, and S̃ is the union of a subset of

the semi-algebraically connected components of R′k \ W̃ which are bounded. This
implies that

b(S̃,Z2) ≤ b(
•

R′k \ W̃,Z2),
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where
•

R′k is the one-point compactification of R′k, and is semi-algebraically home-
omorphic to the sphere Sk defined over R′. Further using Alexander duality [50,

page 296], and the fact that W̃ is non-empty we obtain

b(S̃,Z2) ≤ b(
•

R′k \ W̃,Z2) ≤ b(W̃,Z2) + 1.

We now bound b(W̃,Z2) using Proposition 1 noting that W̃ is the union of 2`+1
real algebraic sets.

Let

Q̃ = {Q̃i,ε | 1 ≤ i ≤ `, ε ∈ {+,−}}.
Proposition 1 implies that

(4.6)

b(W̃,Z2) ≤
∑
Q̃′⊂Q̃,

card(Q̃′)≤k−1

b(Zer({Q̃0} ∪ Q̃′,R′k),Z2) +
∑
Q̃′⊂Q̃,

card(Q̃′)≤k

b(Zer(Q̃′,R′k),Z2).

Notice that for Q̃′ ⊂ Q̃ with card(Q̃′) = k, we have by Bezout’s theorem that

(4.7) b(Zer(Q̃′,R′k),Z2) ≤ d′k.

Inequalities (4.7) and (4.6) imply
(4.8)

b(W̃,Z2) ≤
(
`

k

)
2kd′k+

∑
Q̃′⊂Q̃,

card(Q̃′)≤k−1

(b(Zer({Q̃0}∪Q̃′,R′k),Z2)+b(Zer(Q̃′,R′k),Z2)).

Finally for Q̃′ ⊂ Q̃ with card(Q̃′) = j, 1 ≤ j ≤ min(`, k − 1), we have,

(4.9) b(Zer({Q̃} ∪ Q̃′,R′k),Z2) ≤ F1(d′, k, j),

using inequality (3.20) in Remark 19, and

(4.10) b(Zer(Q̃′,R′k),Z2)) ≤ F2(d′, k, j)

using inequality (3.18) in Proposition 7. Note that if j = 0, then

b(Zer({Q̃0},R′k),Z2) = 2,

and

b(Zer(Q̃′,R′k),Z2) = b(Zer(∅,R′k),Z2) = b(R′k,Z2) = 1.

Inequality (4.5) now follows from Lemma 3, and inequalities (4.6), (4.8), (4.9),
and (4.10).

Finally, inequality (2.1) follows from inequalities (4.1) and (4.5). �

4.3. Proofs of Theorems 12 and 13.

Proof of Theorem 12. We first prove

b(V,Z2) ≤ 1

2
Ggen(2d,k, 1).(4.11)

The proof is similar to that of Theorem 11, but we note that the polynomial (4.2)

Q̃ = Q2
1 + · · · + Q2

` + c(‖X‖2 − r2) ∈ R[X(1), . . . ,X(p)] has multi-degree bounded

by 2d. Therefore, b(Zer(Q̃,Rk),Z2) ≤ Ggen(2d,k, 1) using Proposition 8.
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We now prove

b(V,Z2) ≤ 3 +

k∑
j=1

(
`

j

)
2j(Ggen(d′,k, j) +Ggen(d′,k, j + 1)).(4.12)

We proceed in the same manner as in the proof of Theorem 11. We note that the
sphere can also be viewed as a polynomial in R[X(1), . . . ,X(p)], where each block
has degree equal to 2. Notice that we assume all di ≥ 2, so we can view the sphere
as another polynomial with the same block structure and degree bounds as each
polynomial in Q. Therefore, we can replace both F1(d′, k, j) (resp. F2(d′, k, j))
with Ggen(d′,k, j + 1) (resp. Ggen(d′,k, j)). The theorem follows from inequalities
(4.11) and (4.12). �

Proof of Theorem 13. The proof is similar to those of [17, Theorem 7.30] and [17,
Theorem 7.38]. From Proposition 7 with the following modification that instead of
using Theorem 1 for bounding the sum of the Betti numbers of various algebraic
sets that occur, we use the bound in Theorem 12. �

4.4. Proofs of Theorems 14 and 15.

Proof of Theorem 14. The proof is similar to the proof of Theorem 12 using Propo-
sition 10 instead of Proposition 8. �

Proof of Theorem 15. The proof is similar to the proof of Theorem 13 using Propo-
sition 10 instead of Proposition 8. �

4.5. Proofs of Theorems 16, 17, 18, and 19.

Proof of Theorem 16. The proof is similar to that of Theorem 12. Since we have `
partially quadratic polynomials, we use Hgen(d′, k1, k2, j) in place of Ggen(d′,k, j),
where Hgen(d′, k1, k2, j) is the bound from Proposition 12, noting that we assume
d ≥ 2. �

Proof 0f Theorem 17. The proof is similar to the proof of Theorem 11 above using
generic positive quadrics to perturb the given polynomials (in lieu of the polynomials
Hi in the proof of Theorem 11), noticing that there is no need to add a new
polynomial corresponding to the big ball, and finally using the expression in (3.32)
in lieu of the generic bound, and Theorem for the asymptotic bound. �

Proof of Theorem 18. The proof is similar to those of [17, Theorem 7.30] and [17,
Theorem 7.38] with the modification that instead of using Theorem 1 for bounding
the sum of the Betti numbers of various algebraic sets that occur, we use the bound
in Theorem 16. �

Proof of Theorem 19. The proof is again similar to the proofs of Theorem 7.30 and
Theorem 7.38 in [17] with several modifications. In the proof of Theorem 7.30 in
[17], we let Q = {0}, and P = P1 ∪ P2, and we let P1 = {P1, . . . , Ps} and P2 =
{Ps+1, . . . , Ps+m}. In Proposition 7.34, for each sign condition σ ∈ {0, 1,−1}P , we

redefine the basic closed semi-algebraic set Reali(σ) ⊂ R〈δ, δ1, . . . , δs+m, ε1, . . . , εs+m〉k
in the following way. Without loss of generality assume
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σ(Ph) = 0 if h ∈ I,
σ(Ph) = 1 if h ∈ J,

σ(Ph) = −1 if h ∈ {1, . . . , s+m} \ (I ∪ J),

and denote by Reali(σ) the subset of R〈δ, δ1, . . . , δs+m, ε1, . . . , εs+m〉k defined by

δ2(|X|2 + |Y|2) ≤ 1,

−εh ≤ Ph ≤ εh, if h ∈ I,
Ph ≥ δh, if h ∈ J,

Ph ≤ −δh, if h ∈ {1, . . . , s} \ (I ∪ J).

It is easy to verify that Proposition 7.34 in [17] remains true with this new

definition of Reali(σ).
Now we observe that since P1 ⊂ R[X1, . . . , Xk1 ], no more than k1 polynomials

amongst the set {P1 ± δ1, P1 ± ε1, . . . , Ps ± δs, Ps ± εs} can have a common zero.
Each non-empty real algebraic set V defined by some subset of the polynomials
{P1± δ1, P1± ε1, . . . , Ps± δs, Ps± εs}∪{P0}, where P0 = δ(|X|2 + |Y|2)− 1, is the
set of zeros of two sets of polynomials, namely

(Ph + εhηh)h∈J1 , ηh ∈ {εh, δh}, εh ∈ {±1,±2}, J1 ⊂ [1, s],

(Ph + εhηh)h∈J2 , ηh ∈ {εh, δh}, εh ∈ {±1,±2}, J2 ⊂ [s+ 1, s+m],

and possibly P0, with j1 = card(J1) ≤ k1, and j2 = card(J2) ≤ min(m + 1, k1 +
k2 − j1 − i).

We note that V is also defined by the (card(J2)+1) or (card(J2)+2) (depending
on whether P0 is included or not) polynomials∑

h∈J1

(Ph + εhηh)2, (Ph + εhηh)h∈J2

(and possibly P0). The degrees of these polynomials are at most 2d in X, and at
most 2 in Y. We can use Theorem 16 to bound b(V,Z2) byH(2d, k1, k2, card(J2)+1)
or H(2d, k1, k2, card(J2)+2) (depending on whether P0 is included or not) (cf. Eqn.
(2.6)).

Moreover, the total number of non-empty real algebraic sets V that occur in the
proof is bounded by ∑

0≤j1≤k1
0≤j2≤min(m+1,k1+k2−j1−i)

(
s

j1

)(
m+ 1

j2

)
4j1+j2 .

One now obtains inequality (2.11) by following the rest of the argument in the proof
of Theorem 7.30. Note that we needed to increase the number of polynomials by
one by including the polynomial P0. This accounts for the m + 1 in the subscript
of the second sum in the bound.

The proof of inequality (2.12) is by a similar modification of the proof of Theorem
7.38 in [17] and is omitted. �
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4.6. Proofs of Theorems 20 and 21.

Proof of Theorem 20. The proof is similar to that of Theorem 12. Since we have `
partially quadratic polynomials with several blocks, we use the boundMgen(d′, k1, k2, j)
in place of Ggen(d′,k, j), where Mgen(d′, k1, k2, j) is the bound from Proposition
13, noting that we assume each di ≥ 2. �

Proof of Theorem 21. The proof is similar to that of Theorem 13, except that the
bound for the sum of the Betti numbers of a subset of size j is now given by
M(d′, k1, k2, j). �

5. A few applications

In this section we give a few applications of the results proved in the last section.

5.1. Bounding Betti numbers of pull-backs and direct images under poly-
nomial maps. We discuss a few immediate applications of the multi-degree bounds
proved in Section 4.

Theorem 26 (Bound on pull-back). Let F = {F1, . . . , Fm} ⊂ R[X1, . . . , Xk] and
G ⊂ R[Y1, . . . , Ym], with deg(F ) ≤ d, F ∈ F , and deg(G) ≤ D,G ∈ G, and let
card(G) = s. Let F : Rk → Rm denote the polynomial map x 7→ (F1(x), . . . , Fm(x)),
and let S ⊂ Rm be a G-closed semi-algebraic set. Then,

b(F−1(S),Z2) ≤
k+m∑
i=0

k+m−i∑
j=1

(
m+ s+ 1

j

)
6jGmin(d,k, j)

≤ O(1)k+m(m+ s)k+mdkDm.

Proof. Suppose that Φ(Y1, . . . , Ym) is a G-closed formula defining S. Notice that
F−1(S) is semi-algebraically homeomorphic to the semi-algebraic subset of Rk+m

defined by the formula

Ψ(X,Y) :=

m∧
i=1

(Yi − Fi = 0) ∧ Φ(Y1, . . . , Ym).

The number of polynomials appearing in Ψ is bounded by m + s. The degrees
in Y of the polynomials appearing in Ψ are bounded by D, while the degrees in X
are bounded by d. Applying Theorem 13 with p = 2, k = (k,m), and d = (d,D),
we obtain

b(Reali(Ψ,Rk+m),Z2) ≤
k+m∑
i=0

k+m−i∑
j=1

(
m+ s+ 1

j

)
6jGmin(d,k, j)

≤
k+m∑
i=0

k+m−i∑
j=1

(
m+ s+ 1

j

)
6jO(1)k+mdkDm (using (2.4))

≤ O(1)k+m(m+ s)k+mdkDm.

�

Theorem 27 (Bound on image). Let F = {F1, . . . , Fm},G ⊂ R[X1, . . . , Xk], with
deg(F ) ≤ d, F ∈ F , and deg(G) ≤ D,G ∈ G, and let card(G) = s. Let F :
Rk → Rm denote the polynomial map x 7→ (F1(x), . . . , Fm(x)), and let T ⊂ Rk be
a bounded G-closed semi-algebraic set. Suppose also that d ≥ D.
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Then, for 0 ≤ i ≤ m,

bi(F(T ),Z2) ≤
i∑

j=0

αj∑
h=0

αj−h∑
`=1

(
(j + 1)(m+ s) + 1

`

)
6`Gmin(d,k, `)

≤ O(i)αi(m+ s)αid(i+1)kDm

where αi = (i+ 1)k +m.

Proof. Using the descent spectral sequence we have that

bi(F(T ),Z2) ≤
i∑

j=0

bi−j(T ×F · · · ×F T︸ ︷︷ ︸
(j+1)

,Z2)

≤
i∑

j=0

b(T ×F · · · ×F T︸ ︷︷ ︸
(j+1)

,Z2).(5.1)

Suppose that T is defined by a G-closed formula Ψ. Notice that for all j ≥ 0,
T ×F · · · ×F T︸ ︷︷ ︸

(j+1)

is defined by the formula

Ψ(j)(X(0), . . . ,X(j),Y) :=

m∧
i=1

j∧
h=0

Ψ(X(h),Y) ∧ (Yi − Fi(X(h)) = 0),

where Y = (Y1, . . . , Ym),X(h) = (X
(h)
1 , . . . , X

(h)
k ), 0 ≤ h ≤ j.

The cardinality of the set of polynomials appearing in Ψ(j) is (j+ 1)(m+ s), the
degree in each block X(h) is bounded by d, and that in Y is bounded by D.

Denote by αj = (j + 1)k + m. Now apply Theorem 13 with p = j + 2, k =
(k, . . . , k︸ ︷︷ ︸

j+1

,m), d = (d, . . . , d︸ ︷︷ ︸
j+1

, D) to obtain

b(T ×F · · · ×F T︸ ︷︷ ︸
(j+1)

,Z2) ≤
αj∑
h=0

αj−h∑
`=1

(
(j + 1)(m+ s) + 1

`

)
6`Gmin(d,k, `)

≤ O(j)αj (m+ s)αjd(j+1)kDm(5.2)

The theorem now follows from Eqns. (5.1) and (5.2). �

Remark 25. Note that versions of Theorem 26 and Theorem 27 without the dis-
tinction between the two degrees d and D were known before (see [27]). The novel
aspect of these two theorems is the different dependence of the bounds proved on
the two degrees d,D. In certain applications, this distinction is important.

We record the following result similar to that of Theorem 27, which is also
useful in practice. The following situation occurs very frequently in semi-algebraic
geometry.

Let S1 ⊂ Rk, and S2 ⊂ Rk×Rm be semi-algebraic subsets, and πX : Rk×Rm →
Rk, πY : Rk×Rm → Rm be the two projection maps on the first and second factors
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resp.. Let T = πY(π−1X (S1) ∩ S2) (see figure below).

π−1X (S1) ∩ S2

πX

yy

πY

%%
S1 T.

Theorem 28 (Set-theoretic Fourier-Mukai transform). With the same notation
as above, let P1 ⊂ R[X1, . . . , Xk] and P2 ⊂ R[X1, . . . , Xk, Y1, . . . , Ym] be finite
sets such that S1 ⊂ Rk is a P1-closed semi-algebraic set and S2 ⊂ Rk+m is a
bounded P2-closed semi-algebraic set. Suppose that degX(P1),degX(P2) ≤ d and
degY(P2) ≤ D. Suppose also that d ≥ D.

Then for 0 ≤ i ≤ m,

bi(T,Z2) ≤
i∑

j=0

αj∑
h=0

αj−h∑
`=1

(
(j + 1)(s1 + s2) + 1

`

)
6`Gmin(d,k, `)

≤ O(i)αi(s1 + s2)αid(i+1)kDm,

where αi = (i+ 1)(k +m) + k, and s1 = card(P1), s2 = card(P2).

Proof. Note that the semi-algebraic set π−1X (S1)∩S2 is a bounded (P1 ∪P2)-closed
semi-algebraic set, with degrees in X bounded by d and in Y bounded by D.
Note that if S1 is defined by the formula Φ(X1, . . . , Xk) and S2 is defined by
the formula Ψ(X1, . . . , Xk, Y1, . . . , Ym), then the set π−1X (S1) ∩ S2 is defined by
Φ(X1, . . . , Xk)∧Ψ(X1, . . . , Xk, Y1, . . . , Ym). Note that with the above notation, for
all j ≥ 0, T ×πY

· · · ×πY
T︸ ︷︷ ︸

(j+1)

is defined by the formula

Θ(j)(X(0), . . . ,X(j),Y) :=

j∧
h=0

Φ(X(h),Y) ∧Ψ(X(h),Y),

where Y = (Y1, . . . , Ym),X(h) = (X
(h)
1 , . . . , X

(h)
k ), 0 ≤ h ≤ j.

The cardinality of the set of polynomials appearing in Θ(j) is (j + 1)(s1 + s2),
the degree in each block X(h) is bounded by d, and that in Y is bounded by D.

Applying Theorem 27 with αj = (j + 1)k +m we get

b(T ×πY
· · · ×πY

T︸ ︷︷ ︸
(j+1)

,Z2) ≤
αj∑
h=0

αj−h∑
`=1

(
(j + 1)(s1 + s2) + 1

`

)
6`Gmin(d,k, `)

≤ O(j)αj (s1 + s2)αjd(j+1)kDm.(5.3)

The theorem follows from the inequality (5.1). �

5.2. An application to discrete geometry. The theory of transversals is a
very well-studied topic in discrete geometry with many applications. Suppose
that S ⊂ Rk is a closed and bounded semi-algebraic set. We define the space
Transversalk′(S) ⊂ AffGrk,k′(R) to be the set of k′-dimensional affine subspaces `
of Rk such that ` ∩ S 6= ∅ (where we denote by AffGrk,k′(R) the space (the affine
Grassmannian) of k′-dimensional affine subspaces of Rk . Upper bounds on the
topology of such spaces of transversals are important in discrete geometry (see for
example [30]).
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We prove the following theorem which improves the bound that one obtains
using previously known methods by exploiting the multi-degree bounds proved in
the current paper (see Remark 26).

Theorem 29. Let S ⊂ Rk be a bounded P-closed semi-algebraic set, where P ⊂
R[X1, . . . , Xk] with deg(P ) ≤ d, P ∈ P, and card(P) = s. Then, for all k′, 0 ≤ k′ ≤
k, bi(Transversalk′(S),Z2) is bounded by

i∑
j=0

αj∑
h=0

αj−h∑
`=1

(
(j + 1)(s+m+ 2(k + 1)) + 1

`

)
6`Gmin(d,k, `)

≤ O(i)αi(s+m+ 2(k + 1))αid(i+1)k,

where k = (k, . . . , k︸ ︷︷ ︸
j+1

,m), d = (d, . . . , d︸ ︷︷ ︸
j+1

, 2), and αi = (i + 1)k + m, with m =

(k + 1)(k + 2)/2− 1.

Proof. We first identify AffGrk,k′(R) with the real Grassmannian Grk+1,k′+1(R)
of (k′ + 1)-dimensional subspaces of Rk+1 in the standard way, identifying ` ∈
AffGr(k, k′) with the linear hull of `′ = {(x, 1) | x ∈ `′ ⊂ Rk} ⊂ Rk+1. Similarly,
let S1 = {(x, 1) | x ∈ S} ⊂ Rk. The set Transversalk′(S) can then be identified
with the space (which we also denote by Transversalk′(S))

{`′ ∈ Grk+1,k′+1(R) | ` ∩ S1 6= ∅}.
Now Grk+1,k′+1(R) is semi-algebraically homeomorphic to the real affine variety
defined by

{A ∈ R(k+1)×(k+1) | At = A,A2 = A,Tr(A) = k′ + 1}.(5.4)

(see for example [21, Theorem 3.4.4]).
We identify Grk+1,k′+1(R) ⊂ R(k+1)(k+2)/2−1 with the subset of the linear sub-

space of the space of (k+ 1)× (k+ 1) symmetric matrices with entries in R having
trace k′ + 1 (notice that the subspace containing Grk+1,k′+1(R) has dimension
(k+ 1)(k+ 2)/2− 1 and that the degrees of the polynomials in (k+ 1)(k+ 2)/2− 1
variables defining Grk+1,k′+1 are all bounded by 2).

Let S2 ⊂ Rk × R(k+1)(k+1)/2−1 be the semi-algebraic set (the total space of the
tautological bundle over Grk+1,k′+1(R)) defined by

S2 = {(x,A) | x ∈ Rk, A ∈ Grk+1,k′+1(R), Ax′ = x′, x′ = (x, 1)}.(5.5)

Let π1, π2 be the projection maps as depicted in the following figure.

Rk+1 ×Grk+1,k′+1(R)

π1

vv

π2

))

Rk+1 Grk+1,k′+1(R).

Observe that
Transversalk′(S) = π2(π−11 (S1) ∩ S2).

Now apply Theorem 28 noting that the number of polynomial equations (each of
degree 2) used to define Grk+1,k′+1(R) in Eqn. (5.4) is equal to k + m + 1, where
m = (k + 1)(k + 2)/2 − 1, and hence the number of equations (each of degree at
most 2) used in the definition of S2 in Eqn. (5.5) is equal to m+ 2(k + 1). �
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Remark 26. Note that if we used the more standard Plücker embedding of the

Grassmannian Grk+1,k′+1(R) in the projective space P(
∧k′+1

Rk+1) of dimension(
k+1
k′+1

)
− 1, we would obtain a bound which is doubly exponential in k in the worst

case. The fact that over a real closed field, the Grassmannians are semi-algebraically
homeomorphic to the real affine variety described in Eqn. (5.4) allows us to obtain
a much better bound (which is only singly exponential in k). Secondly, if we
used the best known prior results on effective quantifier elimination to estimate
bi(Transversalk′(S),Z2) from above, we would obtain a bound of (O(ksd))km which
has a much worse dependence on d than the bound proved in Theorem 29.

6. Bound on the Betti numbers of real varieties defined by two
polynomials having different degrees

6.1. Background. It was mentioned in the introduction that quantitative bounds
on the Betti numbers (in particular, on the 0-th Betti number) has proved to be
important tools in several areas. More recently, triggered by the development of a
new technique in discrete geometry (namely, the polynomial partitioning method)
it became necessary to prove bounds which has a finer dependence on the degree
sequence of the polynomials rather than on the maximum degree (as in Theorem
2). The following theorem (conjectured by J. Matoušek [42]) was proved in [9] to
meet the needs of discrete geometry and has already found several applications.

Theorem 30. [9] Let Q,P ⊂ R[X1, . . . , Xk] be finite subsets of non-zero polyno-
mials such that deg(Q) ≤ d1 for all Q ∈ Q, degP = d2 for all P ∈ P, and suppose
that d1 ≤ d2. Suppose that the real dimension of Zer(Q,Rk) is k′ ≤ k, and that
card(P) = s.

Then, ∑
σ∈{0,1,−1}P

b0(Reali(σ,Zer(Q,Rk)),Z2)

is at most
k′∑
j=0

4j
(
s+ 1

j

)((
k+1

k−k′+j+1

)
(2d1)k−k

′
dj max{2d1, d2}k

′−j + 2(k − j + 1)
)
.

In particular,∑
σ∈{0,1,−1}P

b0(Reali(σ,Zer(Q,Rk)),Z2) ≤ O(1)k(sd2)k
′
dk−k

′

1 .(6.1)

Theorem 30 has proved to be important in incidence questions in discrete geom-
etry [49, 57, 48, 18]. Even though in these applications it is usually a bound on the
number of semi-algebraically connected components of semi-algebraic sets defined
by polynomials of possibly different degrees that is important, it is a very interest-
ing mathematical question (asked already in [9]) if the inequality (6.1) in Theorem
30 can be extended to a bound on the higher Betti numbers. We formulate below
a more precise conjecture.

Conjecture 1. With the same notation and hypothesis as in Theorem 30, for all
i, 0 ≤ i ≤ k′,∑

σ∈{0,1,−1}P
bi(Reali(σ,Zer(Q,Rk)),Z2) ≤ O(1)ksk

′−idk−k
′

1 dk
′

2 .(6.2)
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At present we do not know how to prove Conjecture 1 except in the case i = 0,
which is Theorem 30, and the techniques used in proving Theorem 30 do not easily
extend to the case of i > 0. In this paper, we make some progress on this problem
by proving Conjecture 1 for all i ≥ 0, but only in the special case when k′ = k− 1.
In fact we prove the following slightly stronger theorem.

Unlike in the previous sections the bounds stated in this section will be valid for
Betti numbers with coefficients in an arbitrary field F rather than just Z2. This is
because we do not use Smith inequality in our proofs.

Theorem 31. With the same notation and hypothesis as in Theorem 30, for all
i, 0 ≤ i ≤ k′ < k, and any field of coefficients F,∑

σ∈{0,1,−1}P
bi(Reali(σ,Zer(Q,Rk)),F)

is bounded by

(6.3)

k′−i∑
j=1

(
s

j

)
4j(F (2d1, 2d2, k) + F (2d1, 2d2, k − 1) + 1) ≤ O(1)ksk

′−id1d
k−1
2 ,

where

F (d1, d2, k) =

(
k + 1

2

)
d1

(
(d1 − 1)k−1 +

4(k − 1)

3
d2(d2 − 1)k−2

)
.

The rest of this section is devoted to the proof Theorem 31. We begin as usual
with the algebraic case.

6.2. The algebraic case. In this section we prove a nearly optimal bound on the
sum of the Betti numbers of a real variety V ⊂ Rk defined by two polynomials of
possibly differing degrees d1 ≤ d2. We prove that

b(V,F) ≤ O(1)kd1d
k−1
2 .

The above bound follows from the following more precise theorem.

Theorem 32. Let P1, P2 ∈ R[X1, . . . , Xk], with 0 < deg(P1) ≤ d1,deg(P2) ≤
d2, 2 ≤ d1 ≤ d2, and V = Zer({P1, P2},Rk). Then,

b(V,F) ≤ F (d1, d2, k) + F (d1, d2, k − 1) + 1,

where

F (d1, d2, k) =

(
k + 1

2

)
d1

(
(d1 − 1)k−1 +

4(k − 1)

3
d2(d2 − 1)k−2

)
.

In particular,

b(V,Z2) ≤ 8

(
k + 1

3

)
d1d2(d2 − 1)k−2.

Remark 27. Notice that direct application of Theorem 11 would yield a bound of
O(d2)k which is not optimal if d1 � d2.

We now prove Theorem 32. The proof involves several steps and utilizes a few
results from stratified Morse theory that we recall first.
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6.2.1. Stratified Morse Theory. We follow the exposition in [31] (and also [13].
A Whitney stratification of a space X is a decomposition of X into sub-manifolds

called strata, which satisfy certain frontier conditions, (see [31] page 37). In particu-
lar, given a compact set bounded by a smooth algebraic hypersurface, the boundary
and the interior form a Whitney stratification.

Now, let S be a compact Whitney stratified subset of Rk, and f a restriction
to S of a smooth function. A critical point of f is defined to be a critical point of
the restriction of f to any stratum, and a critical value of f is the value of f at a
critical point. A function is called a Morse function if it has only non-degenerate
critical points when restricted to each stratum, and all its critical values are distinct.
(There is an additional non-degeneracy condition which states that the differential
of F at a critical point p of a strata S should not annihilate any limit of tangent
spaces to a stratum other than S. However, in our situation this will always be
true.)

We now assume that S ⊂ Rk is a Whitney-stratified set, and suppose that
f : S → R is a Morse function. We denote Sx (resp. S≤x) denote S ∩ f−1(x) (resp.
S ∩ f−1((−∞, x])).

The first fundamental result of stratified Morse theory is the following.

Theorem 33. [31] As c varies in the open interval between two adjacent critical
values, the topological type of S ∩ π−1((−∞, c]) remains constant.

Stratified Morse theory actually gives a recipe for describing the topological
change in S≤c as c crosses a critical value of f . This is given in terms of Morse
data, which consists of a pair of topological spaces (A,B), A ⊃ B, with the property
that as c crosses the critical value v = f(p), the change in S≤c can be described by
gluing in A along B.

In stratified Morse theory the Morse data is presented as a product of two pairs,
called the tangential Morse data and the normal Morse data. The notion of product
of pairs is the standard one in topology, namely

(A,B)× (A′, B′) = (A×A′, A×B′ ∪B ×A′).

Definition 2 (Tangential Morse data [31]). The tangential Morse data at a critical
point p is then given by (Bλ × Bk−λ, (∂Bλ) × Bk−λ) where Bk is the closed k-
dimensional disk, ∂ is the boundary map, and λ is the index of the Hessian matrix
of f (in any local co-ordinate system of the stratum containing p in a neighborhood
of p) of f (restricted to the stratum containing p) at p.

Definition 3 (Normal Morse data [31]). Let p be a critical point in some k′-
dimensional stratum Z of a stratified subset S of Rk.

Let N ′ be any (k−k′)-dimensional hyperplane passing through the point p which
is transverse to Z which intersects the stratum Z locally at the single point p.

Then, the normal slice, N(p) at the point p is defined to be,

N(p) = N ′ ∩ S ∩Bk(p, δ),

for sufficiently small δ > 0.
Choose δ � ε > 0, and let `− = N(p) ∩ f−1(f(p) − ε). The normal Morse data

has the homotopy type of the pair (cone(`−), `−).

The following theorem measures the change in topology as we cross a critical
value.



MULTI-DEGREE BOUNDS ON BETTI NUMBERS 41

Theorem 34. [31, page 69] Let [a, b] ⊂ R an interval which contains no critical
values except for an isolated critical value v ∈ (a, b) which corresponds to a critical
point p of f restricted to some stratum Z of S. Let λ be the Morse index of the
critical point p, Then, the space S≤b has the homotopy type of a space which is
obtained from S≤a by attaching the pair (Bλ, ∂Bλ)× (cone(`−), `−).

We will need to use Theorem 34 in the following particularly simple situation. Let
S ⊂ Rk be a closed and bounded semi-algebraic set defined by

∧
P∈P(P = 0)∧Q ≥

0, where P∪{Q} ⊂ R[X1, . . . , Xk] such that Zer(P,Rk),Zer(Q,Rk), P ∈ P are non-
singular hypersurfaces intersecting transversally. T hen S is Whitney stratified with
two strata – namely, Z = Zer(P ∪ {Q},Rk) and Z ′ = S \ Z. Suppose that f is a
Morse function on the stratified set S, and moreover f restricted to Zer(P,Rk) has
no critical points that belong to S. We prove the following theorem as a consequence
of Theorems 33 and 34 above.

Theorem 35. With the assumptions stated above, b(S,Z2) is bounded by the num-
ber of critical points of f restricted to Zer(P ∪ {Q},Rk).

Proof. We note first that it suffices to prove the theorem for R = R. The general
case then follows after a standard application of the Tarski-Seidenberg transfer
principle. Let p ∈ Rk be a critical point of f restricted to Zer(P ∪ {Q},Rk) and
without loss of generality let p = 0. Let W = TpZer(P,Rk) and V = Tp(Zer(P ∪
{Q}, Rk), and we have V is subspace of W of codimension one. Since p is a non-
degenerate critical point of f restricted to Zer(P ∪{Q},Rk), but not of Zer(P,Rk),
the linear form df vanishes on W , but not on V . Let u (resp. v) denote the
orthogonal projection of grad(Q)(p) (resp. grad(f)(p)) to V . Note that u,v 6= 0.
There are two cases to consider. We denote by (·, ·) the standard inner product in

Rk.

(a) (u,v) > 0: In this case following the notation in Definition 3, `− = ∅, and it
follows from Definition 3 that the normal Morse data at p equals (p, ∅), and
hence the product of the tangential and the normal Morse data equals the
tangential Morse data in this case. Thus, in this case the change in b(S≤c) as
c crosses f(p) is ±1 as in ordinary Morse theory.

(b) (u,v) < 0. In this case the normal Morse data is homotopy equivalent to the
pair ([0, 1], {0}). Since the product (Bλ, ∂Bλ)×([0, 1], {0}) where λ is the index
of the critical point of p, the Morse data is homotopy equivalent to (∗, ∗). Thus
in this case there is no change in the homotopy type of the sublevel set S≤c as
c crosses the critical value f(p) (using Theorem 34) as the pair that is being
added is contractible.

The theorem now follows from Theorems 33 and 34 just as in the case of usual
Morse theory. �

6.2.2. Summary of the ideas behind the proof of Theorem 32. For simplicity lets
assume that V = Zer({P1, P2},Rk) is bounded. The case of unbounded V intro-
duces an additional complication which we ignore in this informal summary. We

replace V by a closed bounded semi-algebraic subset S ⊂ R〈ε1, ε2〉k defined by
−εi ≤ Pi ≤ εi, i = 1, 2. Then, S is semi-algebraically homotopy equivalent to V ,
and moreover S is a topological manifold whose boundary is a union of basic closed
semi-algebraic sets, S1, S2, where S1 is defined by P 2

1 − ε21 = 0 ∧ −ε2 ≤ P2 ≤ ε2,
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S

S1 S2

A generic linear functional.

V

Zer(P1,R〈ε1, ε2〉2)

Zer(P 2
1 − ε

2
1,R〈ε1, ε2〉

2)

Zer(P2,R〈ε1, ε2〉2)

Zer(P 2
2 − ε

2
2,R〈ε1, ε2〉

2)

Figure 2. An Illustrative figure in the plane.

and S2 is defined by P 2
2 − ε22 = 0 ∧−ε1 ≤ P1 ≤ ε1. Figure 2 gives a schematic dia-

gram of all these sets. Using Alexander duality, in order to bound b(S,F) it suffices
to bound b(∂S,F) (see Lemma 5 below). Now, in order to bound b(S1 ∪ S2,F) it
suffices to bound (using inequality (3.1)) b(S1,F), b(S2,F) as well as b(S1 ∩ S2,F)
(see Lemma 6 below).

The techniques used for bounding each of the above quantities are distinct. We
bound b(S1,F) by first reducing the problem to bounding b(∂S1,F) and bounding

b(Zer(P 2
1 − ε1,R〈ε1, ε2〉

k
),F) using inequality (3.1), and then using Corollary 2 to

bound these quantities (see Proposition 15).
In order to bound b(S2,F), we observe that a generic linear functional has no

critical points in the relative interior of S2 (see Lemmas 7 and 8, and 9). Note that
this fact is not necessarily true for S1. This fact allows us to bound b(S2,F) by
counting the critical points of the functional on its boundary strata using Theorem
35 (see Lemma 10). Finally, we bound the number of such critical points using
Proposition 5 (see Lemma 11). The number of such critical points also gives an
upper bound on b(S1 ∩ S2,F) (Corollary 2).

6.2.3. Proof of Theorem 32. For the rest of this section we keep the same notation
as in Theorem 32.

Let R0 = R〈ε0〉,R1 = 〈ε0, ε1〉,R2 = R〈ε0, ε1, ε2〉, and let Wk+1 ⊂ Rk+1
0 denote

the real variety defined by the polynomials P1, P2 and Qk+1 = ε0
∑k+1
i=1 X

2
i −1, and

Wk ⊂ Rk
0 the real variety defined by the polynomials P1, P2 and Qk = ε0

∑k
i=1X

2
i −

1.
It follows from [21, Corollary 9.3.7] (Local Conic Structure at infinity of semi-

algebraic sets) that, the intersection, W+
k+1 (resp. W−k+1) of Wk+1 with the closed
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half-space defined by Xk+1 ≥ 0 (resp. Xk+1 ≤ 0) are each semi-algebraically
homeomorphic to V .

W+
k+1 ∪W

−
k+1 = Wk+1,

W+
k+1 ∩W

−
k+1 = Wk.

It now follows from inequality (3.3) that:

Proposition 14.

b(V,F) ≤ 1

2
(b(Wk,F) + b(Wk+1,F)) .

We now bound b(Wk+1,F) (the proof for the bound on b(Wk,F) is very similar).

Consider the closed and bounded semi-algebraic set, W̃k+1 ⊂ Rk+1
2 defined by

Qk+1 = 0,−ε1 ≤ P1 ≤ ε1,−ε2 ≤ P2 ≤ ε2. Let for i = 1, 2,

Z+
i = Zer({Qk+1, Pi + εi},Rk+1

i ),

Z−i = Zer({Qk+1, Pi − εi},Rk+1
i ),

S+
1 = Ext(Z+

1 ,R2) ∩ W̃k+1,

S−1 = Ext(Z−1 ,R2) ∩ W̃k+1,

S+
2 = Z+

2 ∩ W̃k+1,

S−2 = Z−2 ∩ W̃k+1.

Lemma 4. The semi-algebraic set W̃k+1 is semi-algebraically homotopy equivalent
to Ext(Wk+1,R

′). In particular,

b(W̃k+1,F) = b(Wk+1,F).

Proof. Clearly W̃k+1 is closed and bounded over R′, and limε1 W̃k+1. The lemma
now follows from [17, Lemma 16.17]. �

Lemma 5.

b(W̃k+1,F) ≤ 1

2

b( ⋃
i=1,2

ε∈{+,−}

Sεi ,F) + 1

 .

Proof. Let W̃ ′k+1 be the closure of the semi-algebraic set Sk(0, ε
−1/2
0 )\W̃k+1. Then,

W̃k+1 ∪ W̃ ′k+1 = Sk(0, ε
−1/2
0 ),

W̃k+1 ∩ W̃ ′k+1 =
⋃
i=1,2

ε∈{+,−}

Sεi .

We also have that W̃ ′k+1 is semi-algebraically homotopy equivalent to Sk(0, ε
−1/2
0 )\

W̃k+1, and hence by [50, page 296] (Alexander duality)

b(W̃k+1,F) = b(W̃ ′k+1,F)− 1.(6.4)

Also, using inequality (3.1) we have

b(W̃k+1,F) + b(W̃ ′k+1,F) ≤ b(
⋃
i=1,2

ε∈{+,−}

Sεi ,F) + 2.(6.5)

The lemma now follows from (6.4) and (6.5). �
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Lemma 6.

b(
⋃
i=1,2

ε∈{+,−}

Sεi ,F) ≤
∑
i=1,2

ε∈{+,−}

b(Sεi ,F) +
∑

ε1,ε2∈{+,−}

b(Sε11 ∩ S
ε2
2 ,F).

Proof. Apply inequality (3.1). �

We need separate arguments to bound b(
⋃
ε1∈{+,−} S

ε
1,F) and b(

⋃
ε2∈{+,−} S

ε2
2 ,F).

We first bound b(
⋃
ε1∈{+,−} S

ε1
1 ,F).

Proposition 15.

b(
⋃

ε1∈{+,−}

Sε11 ,F) ≤ 4

(
k + 1

2

)
d1

(
2(k − 1)

3
d2(d2 − 1)k−2 + (d1 − 1)k−1

)
.

Proof. Using inequality (3.1) and Corollary 2 we have

b(
⋃

ε1∈{+,−}

Sε11 ,F) ≤
∑

ε1∈{+,−}

(b(∂Sε11 ,F) + b(Zε11 ,F))

=
∑

ε1,ε2∈{+,−}

b(Sε22 ∩ S
ε1
1 ,F) +

∑
ε1∈{+,−}

b(Zε11 ,F)

≤ 8

(
k + 1

3

)
d1d2(d2 − 1)k−2 + 4

(
k + 1

2

)
d1(d1 − 1)k−1

= 4

(
k + 1

2

)
d1

(
2(k − 1)

3
d2(d2 − 1)k−2 + (d1 − 1)k−1

)
.

�

Next we bound b(
⋃
ε2∈{+,−} S

ε2
2 ,F) as follows.

Lemma 7. There exists a linear functional F : Rk+1
1 → R1, such that the set of

critical points of F restricted to Z±1 has an empty intersection with Zer(P2,R
k+1
1 ).

Proof. The semi-algebraic subset T ⊂ Grk+1,k(R) defined by,

T := ∪x∈Z±1 ∩Zer(P2,R′′k+1){H ∈ Grk+1,k(R) | H ⊃ TxZ±1 }

is of co-dimension at least 1 in Grk+1,k(R). Thus, the complement of T in Grk+1,k(R)
contains an open dense set. �

Lemma 8. There exists an open dense subset of linear functionals F : Rk+1
2 → R2,

such that the set of critical points of F restricted to Ext(Z±1 ,R2) has an empty
intersection with S±1 .

Proof. Follows from Lemma 7 and the fact that S±1 is bounded over R1, and ε2 is
infinitesimal with respect to R1. �

Lemma 9. There exists an open dense subset of linear functionals F : Rk+1
2 → R2,

such that the critical points of F restricted to Ext(Z±1 ,R2)∩Z±2 are non-degenerate.

Proof. The lemma can be deduced as a special case of [7, Theorem 2]. �

Lemma 10. Let F be a linear functional satisfying the hypothesis of Lemmas 8
and 9. Then, for ε ∈ {+,−}, b(Sε1,Z2) is bounded by the number of critical points
of F restricted to Ext(Zε1,R2) ∩ Z±2 .
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Proof. Follows from Theorem 35. �

Lemma 11. Let F be a linear functional satisfying the hypothesis of Lemmas 8
and 9 below. Then, for ε ∈ {+,−}, b(Sε1,Z2) the number of critical points of F
restricted to Ext(Zε1,R2) ∩ Z±2 is bounded by

8

(
k + 1

3

)
d1d2(d2 − 1)k−2.

Proof. For d, k ≥ 0, let ∆d,k ⊂ Qk denote the simplex defined as the convex hull of
(d, 0, . . . , 0), . . . , (0, . . . , 0, d),0. For ε1, ε2 ∈ {+,−}, the set of critical points of F
restricted to Ext(Zε1,R2) ∩ Z±2 satisfies the following system of equations:

Qk+1 = 0,(6.6)

P1 − ε1ε1 = 0,

P2 − ε2ε2 = 0,

∂Qk+1

∂X1
+ λ1

∂Qk+1

∂X1
+ λ2

∂P1

∂X1
+ λ3

∂P2

∂X1
= 0,

...
...

...
∂Qk+1

∂Xk+1
+ λ1

∂Qk+1

∂Xk+1
+ λ2

∂P1

∂Xk+1
+ λ3

∂P2

∂Xk+1
= 0.

Using Proposition 5 we obtain that the number of solutions of the system (6.6)
is bounded by

MV(∆2,k+1,∆d1,k+1,∆d2,k+1,∆d2−1,k+1 + ∆1,3, . . . ,∆d2−1,k+1 + ∆1,3︸ ︷︷ ︸
k+1

)

≤
(
k + 1

3

)
MV(∆2,k+1,∆d1,k+1,∆d2,k+1,∆d2−1,k+1, . . . ,∆d2−1,k+1︸ ︷︷ ︸

k−2

,∆1,3, . . . ,∆1,3︸ ︷︷ ︸
3

)

=

(
k + 1

3

)
2d1d2(d2 − 1)k−2.

Hence, the number of critical points of F restricted to Ext(Zε1,R2)∩Z±2 is bounded
by

4

(
k + 1

3

)
2d1d2(d2 − 1)k−2 = 8

(
k + 1

3

)
d1d2(d2 − 1)k−2.

�

In particular, we obtain as an immediate corollary that

Corollary 2. ∑
ε1,ε2∈{+,−}

b(Sε11 ∩ S
ε2
2 ,Z2) ≤ 8

(
k + 1

3

)
d1d2(d2 − 1)k−2.

Proposition 16.

b(
⋃

ε2∈{+,−}

Sε22 ,F) ≤ 8

(
k + 1

3

)
d1d2(d2 − 1)k−2.

Proof. Follows from Lemmas 7, 8, 9, 10 and 11. �
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Proposition 17.

b(Wk+1,F) ≤ 2

(
k + 1

2

)
d1

(
(d1 − 1)k−1 +

4(k − 1)

3
d2(d2 − 1)k−2

)
+ 1,

b(Wk,Z2) ≤ 2

(
k

2

)
d1

(
(d1 − 1)k−2 +

4(k − 2)

3
d2(d2 − 1)k−3

)
+ 1.

Proof. The inequality for b(Wk+1,F) follows from Lemmas 5, 6, Corollary 2, and
Propositions 15 and 16. The proof of the inequality involving b(Wk,F) follows
the same steps as in the proof for b(Wk+1,F) replacing k by k − 1. We omit the
steps. �

Proof of Theorem 32. The theorem follows from Propositions 14 and 17. �

6.3. The semi-algebraic case: Proof of Theorem 31.

Proof of Theorem 31. The proof is by following the proof of Proposition 7.30 in
[17] using Theorem 32 to bound the Betti numbers of the algebraic sets that arise
instead of Theorem 1. �

7. Multi-degree polynomial partitioning

In this section we describe an application of multi-degree bounds of the kind
stated in Section 2 to polynomial partitioning – a very important construction in
discrete geometry.

7.1. Background. Efficient methods to partition finite subsets of Rk using semi-
algebraic subsets has been an important and extremely well-studied technique in
discrete geometry (see [43]). Still recently, the most efficient and useful method was
that of “semi-cylindrical” decomposition introduced in [23], and its variants. More
recently, a different method, called polynomial partitioning was introduced by Guth
and Katz which have had important new applications. The polynomial partitioning
theorem proved by Guth and Katz [33] and its various generalizations ([37, 36,
57, 48, 18]) have become very important tools for studying incidence problems in
discrete geometry. They also have algorithmic applications, for example in the
problem of range searching with semi-algebraic sets [2].

Polynomial partitioning results in the literature are of the following form. Given
a finite set S ⊂ Rk, and a parameter r > 0, these partitioning theorems give a
partition of S, into finite subsets (Si)i∈I , S \ ∪i∈ISi, such that:

1. card(Si) ≤ card(S)/r for each i ∈ I;
2. For any real variety W defined by a polynomial of degree d and of dimension
k′ ≤ k, card({i ∈ I | Si ∩W 6= ∅}) is bounded from above by some function
F1(r, d, k, k′) of r, d, k, k′;

3. the residual set S \
⋃
i∈I Si is contained in a real variety V (which we will refer

to as the residual variety of the partition) defined by a polynomial of degree
bounded by some function F2(r, k). Note that no upper bound on the cardinality
of the residual set is required, and so in principle it could be as large as S itself.

Definition 4. We will call the pair ((Si)i∈I , V ) a partition of S.

Remark 28. Notice that formulated as above, Definition 4 extends to finite subsets
of Fk where F is an arbitrary (not necessarily real closed) field.
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Partitions in the above sense have been associated so far with partitioning poly-
nomials – a fundamental notion introduced by Guth and Katz in [33]. We recall
here the notion of an r-partitioning polynomial. We will use the following notation.

Notation 13. For any semi-algebraic set S ⊂ Rk, we denote by C(S) the finite set
of semi-algebraically connected components of S.

Definition 5 (r-partitioning polynomial). Given a finite subset S ⊂ Rk, we say
that P ∈ R[X1, . . . , Xk] is an r-partitioning polynomial for S if for every C ∈
C(Rk \ Zer(P,Rk)), card(C ∩ S) ≤ card(S)

r .

Observation 1. Notice that the existence of an r-partitioning polynomial of degree
bounded by r, for any finite subset S ⊂ Rk is obvious. Just choose a generic
hyperplane v ∈ Rk, and a well-chosen set, H1, . . . ,Hr hyperplanes perpendicular to
v, such that for each connected component C of Rk\

⋃r
i=1Hi, card(S∩C) ≤ n/r. It

is also clear, that we can choose the set (Hi)1≤i≤r to have the additional property
that S ∩

⋃r
i=1Hi = ∅. Let P be the product of the polynomials each of degree

1, defining the hyperplanes Hi. Clearly, deg(P ) = r, and it is an r-partitioning
polynomial for S. Moreover, S ∩ Zer(P,Rk) = ∅.

The following theorem due to Guth and Katz, guarantees the existence of an
r-partitioning polynomial of much smaller degree than r, and was the starting of
applications of polynomial partitioning in incidence geometry.

Theorem 36 (Polynomial partitioning theorem [33]). For every k > 0 there exists
a constant ck > 0, such that for every finite subset S ⊂ Rk and r > 0, there exists
a r-partitioning polynomial P of S, with deg(P ) ≤ ck · r1/k.

Remark 29. Notice that even though the degree bound on the r-partitioning poly-
nomial obtained in Theorem 36 is much better than the trivial one described in
Observation 1, namely an r-partitioning polynomial of degree bounded by r, the
price that we pay for this improvement in the degree is that unlike in the case of Ob-
servation 1, in Theorem 36 many (or even all) of the points in S, could belong to the
variety Zer(P,Rk). In Observation 1 it is possible to choose the r-partitioning poly-
nomial such that the intersection of S with the variety defined by the r-partitioning
polynomial is empty.

In view of Remark 29 it is natural to ask if it is possible to interpolate between
Theorem 36 and the existence of the trivial partition described in Observation 1.
Such an interpolation should balance the “efficiency” of the partition measured by
the “complexity” of the sets C ∩ S in the partition having cardinality bounded by
card(S)/r (i.e. the function F1(r, d, k, k′) in 2 above), against the “complexity” of
the “residual variety” V (measured by the degree of the real polynomial defining V )
which contains the subset of S not covered by the sets C (i.e. the function F2(r, k)
in 3 above).

To our knowledge, a formal study of the space of “partitions” in the sense of
Definition 4 in which different competing costs balance each other, has not been
undertaken until now. Such a study might have implications both in computational
and discrete geometry, and we initiate it by defining more precisely four parameters
controlling the “complexity” of partitions of finite subsets of Rk.

Depending on applications, one or more of these parameters could be more im-
portant than the others. We stress that in applications of the polynomial parti-
tioning techniques to incidence problems (such as in [33, 37, 36, 57, 48, 18]), only
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these parameters and no other finer detail of the partitions involved enter into the
arguments.

Till now we have restricted our discussions to polynomial partitions of finite
subsets of Rk. It might be useful to consider such partitions over more general fields
(especially, the field of complex numbers). To our knowledge polynomial partitions
have not yet been defined over general fields till date, because the current definition
(as in the formulation of Theorem 36) seemed to use the properties of real closed
fields very strongly. However, from the point of view of this paper, taking into
account the “residual variety” we can formulate the notion of polynomial partitions
over arbitrary fields, which we proceed to do below. This notion by itself might
have important applications (see Remark 31 below).

Notation 14. Let F be any field. We extend Notation 1 and denote for any finite
subset P ⊂ F[X1, . . . , Xk] the set of common zeros of P in Fk by Zer(P,Fk).

Definition 6 (Density, size and complexity of a partition). Let F be any field, and
let S ⊂ Fk a finite subset, and let (S = (Si ⊂ S)i∈I , V = Zer(P,Fk)) be a partition
of S (cf. Definition 4 and Remark 28). We define:

(1)

density(S;S) = max
i∈I

card(Si)

card(S)
;

(2)
size(S) = card(I);

(3) for d ≥ 0, 0 ≤ k′ ≤ k,

complexity(S, d, k′) = max
P⊂F[X1,...,Xk],

card(P)<∞,deg(P )≤d,P∈P
dimF(Zer(P,Fk))=k′

card({i ∈ I | Si ∩ Zer(P,Fk) 6= ∅}).

Remark 30. While items (1) and (2) in Definition 6 are self-explanatory, item
(3) needs a remark. Using [9, Theorem 1,1], we deduce that for any d ≤ r1/k,
the number of sets in the partition given in Theorem 36 which are met by a real
variety of real dimension k′ ≤ k, and defined by a polynomial of degree ≤ d, is
bounded by O(1)kdk−k

′
rk
′/k. Similarly, the number of sets in the partition given in

Observation 1 which are met by a real variety of real dimension k′ ≤ k, and defined
by a polynomial of degree ≤ d, is bounded by O(1)kdk−k

′
rk
′
. Clearly, a bound

on this number – i.e. the number of sets in the partition which are met by a real
variety of real dimension k′ ≤ k, and defined by a polynomial of degree ≤ d – as a
function of r, d, k, and k′ is an important measure of the quality of the partition.
One would like this number to be as small (i.e. as close to the Guth-Katz bound,

O(1)kdk−k
′
rk
′/k) as possible.

Notice also that an inspection of the proofs of the theorems that use the poly-
nomial partitioning technique (see for example [33, 37, 36, 57, 48, 18]) reveals that
the density, size, complexity, and the degree of the residual variety V , as defined in
Definition 6, are the only properties of the partition that are used in these proofs.

We now define for any field F:

Definition 7 ((r, r′, e, e′)-partition of a finite subset S ⊂ Fk). Let S ⊂ Fk be a finite
set of points. For any r, r′, e, e′ > 0, we say that a pair (S = (Si)i∈I , V = Zer(P,Fk))
is a (r, r′, e, e′)-partition of S, if the following conditions hold.
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1.

density(S;S) ≤ 1

r
;

2.

size(S) ≤ r′;
3. For all d ≥ 0, 0 ≤ k′ ≤ k,

complexity(S, d, k′) ≤ dk−k
′
max(d, e)k

′
;

4.

S \
⋃
i∈I

Si ⊂ V ;

and
5.

deg(P ) ≤ e′.

Using the notation introduced in Definition 7 the following theorem is an immedi-
ate consequence of Theorem 36, explicit bounds on the number of semi-algebraically
connected components of sign conditions of a family of polynomials on a variety [9,
Theorem 1.1], and Observation 1.

Theorem 37. There exist constants c1, c2, c3, c4 > 0 such that for every finite
subset S ⊂ Rk, r > 0, there exist:

(1) a (c1r, c2r, c3r, c4)-partition, and
(2) a (c1r, c2r, c3r

1/k, c4r
1/k)-partition

of S.

Its reasonable to ask whether there exists an interpolation between the two
partitions 1 and 2 in Theorem 37. In this paper we give an answer to the question
in the case k = 2, leaving open the case of general k. However, in order to prove our
result (Theorem 38 below) we prove certain intermediate results valid for general
k, including a multi-degree partitioning theorem (Theorem 40 below) that could be
of interest, independent of the interpolating theorem mentioned above.

Remark 31. Also, observe that it is reasonable to ask if Theorem 37 holds over
arbitrary fields, in particular over the field of complex numbers. Note that if this
conjecture is true then it would provide a relatively easy proof of the Szemerédi-
Trotter theorem [52] over C (see [54, 56]).

Conjecture 2. Let F be a field. There exist constants c1, c2, c3, c4 > 0 such that
for every finite subset S ⊂ Fk, r > 0, there exist:

(1) a (c1r, c2r, c3r, c4)-partition, and
(2) a (c1r, c2r, c3r

1/k, c4r
1/k)-partition

of S.

7.2. Interpolating theorem for polynomial partitions of the plane. We
prove the following theorem which (almost) achieves the goal of interpolating be-
tween the two cases in Theorem 37 (in the case k = 2). Note that there is a loss
of a factor of log(e) in the bound below, making the result slightly weaker than a
perfect interpolation.
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Theorem 38. There exist constants c1, c2, c3, c4 > 0 such that for all r, n with
0 < r < n1/2, 1 ≤ e ≤ r1/2, and for every finite subset S ⊂ R2, with card(S) = n,
there exists a (c1r, c2(1 + log(e))r, c3er

1/2, c4e
−1r1/2)-partition of S.

Remark 32. Generalizing Theorem 38 to all values of k (with an appropriate notion
of a residual variety) is an interesting problem. The methods used in our proof do
not extend easily to higher dimensions.

We can also ask whether Theorem 38 is true over an arbitrary field F.

Conjecture 3. Let F be any field. There exist constants c1, c2, c3, c4 > 0 such that
for all r, n with 0 < r < n1/2, 1 ≤ e ≤ r1/2, and for every finite subset S ⊂ F2, with
card(S) = n, there exists a (c1r, c2(1 + log(e))r, c3er

1/2, c4e
−1r1/2)-partition of S.

7.3. Proof of Theorem 38. The proof of Theorem 38 will require the following
slight generalizations of the polynomial ham-sandwich theorem and of the polyno-
mial partitioning theorem. They are stated and proved for all dimensions k ≥ 2,
and might be of independent interest.

7.3.1. Multi-degree polynomial partition.

Definition 8 (Bisector). We say that a polynomial P ∈ R[X1, . . . , Xk] bisects a
finite set S ⊂ R[X1, . . . , Xk], if the cardinalities of the subsets S+ = {x ∈ S |
P (x) > 0} and S− = {x ∈ S | P (x) < 0} are both bounded by card(S)

2 .

Theorem 39 (Multi-degree ham-sandwich). Let b1, . . . , bk ∈ R>0, p = db1e ×
· · · × dbke, and S1, . . . , Sp finite subsets of Rk. Then, there exists a polynomial
P ∈ R[X1, . . . , Xk] such that supp(P ) ⊂ [0, db1e]× · · · × [0, dbke] (cf. Notation 11),
and with the property that P simultaneously bisects S1, . . . , Sp.

Proof. The proof is the same as that of the ordinary polynomial ham-sandwich
theorem [51], except that instead of using the Veronese embedding , we use the
toric embedding φA : Rk → RA where A = [0, db1e] × · · · × [0, dbke] is defined
by x 7→ (· · · ,xα, · · · )α∈A. We apply the ham-sandwich theorem to the set of
points φA(S) ⊂ RA in RA. Notice that p ≤ card(A), and thus by the ordinary
ham-sandwich theorem there exists a hyperplane H defined by a polynomial L of
degree 1 in RA that simultaneously bisects φA(S1), . . . , φA(Sp). The pull-back of
P = φ∗A(L) is a non-zero polynomial with supp(P ) ⊂ [0, db1e]× · · · × [0, dbke], and
P simultaneously bisects S1, . . . , Sp. �

Theorem 40 (Multi-degree polynomial partitioning). Let B = [0, b1]×· · ·×[0, bk] ⊂
Rk, where b1, . . . , bk ∈ R>0. Then, for any r > 0, and any finite set S ⊂ Rk, there
exists an r-partitioning polynomial P ∈ R[X1, . . . , Xk] of S such that supp(P ) ⊂
λ ·B, with

λ ≤ 1 + log(r) +
21/k

21/k − 1
·
(

r

b1 · · · bk

)1/k

.

Proof. We first assume that r is power of 2, and for c1, . . . , ck ∈ R>0, and C =
[0, c1]×· · ·×[0, ck], we will denote by dCe = [0, dc1e]×· · ·×[0, dcke]. The polynomial
P will be the product of polynomials P0, P1, P2, . . . , Plog(r), where each Pi is defined
as follows. Let P0 = 1 and S0 = {S}. Now suppose that we have a partition

Si = {S1, . . . , S2i}, where for each j, 1 ≤ j ≤ 2i, Sj ⊂ S, card(Sj) ≤ card(S)
2i . Let Pi

be a polynomial with supp(Pi) ⊂ dλi ·Be ⊂ dλiedBe and with the property that Pi
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simultaneously bisects S1, . . . , S2i−1 , where λi =
(

2i−1

b1···bk

)1/k
. Such a polynomial

exists by Theorem 39. Clearly, P = P0 · · ·Plog(r) is an r-partitioning polynomial,
and it follows from the construction that supp(P ) ⊂ λ · dBe, where

λ =
⌈
λ1e+ · · ·+ dλlog(r)

⌉
≤

log(r)∑
i=1

⌈(
2i−1

b1 · · · bk

)1/k
⌉

≤ log(r) +

log(r)∑
i=1

(
2i−1

b1 · · · bk

)1/k

≤ log(r) + (21/k − 1)−1
(

r

b1 · · · bk

)1/k

.

Finally, it is clear that by replacing r by the closest power of 2 which is ≥ r, we
can choose

λ ≤ 1 + log(r) + (21/k − 1)−1
(

2r

b1 · · · bk

)1/k

≤ 1 + log(r) +
21/k

21/k − 1
·
(

r

b1 · · · bk

)1/k

.

�

We introduce the following technical notation that will be convenient to use in
the proof of Theorem 38.

Notation 15. We will denote by � the lexicographical order on {(0, 0)} ∪ Z≥0 ×
{1, 2}. For (i, j), (i′, j′) ∈ {(0, 0)} ∪ Z≥0 × {1, 2}), we denote (i′, j′) ≺ (i, j) if
(i′, j′) � (i, j) and (i′, j′) 6= (i, j). We will also denote by succ(i, j) the successor
(i, j) ∈ Z×{1, 2}, and by pred(i, j) the predecessor of (i, j) ∈ {(0, 0)}∪Z≥0×{1, 2}
(if it exists), with respect to the order �.

Proof of Theorem 38. Define for 0 ≤ i ≤ log(r), and 1 ≤ j ≤ 2 (see Figure 3)

Bi,j = [0, 2ir1/2]× [0, 2−ir1/2] if j = 1,

= [0, 2−ir1/2]× [0, 2ir1/2] if j = 2,

Ci,j =
⋂

(i′,j′)�(i,j)

Bi,j

= [0, 2−i+1r1/2]× [0, 2−ir1/2] if j = 1,(7.1)

= [0, 2−ir1/2]× [0, 2−ir1/2] if j = 2.

Notice that

vol2(Bi,j) = r,

vol2(Ci,j) = 2−(2i+j)r.

We now define for (i, j) ∈ {(0, 0)}∪Z≥0×{1, 2}, polynomials Qi,j , Pi,j as follows.
Applying Theorem 40 with

B = λi · ([0, 1]× [0, 22i]) if j = 1,

supp(Psucc(i,j)) ⊂ λi · ([0, 22(i+1)]× [0, 1]) if j = 2,
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B0,0 = C0,0

B0,1

B0,2

B1,2

22r1/2

2r1/2

r1/2

22r1/2

2r1/2

2−2r1/2
2−1r1/2

r1/2

2−1r1/2

2−2r1/2

C1,1

C0,1C0,2

C1,2 B1,1

Figure 3. Bi,j and Ci,j , for i = 0, 1 and j = 1, 2.

obtain an r-partitioning polynomial Psucc(i,j) of S ∩ Zer(Qi,j ,R
2) with

supp(Psucc(i,j)) ⊂ λi · ([0, 1]× [0, 22i]) if j = 1,

supp(Psucc(i,j)) ⊂ λi · ([0, 22(i+1)]× [0, 1]) if j = 2,

where

λi ≤ 1 + log(r) +
21/2

21/2 − 1
·
( r

22(i+j−1)

)1/2
≤ 1 + log(r) +

21/2

21/2 − 1
· 2−(i+j−1)r1/2

≤ c · 2−(i+j−1)r1/2

for some constant c > 0. Notice that

Bi,j = µi · ([0, 1]× [0, 22i]) if j = 1,

= µi · ([0, 22(i+1)]× [0, 1]) if j = 2,

with

µi = 2−i−j+1r1/2,
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and thus,

supp(Psucc(i,j)) ⊂ c ·Bi,j .
Set

Qsucc(i,j) = gcd(Qi,j , Psucc(i,j)).

We now prove that there exists constants c1, c2, c3, c4 > 0 such that the following
statement holds for each (i, j) ∈ Z≥0 × {1, 2}. This implies the theorem.

Statement 1. (1) For each (i′, j′) � (i, j), Qi,,j divides Qi′,j′ and Pi′,j′ .
(2) supp(Qi,j) ⊂ c · Ci,j ;
(3) supp(Pi,j) ⊂ c ·Bi,j ;
(4) the pair (Si,j , Vi,j = Zer(Qi,j ,R

2)), where

Si,j =
(
S ∩D ∩ (Zer(Qpred(i′,j′),R

2) \ Zer(Qi′,j′ ,R
2))
)
D∈C(R2\Zer(P 2

i′,j′−ε,R
2))

(i′,j′)�(i,j)

,

is a (c1r, c2(i + 1)r, c32ir1/2, c42−ir1/2)-partition of S, for all ε > 0 and small
enough.

Parts (1), (2) and (3) of Statement 1 are immediate from the definitions of the
polynomials, Qi,′,j′ , Pi′,j′ , (i

′, j′) � (i, j).
In order to prove Part (4) first observe that if D ∈ C(R2 \ Zer(P 2

i′,j′ − ε,R2)),
then either D is a semi-algebraically connected component of the set defined by
Pi′j′ − ε > 0, or if D is a semi-algebraically connected component of the set defined
by Pi′j′ − ε < 0. We have thus two cases:

(a) Suppose that D is a semi-algebraically connected component of the set defined
by Pi′j′ − ε > 0. In this case D ⊂ D′ for some D′ ∈ C(Pi′,j′), and using the
definition of the polynomial Pi′,j′ , card(S ∩D′) ≤ n/r. This implies that

card(S∩D∩(Zer(Qpred(i′,j′),R
2)\Zer(Qi′,j′ ,R

2))) ≤ card(S∩D) ≤ card(S∩D′) ≤ n/r.

(b) Now suppose that D is a semi-algebraically connected component of the set
defined by Pi′j′ − ε < 0. Then for all small enough ε > 0,

card(S ∩D ∩ (Zer(Qpred(i′,j′),R
2) \ Zer(Qi′,j′ ,R

2)))

is bounded by the number of isolated points of the intersection, Zer(Pi,j′ ,R
2)∩

Zer(Qpred(i′,j′),R
2), which is bounded by b0(Zer({Pi′,j′ , Qpred(i′,j′)},R2) ≤ c′r ≤

c′n/r for some constant c′ > 0 (using Theorem 1), and the fact that r ≤ n1/2

by assumption. Note that any semi-algebraically connected component of
Zer({Pi′,j′ , Qpred(i′,j′)},R2) dimension one is contained in Zer(Qi′,j′ ,R

2).

Thus we have for every Si,j ∈ Si,j ,

card(Si,j) ≤ c1n/r,(7.2)

for a constant c1 > 0.
Moreover, using Theorem 13 we obtain that for all (i′, j′) � (i, j), card(C(R2 \

Zer(P 2
i′,j′ − ε,R2))) ≤ c′2r for some constant c′2 > 0. This implies that

card(Si,j) ≤ c2(i+ 1)r(7.3)

for some constant c2 > 0. Also, it follows from [9, Theorem 1,1] that for any
algebraic curve defined by a polynomial P ∈ R[X1, X2] of total degree at most d,
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card(C(Zer(P,R2) \Zer(P 2
i′,j′ − ε,R2)) ≤ c′3dmax(d, 2i

′
r1/2) for some c′3 > 0, which

implies in turn that

card({Si,j ∈ Di,j | D ∩ Zer(P,R2) 6= ∅}) ≤ c3dmax(d, 2ir1/2)(7.4)

for some constant c3 > 0. This implies Part (4) of Statement 1. �

7.3.2. Open problems and future directions. In this paper we have initiated the
study of the space of “polynomial partitions”. We proved an interpolating theorem
(namely, Theorem 38) in a very special case (when F is a real closed field and k = 2).
It would be interesting to generalize this result to arbitrary fields (Conjecture 3
above), and also to higher dimensions. Moreover, it would be interesting to let the
other two parameters measuring the quality of polynomial partitions (namely, r, r′

in Definition 7 above) to vary, and obtain more general partitioning results, which
might have applications in the quantitative study of incidences.
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8. Appendix

Proof of Proposition 3. It’s sufficient to prove this theorem in the special case when
C = C. The general theorem follows using a standard application of the Tarski-
Seidenberg transfer principle. In the following proof we assume C = C.

The proposition is clearly true if V is 0-dimensional, so we can assume that
k − ` > 0. Let V̄ ⊂ PkC be the projective closure of V , and W = V̄ \ V the
sub-variety of V̄ contained in the hyperplane at infinity. Note that W can be
singular. Applying Lefschetz hyperplane section theorem (see [55, Theorem 1.1])
to the projective variety V̄ , noting that V̄ \W = V is non-singular by assumption,
and denoting by j : W ↪→ V̄ the inclusion map, we have that

(8.1) j∗,i : Hi(W,Z2)→ Hi(V̄,Z2),

is an isomorphism for 0 ≤ i < k − `− 1, and a surjection for i = k − `− 1.
Now since V is a complex manifold, the compact pair (V̄,W ) is a topological

relative (k−`)-manifold (see [50, page 297] for definition), and by Lefschetz duality
theorem (see for example [50, page 297] we have that

(8.2) Hi(V,Z2) ∼= H̃k−`−i(V̄,W,Z2),

where H̃∗(V̄,W,Z2) denotes the reduced cohomology groups of the pair (V̄,W ).
Finally, since V is a (complex) (k − `)-dimensional Stein manifold,

(8.3) Hi(V,Z2) = 0 for i > k − `

(see [45]).
Now consider the homology exact sequence of the pair (V̄,W ):

· · · → Hp(W,Z2)
j∗,p−−→ Hp(V̄,Z2)→ Hp(V̄,W,Z2)→ Hp−1(W,Z2)

j∗,p−1−−−−→ · · ·

For 0 < p < k− `, the fact that in the above exact sequence, the homomorphism
j∗,p : Hp(W,Z2) → Hp(V̄,Z2) is a surjection, and the the homomorphism j∗,p−1 :
Hp−1(W,Z2) → Hp−1(V̄,Z2) is an injection (in fact, an isomorphism) together
implies that

Hp(V,W,Z2) ∼= H̃p(V̄,W,Z2) = 0.

It then follows from the isomorphism (8.1) that,

Hk−`−p(V,Z2) = 0.

This proves that

(8.4) Hi(V,Z2) = 0 for 0 < i < k − `.

Finally, we observe that since V is connected,

(8.5) b0(V,Z2) = 1.

It follows from (8.3), (8.4), and (8.5) that

χ(V,Z2) = 1 + (−1)k−`bk−`(V,Z2),

and the proposition follows immediately. �
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Proof of Theorem 22. The only difficulty in applying inequality (3.4) is that in
general an affine sub-variety of Ck will not bounded. In order to apply inequality
(3.4) we need to reduce to the closed and bounded case which we do as follows.

Let for r > 0, BC(r) ⊂ Ck be defined by

BC(r) = {(x1 + iy1, . . . , xk + iyk) ∈ Ck | |xi|, |yi| ≤ r, 1 ≤ i ≤ k},

and denote by BR(r) = BC(r) ∩ Rk.
Then, Zer(Q,Ck) ∩ BC(r) is closed and bounded, and using [21, Corollary

9.3.7] (Local Conic Structure at infinity of semi-algebraic sets), we have that for
all r > 0 and large enough, Zer(Q,Ck) ∩ BC(r) is semi-algebraically homeomor-
phic to Zer(Q,Ck), and Zer(Q,Rk)∩BR(r) is semi-algebraically homeomorphic to
Zer(Q,Rk).

The complex conjugation restricts to an involution of BC(r) with fixed points
BR(r). Now apply inequality (3.4). �

Proof of Proposition 6. First observe that Zer(P,Ck) is either 0-dimensional, or is
smooth and connected in case k > 1 (since Zer(P,Ck) is a non-singular projective
hypersurface of dimension k− 1 minus a sub-variety of strictly smaller dimension).
Using Theorem 24 we obtain

χ(Zer(P,Ck),Z2) =

k∑
j=1

(
k

j

)
(−1)j+1j!

dj

j!

= 1 +

k∑
j=0

(
k

j

)
(−1)j+1j!

dj

j!

= 1− (1− d)k

= 1 + (−1)k−1(d− 1)k.

This implies using Proposition 3 and the fact that Zer(P,Ck) is either 0-dimensional
or non-singular and connected that

b(Zer(P,Ck),Z2) = 1 + (−1)k−1(χ(Zer(P,Ck),Z2)− 1)

= 1 + (−1)k + (−1)k−1χ(Zer(P,Ck),Z2)

= 1 + (d− 1)k.

This proves Eqn.(3.10).
Finally, inequality (3.11) follows from Eqn. (3.10) and Theorem 22 (Smith in-

equality). �

Proof of Proposition 7. First observe that either Zer(P,Ck) is 0-dimensional (in
case k = `) or is non-singular and connected (if k > `) since in the latter case
Zer(P,Ck) is equal to a non-singular complete intersection variety in a product of
projective varieties minus a sub-variety of strictly smaller dimension.
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Using Theorem 24 we have

χ(Zer(P,Ck),Z2) =

k∑
j=`

(−1)j+`
(
k

j

)
d1 · · · d`

∑
j1,...,j`≥0

j1+···+j`=j−`

dj11 · · · d
j`
`

= d1 · · · d` ·

 k∑
j=`

(−1)j+`
(
k

j

)
hj−`(d1, . . . , d`)


= d1 · · · d` ·

k−∑̀
j=0

(−1)j
(

k

j + `

)
hj(d1, . . . , d`)

 .(8.6)

Eqns. (8.6) and Proposition 3 imply

b(Zer(P,Ck),Z2) = 1 + (−1)k−`(χ(Zer(P,Ck),Z2)− 1)

= 1 + (−1)k−`+1 + (−1)k−`χ(Zer(P,Ck),Z2)

= 1 + (−1)k−`+1 + d1 · · · d` ·

k−∑̀
j=0

(−1)k−`+j
(

k

j + `

)
hj(d1, . . . , d`)

 ,

Now assume that d1 = · · · = d` = d. It follows from (8.6) that

χ(Zer(P,Ck),Z2) =

k∑
j=`

(−1)j+`
(
k

j

)(
j − 1

`− 1

)
dj

=

k∑
j=`

(−1)j+`
k!

j!(k − j)!
(j − 1)!

(j − `)!(`− 1)!
dj

= `

(
k

`

) k∑
j=`

(−1)j+`
(
k − `
j − `

)
dj

j

= `

(
k

`

) k−∑̀
j=0

(−1)j
(
k − `
j

)
dj+`

j + `

= `

(
k

`

) k−∑̀
j=0

(−1)j
(
k − `
j

)
dj+`

j + `

= `

(
k

`

)∫ d

0

x`−1(1− x)k−`dx.
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This implies

|χ(Zer(P,Ck),Z2)| ≤ `

(
k

`

)(∫ 1

0

x`−1(1− x)k−`dx+

∫ d

1

x`−1(x− 1)k−`dx

)

≤ `

(
k

`

)(
1 +

∫ d

1

xk−1dx

)

= `

(
k

`

)(
1 +

dk

k
− 1

k

)
=

(
k − 1

`− 1

)
(dk + k − 1),

whence using Proposition 3

b(Zer(P,Ck),Z2) = 1 + (−1)k−`(χ(Vk,Z2)− 1)

= 1 + (−1)k−`+1 + (−1)k−`χ(Vk,Z2)

≤ 1 + (−1)k−`+1 +

(
k − 1

`− 1

)
(dk + k − 1).

This proves Eqn. (3.12) and inequality (3.14). Inequalities (3.16) and (3.18),
follow from Eqn. (3.12), inequality (3.14), and Theorem 22 (Smith inequality). �

Proof of Proposition 8. It follows from Theorem 24 that

χ(V,Z2) =

k∑
j=`

(−1)j+`
∑

j1,...,jp
0≤ji≤ki,1≤i≤p
j1+···+jp=j

(
j − 1

`− 1

)(
j

j1, . . . , jp

)( p∏
i=1

(
ki
ji

)
djii

)

=
k1! · · · kp!

(k − `)!(`− 1)!
F (k, j,d, `),

where k = (k1, . . . , kp), j = (j1, . . . , jp), d = (d1, . . . , dp), and F (k, j,d, `) is defined
as

k∑
j=`

(−1)j+`

j

∑
j1,...,jp

0≤ji≤ki,1≤i≤p
j1+···+jp=j

(
j

j1, . . . , jp

)2(
k − `

k1 − j1, . . . , kp − jp, j − `

)
dj11 · · · djpp .
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We now bound |F (k, j,d, `)| as follows. |F (k, j,d, `)| is bounded by(
p∏
i=1

dkii

)
k∑
j=`

(1 + p)2j
∑

j1,...,jp
0≤ji≤ki
1≤i≤p

(
k − `

k1 − j1, . . . , kp − jp, j − `

) p∏
i=1

d
−(ki−ji)
i

=

(
p∏
i=1

dkii

)
k∑
j=`

(1 + p)2j
(

1 +
1

d1
+ · · ·+ 1

dp

)k−`

≤

(
p∏
i=1

dkii

)
(1 + p)k+`

k−∑̀
j=0

(1 + p)2j

=

(
p∏
i=1

dkii

)
(1 + p)k+`

(1 + p)2(k−`+1) − 1

(1 + p)2 − 1

≤ (1 + p)3k−`+1

p(p+ 2)
dk11 · · · dkpp .

This implies that

|χ(V,Z2)| ≤ `(k − `+ 1)

(
k

`

)(
k

k

)−1
(1 + p)3k−`+1

p(p+ 2)
dk11 · · · dkpp

≤ (k − `+ 2)2
(

k

`− 1

)(
k

k

)−1
(1 + p)3k−`+1

p(p+ 2)
dk11 · · · dkpp ,

and also (using Eqn. (3.9))

b(V,Z2) ≤ 1 + (−1)k−`+1 + (k − `+ 2)2
(

k

`− 1

)(
k

k

)−1
(1 + p)3k−`+1

p(p+ 2)
dk11 · · · dkpp .

This proves inequality (3.21). Inequality (3.22) follows from inequality (3.21) and
Theorem 22 (Smith inequality). �

Proof of Proposition 9. First observe that Zer(P,Ck) is non-singular and connected
for k > 1, and is 0-dimensional if k = 1. Using Theorem 24

χ(Zer(P,Ck),Z2) =

k∑
j=1

(−1)j+1
∑

J⊂[1,k]
card(J)=j≤k

j!d̄J .

Now using Eqn. (3.9) we get

b(Zer(P,Ck),Z2) = 1 + (−1)k−1(χ(Vk,Z2)− 1)

= 1 + (−1)k + (−1)k−1χ(Vk,Z2)

= 1 + (−1)k + (−1)k−1

 k∑
j=1

(−1)j+1
∑

J⊂[1,k]
card(J)=j≤k

j!d̄J



= 1 + (−1)k +

 k∑
j=1

(−1)k−j
∑

J⊂[1,k]
card(J)=j≤k

j!d̄J

 .
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This proves inequality (3.23). Inequality (3.24) now follows from inequality (3.23)
and Theorem 22 (Smith inequality). �

Proof of Proposition 10. It follows from Theorem 24 that |χ(Zer(P,Ck),Z2)| is

≤
k∑
j=`

∑
J∈([1,k]

j )

(
j + `− 1

`− 1

)
max

α=(α1,...,α`)∈Z`
>0

α1+···+α`=k

max
(J1,...,J`)∈([1,k]

α )

 ∏
1≤i≤`
j∈Ji

di,j

 ,

So we have that

(8.7) |χ(Zer(P,Ck),Z2)| ≤ O(`)k max
α=(α1,...,α`)∈Z`

>0

α1+···+α`=k

max
(J1,...,J`)∈([1,k]

α )

 ∏
1≤i≤`
j∈Ji

di,j

 .

Therefore, combining inequality (8.7) and Proposition 3, we have that

b(Zer(P,Ck),Z2) = 1 + (−1)k−`+1 + (−1)k−`χ(Zer(P,Ck),Z2)

≤ O(`)k max
α=(α1,...,α`)∈Z`

>0

α1+···+α`=k

max
(J1,...,J`)∈([1,k]

α )

 ∏
1≤i≤`
j∈Ji

di,j

 .(8.8)

This proves inequality (3.25). Inequality (3.26) follows from inequality (3.25)
and Theorem 22 (Smith inequality). �

Proof of Proposition 12. Using Theorem 24 we obtain that χ(Zer(P,Ck),Z2) equals

k∑
j=0

(−1)j+`
∑

0≤j1≤k1,0≤j2≤k2
j1+j2=j

(
k1
j1

)(
k2
j2

)(
j − 1

`− 1

)(
j

j1

)
dj12j2 + 1

=

k1∑
j1=0

(−1)j1+`
(
k1
j1

)
dj1

 k2∑
j2=0

(
j1 + j2
j2

)(
j1 + j2 − 1

`− 1

)(
k2
j2

)
(−2)j2

+ 1.

We now bound from above the quantity |F (j1, k2)|, where F (j1, k2) is defined by

F (j1, k2) :=

k2∑
j2=0

(
j1 + j2
j2

)(
j1 + j2 − 1

`− 1

)(
k2
j2

)
(−2)j2 .



MULTI-DEGREE BOUNDS ON BETTI NUMBERS 63

First notice that F (j1, k2) equals

1

j1!(`− 1)!

k2∑
j2=0

(j1 + j2)j1(j1 + j2 − 1)`−1
(
k2
j2

)
(−2)j2

=
1

j1!(`− 1)!

[
dj1

dxj1
x`
(

d`−1

dx`−1
(xj1−1(1 + x)k2)

)]
x=−2

=
1

j1!(`− 1)!

[
j1∑
i=0

(
j1
i

)
`ix`−i

(
d`−1+j1−i

dx`−1+j1−i
(xj1−1(1 + x)k2)

)]
x=−2

=
1

j1!(`− 1)!

[
j1∑
i=0

(
j1
i

)
`ix`−i

(
α∑
h=0

(
α

h

)
(j1 − 1)hk

α−h
2 xj1−1−h(1 + x)k2−(α−h)

)]
x=−2

where α = α(`, j1, i) = ` − 1 + j1 − i, and we have used the “falling factorial”
notation

tn := t(t− 1) · · · (t− n+ 1),

for all real t and integer n.
Continuing, we have F (j1, k2) equals

1

j1!(`− 1)!

[
j1∑
i=0

(
j1
i

)(
`

i

)
α!i!xα(1 + x)k2−α

(
α∑
h=0

(
k2

α− h

)(
j1 − 1

h

)
(ω(x))h

)]
x=−2

,

where ω(x) = 1 + 1
x .

This implies that

|F (j1, k2)| ≤ 1

j1!(`− 1)!

j1∑
i=0

(
j1
i

)(
`

i

)
α!i!2α

(
α∑
h=0

(
k2

α− h

)(
j1 − 1

h

))

≤ 1

j1!(`− 1)!

j1∑
i=0

(
j1
i

)(
`

i

)
α!i!2α

(
k2 + j1 − 1

α

)
.
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We obtain

|χ(V Zer(P,Ck),Z2)| ≤ 1 +

k1∑
j1=0

(
k1
j1

)
dj1 |F (j1, k2)|

≤ 1 +

k1∑
j1=0

j1∑
i=0

(
k1
j1

)
dj1

1

j1!(`− 1)!

(
j1
i

)(
`

i

)
α!i!2α

(
k2 + j1 − 1

α

)

≤ 1 + `

k1∑
j1=0

j1∑
i=0

(
k1
j1

)
dj1α!2α

(
k2 + j1 − 1

α

)

≤ 1 + `

k1∑
j1=0

j1∑
i=0

(
k1
j1

)
dj12α(k2 + j1)α

≤ 1 + 2`

k1∑
j1=0

(
k1
j1

)
dj1 (2(k2 + k1))

`−1+j1

= 1 + `2`(k1 + k2)`−1
k1∑
j1=0

(
k1
j1

)
dj1 (2(k1 + k2))

j1

= 1 + `2`(k1 + k2)`−1 (2d(k1 + k2) + 1)
k1 .

Now using Eqn. (3.9) we get

b(Zer(P,Ck),Z2) = 2 + (−1)k−`(χ(Vk,Z2)− 1)

≤ 2 + (−1)k−`+1 + `2`(k1 + k2)`−1 (2d(k1 + k2) + 1)
k1 .

which proves inequality (3.28). Inequality (3.29) now follows from inequality (3.28)
and Theorem 22 (Smith inequality). �

Proof of Proposition ??. First observe that either Zer(P,Ck) is 0 dimensional (in
case k = `), or Zer(P,Ck) is non-singular and connected (in case k > `). We

denote by d =
∏k1
j=1 dj and for a subset J1 ⊂ [1, k1], d

J1
=
∏
j∈J1 dj . Then, using

Theorem 24, χ(Zer(P,Ck),Z2) equals

k∑
j=`

(−1)j+`
∑

J=J1tJ2
card(J1)=j1≤k1,card(J2)=j2≤k2

j=j1+j2

(
j − 1

`− 1

)
j!

j2!
d
J1

2j2

=

k1∑
j1=0

(−1)j1+`
∑

J1⊂[1,k1]
card(J1)=j1

d
J1

 ∑
J2⊂[1,k2]

card(J2)=j2

(−1)j2
(
j1 + j2 − 1

`− 1

)
(j1 + j2)!

j2!
2j2

+ 1

=
∑
j1=0

(−1)j1+`
∑

J1⊂[1,k1]
card(J1)=j1

j1!d
J1

 k2∑
j2=0

(−1)j2
(
j1 + j2 − 1

`− 1

)(
j1 + j2
j2

)(
k2
j2

)
2j2

+ 1.
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Note that the last sum is the same function F (j1, k2) as in Proposition 12. Applying
the same bound, we have |χ(Zer(P,Ck),Z2)| is bounded by

1 +

k1∑
j1=0

∑
J1⊂[1,k1]

card(J1)=j1

j1!d
J1 |F (j1, k2)|

≤ 1 + `2`(k1 + k2)`−1
k1∑
j1=0

j1!(2(k1 + k2))j1
∑

J1⊂[1,k1]
card(J1)=j1

d
J1

≤ 1 + `2`(k1 + k2)`−1
k1∑
j1=0

j1!(2(k1 + k2))j1
(
k1
j1

)
d1 · · · dk1

≤ 1 + `2`k1!(k1 + k2)`−1d1 · · · dk1
k1∑
j1=0

(
k1
j1

)
(2(k1 + k2))j1

= 1 + `2`k1!(k1 + k2)`−1((2(k1 + k2) + 1)k1d1 · · · dk1 .
Therefore, using Proposition 3, we have b(Zer(P,Ck),Z2) equals

1 + (−1)k−`(χ(Zer(P,Ck),Z2)− 1)

≤ 2 + (−1)k−`+1 + `2`k1!(k1 + k2)`−1((2(k1 + k2) + 1)k1d1 · · · dk1 .
This proves inequality (3.37). Inequality (3.38) follows from inequality (3.38) and
Theorem 22 (Smith inequality). �
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