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GENERALIZED JACOBI FUNCTIONS

AND THEIR APPLICATIONS TO FRACTIONAL

DIFFERENTIAL EQUATIONS

SHENG CHEN, JIE SHEN, AND LI-LIAN WANG

Abstract. In this paper, we consider spectral approximation of fractional dif-
ferential equations (FDEs). A main ingredient of our approach is to define a
new class of generalized Jacobi functions (GJFs), which is intrinsically related
to fractional calculus and can serve as natural basis functions for properly de-
signed spectral methods for FDEs. We establish spectral approximation results
for these GJFs in weighted Sobolev spaces involving fractional derivatives. We
construct efficient GJF-Petrov-Galerkin methods for a class of prototypical
fractional initial value problems (FIVPs) and fractional boundary value prob-
lems (FBVPs) of general order, and we show that with an appropriate choice
of the parameters in GJFs, the resulting linear systems are sparse and well-
conditioned. Moreover, we derive error estimates with convergence rates only
depending on the smoothness of data, so true spectral accuracy can be attained
if the data are smooth enough. The ideas and results presented in this paper
will be useful in dealing with more general FDEs involving Riemann-Liouville
or Caputo fractional derivatives.

1. Introduction

Fractional differential equations appear in the investigation of transport
dynamics in complex systems which are governed by anomalous diffusion and
non-exponential relaxation patterns. Related equations of importance are the
space/time fractional diffusion equations, the fractional advection-diffusion equa-
tions for anomalous diffusion with sources and sinks, the fractional Fokker-Planck
equations for anomalous diffusion in an external field, and others. Progress in
the last two decades has demonstrated that many phenomena in various fields of
science, mathematics, engineering, bioengineering, and economics are more accu-
rately described by involving fractional derivatives. Nowadays, FDEs are emerging
as a new powerful tool for modeling many different types of complex systems, i.e.,
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systems with overlapping microscopic and macroscopic scales or systems with long-
range time memory and long-range spatial interactions (see, e.g., [7, 8, 15, 25, 26]
and the references therein).

There has been a growing interest in the last decades in developing numerical
methods for solving FDEs, and a large volume of literature is available on this
subject. Generally speaking, the two main difficulties for dealing with FDEs are

(i) fractional derivatives are non-local operators;
(ii) fractional derivatives involve singular kernel/weight functions, and the so-

lutions of FDEs are usually singular near the boundaries.

Most of the existing numerical methods for FDEs are based on finite-difference
and finite-element methods (cf. [9, 11, 14, 22–24, 28, 30] and the references therein)
which lack the capability to effectively deal with the aforementioned difficulties,
as they are based on “local” operations and are not well suited for problems with
singular kernels/weights. In particular, due to the non-local nature of the fractional
derivatives, they all lead to full and dense matrices which are expensive to calcu-
late and invert. Recently, some interesting ideas have been proposed for overcoming
these difficulties. For instance, Wang and Basu [31] proposed a fast finite-difference
method by carefully analyzing the structure of the coefficient matrices of the result-
ing linear systems, and delicately decomposing them into a combination of sparse
and structured dense matrices.

Also limited but very promising efforts have been devoted to developing spectral
methods for solving FDEs (see, e.g., [19–21, 32]). This appears to be a natural
approach, since the spectral method is global, which should be better suited for
non-local problems. Most notably, Zayernouri and Karniadakis [32] proposed to
use poly-fractonomials, which are eigenfunctions of a fractional Sturm-Liouville op-
erator, as basis functions, leading to sparse matrices for some simple model equa-
tions. Preliminary results in [32] showed that this new approach could lead to
several orders of magnitude savings in CPU and memory for some model FDEs.
However, there is no error analysis available for the approximation properties of
poly-fractonomials, and the algorithms therein do not necessarily lead to spectral
convergence for problems with smooth data, but non-smooth solution which is typ-
ical for FDEs.

The second difficulty is largely ignored in the literature. Typically, the solution
and data of an FDE are not in the same type of Sobolev spaces, which is in distinct
contrast with usual differential equations. Consequently, they should be approxi-
mated by different tools, and the error estimates should be measured in norms of
different types of spaces. Indeed, given smooth data, the solution only has limited
regularity in the usual Sobolev spaces. However, existing error estimates for FDEs,
either finite differences, finite elements, or spectral methods, are mostly based on
the usual approach, namely, the errors are estimated in the framework of usual
Sobolev spaces. Hence, it is not surprising to see that most existing methods and
the related error estimates only lead to poor convergence rates for typical FDEs,
unless for manufactured smooth exact solutions.

The purpose of this paper is to develop and analyze efficient spectral methods
which can effectively address the above two issues for a class of prototypical FDEs.
The main strategies and contributions are highlighted as follows.

• We introduce a new class of GJFs with two parameters, which can be tuned
to match singularity of the underlying solution, and simultaneously produce
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sparse linear systems. More importantly, such GJFs enjoy attractive frac-
tional calculus properties and remarkable approximability to functions with
singular behaviors at boundaries.

• We derive optimal approximation results for these GJFs in properly weight-
ed spaces involving fractional derivatives and obtain error estimates for the
proposed GJF-Petrov-Galerkin approaches with convergence rates only de-
pending on smoothness of the data (characterized by usual Sobolev norms).
Thus, truly spectral accuracy can be achieved for some model FDEs with
sufficiently smooth data.

• We point out that the GJFs, including generalized Jacobi polynomials
(GJPs) as special cases, were first introduced in [12, 13] for solutions of
usual boundary value problems. Here, we modify the original definition,
which opens up new applications in solving FDEs. We also remark that
GJFs with parameters in (0, 1) have direct bearing on the Jacobi poly-
fractonomials in [32]. The major difference lies in that the new GJFs are
built upon Jacobi polynomials with real parameters.

While we shall only consider some prototypical FIVPs and FBVPs of general order,
we position this work as the first but important step towards developing efficient
spectral methods for more complicated FDEs involving Riemann-Liouville or Ca-
puto fractional derivatives.

The paper is organized as follows. In the next section, we make necessary prepa-
rations by recalling basic properties of Jacobi polynomials with real parameters
and introduce the important Bateman fractional integral formula. In Section 3, we
define the GJFs and derive their essential properties, particularly, including frac-
tional calculus properties. In Section 4, we establish the approximation results for
these GJFs. In Section 5, we construct efficient GJF-Petrov-Galerkin methods for
a class of prototypical FDEs, conduct error analysis, and present ample supporting
numerical results. In the final section, we extend some important results for the
Riemann-Liouville fractional derivative to the Caputo fractional derivative, and we
conclude the paper with a few remarks.

2. Preliminaries

In this section, we review basics of fractional integrals and derivatives, and recall
relevant properties of the Jacobi polynomials with real parameters. In particular,
we introduce the Bateman fractional integral formula, which plays a very important
role in the forthcoming algorithm development and analysis.

2.1. Fractional integrals and derivatives. Let N and R be the set of positive
integers and real numbers, respectively. Denote

(2.1) N0 := {0} ∪ N, R
+ := {a ∈ R : a > 0}, R

+
0 := {0} ∪ R

+.

We first recall the definitions of fractional integrals and fractional derivatives in
the sense of Riemann-Liouville and Caputo (see, e.g., [7, 26]). To fix the idea, we
restrict our attention to the interval Λ := (−1, 1). It is clear that all formulas and
properties can be formulated on a general interval (a, b).
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Definition 2.1 (Fractional integrals and derivatives). For ρ ∈ R
+, the left and

right fractional integrals are defined respectively as

−1I
ρ
xv(x) =

1

Γ(ρ)

∫ x

−1

v(y)

(x− y)1−ρ
dy, x ∈ Λ,

xI
ρ
1v(x) =

1

Γ(ρ)

∫ 1

x

v(y)

(y − x)1−ρ
dy, x ∈ Λ,

(2.2)

where Γ(·) is the usual Gamma function.
For s ∈ [k − 1, k) with k ∈ N, the left-hand side Riemann-Liouville fractional

derivative of order s is defined by

(2.3) −1D
s
xv(x) =

1

Γ(k − s)

dk

dxk

∫ x

−1

v(y)

(x− y)s−k+1
dy, x ∈ Λ,

and the right-hand side Riemann-Liouville fractional derivative of order s is defined
by

(2.4) xD
s
1v(x) =

(−1)k

Γ(k − s)

dk

dxk

∫ 1

x

v(y)

(y − x)s−k+1
dy, x ∈ Λ.

For s ∈ [k− 1, k) with k ∈ N, the left-hand side Caputo fractional derivatives of
order s is defined by

(2.5) C
−1D

s
xv(x) :=

1

Γ(k − s)

∫ x

−1

v(k)(y)

(x− y)s−k+1
dy, x ∈ Λ,

and the right-hand side Caputo fractional derivatives of order s is defined by

(2.6) C
xD

s
1v(x) :=

(−1)k

Γ(k − s)

∫ 1

x

v(k)(y)

(y − x)s−k+1
dy, x ∈ Λ.

It is clear that for any k ∈ N0,

(2.7) −1D
k
x = Dk, xD

k
1 = (−1)kDk, where Dk := dk/dxk.

Thus, we can define the fractional derivatives as

−1D
k
x v(x) = Dk

−1I
k−s
x v(x), xD

k
1v(x) = (−1)kDk

xI
k−s
1 v(x),

C
−1D

k
x v(x) = −1I

k−s
x Dkv(x), C

xD
k
1v(x) = (−1)kxI

k−s
1 Dkv(x).

(2.8)

According to [7, Thm. 2.14], we have that for any absolutely integrable function v
and real s ≥ 0,

(2.9) −1D
s
x −1I

s
xv(x) = v(x), xD

s
1 xI

s
1v(x) = v(x) a.e. in Λ.

The following lemma shows the relationship between the Riemann-Liouville and
Caputo fractional derivatives (see, e.g., [26, Ch. 2]).

Lemma 2.1. For s ∈ [k − 1, k) with k ∈ N, we have

−1D
s
xv(x) =

C
−1D

s
xv(x) +

k−1∑
j=0

v(j)(−1)

Γ(1 + j − s)
(1 + x)j−s,(2.10a)

xD
s
1v(x) =

C
xD

s
1v(x) +

k−1∑
j=0

(−1)jv(j)(1)

Γ(1 + j − s)
(1− x)j−s.(2.10b)
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Remark 2.1. In the above, the Gamma function with negative, non-integer argu-
ment should be understood by the Euler reflection formula (cf. [1]):

Γ(1 + j − s) =
π

sin(π(1 + j − s))

1

Γ(s− j)
, s ∈ (k − 1, k), 1 ≤ j ≤ k − 2.

Note that if s = k−1, then Γ(1+j−s) = ∞ for all 0 ≤ j ≤ k−2, so the summations
in the above reduce to (±1)k−1v(k−1)(∓1), respectively. �
Remark 2.2. Observe immediately from (2.10) that for s ∈ [k − 1, k) with k ∈ N,

−1D
s
xv(x) =

C
−1D

s
xv(x), if v(j)(−1) = 0, j = 0, . . . , k − 1;

xD
s
1v(x) =

C
xD

s
1v(x), if v(j)(1) = 0, j = 0, . . . , k − 1.

(2.11)

�
The rule of fractional integration by parts (see, e.g., [16]) will also be used

subsequently.

Lemma 2.2. For s ∈ [k − 1, k) with k ∈ N, we have

(
−1D

s
xu, v

)
=

(
u,CxD

s
1v
)
+

k−1∑
j=0

(−1)jv(j)(x)Dk−j−1
−1I

k−s
x u(x)

∣∣∣x=1

x=−1
,(2.12a)

(
xD

s
1u, v

)
=

(
u, C

−1D
s
xv

)
+

k−1∑
j=0

(−1)k−jv(j)(x)Dk−j−1
xI

k−s
1 u(x)

∣∣∣x=1

x=−1
,(2.12b)

where (·, ·) is the L2-inner product.

2.2. Jacobi polynomials with real parameters. Much of our discussion later
will make use of Jacobi polynomials with real parameters. Here, the notation and
normalization are in accordance with Szegö [29].

Recall the hypergeometric function (cf. [1])

(2.13) 2F1(a, b; c;x) =

∞∑
j=0

(a)j(b)j
(c)j

xj

j!
, |x| < 1, a, b, c ∈ R, −c �∈ N0,

where the rising factorial in the Pochhammer symbol, for a ∈ R and j ∈ N0, is
defined by

(2.14) (a)0 = 1; (a)j := a(a+ 1) · · · (a+ j − 1) =
Γ(a+ j)

Γ(a)
, for j ≥ 1.

If a or b is a negative integer, then the hypergeometric function in (2.13) reduces
to a polynomial.

According to [29, (4.21.2)], the Jacobi polynomials with parameters α, β ∈ R are
defined by

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
− n, n+ α+ β + 1;α+ 1;

1− x

2

)

=
(α+ 1)n

n!
+

n−1∑
j=1

(n+ α+ β + 1)j(α+ j + 1) · · · (α+ n)

j!(n− j)!

(x− 1

2

)j

+
(n+ α+ β + 1)n

n!

(x− 1

2

)n

, n ≥ 1,

(2.15)

Licensed to Purdue Univ. Prepared on Tue Jul 26 09:27:25 EDT 2016 for download from IP 128.210.126.199.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1608 SHENG CHEN, JIE SHEN, AND LI-LIAN WANG

and P
(α,β)
0 (x) ≡ 1. Note that P

(α,β)
n (x) is always a polynomial in x for all α, β ∈ R.

Many properties of the classical Jacobi polynomial (with α, β > −1) can be
extended to the general case (see [29, pp. 62-67]). In particular, there hold

(2.16) P (α,β)
n (x) = (−1)nP (β,α)

n (−x); P (α,β)
n (1) =

(α+ 1)n
n!

.

Thus, we have the alternative representation:

P (α,β)
n (x) = (−1)n

(β + 1)n
n!

2F1

(
− n, n+ α+ β + 1;β + 1;

1 + x

2

)
, n ≥ 1.(2.17)

Observe from (2.15) that the coefficient of xn is

(2.18) l(α,β)n :=
(n+ α+ β + 1)n

2nn!
,

so deg(P
(α,β)
n ) < n, if (n+ α+ β + 1)n = 0 for given α, β, that is,

(2.19) m := −(n+ α+ β) ∈ N and 1 ≤ m ≤ n.

A reduction of the degree of P
(α,β)
n (x) occurs if and only if (2.19) holds (cf. [29,

p. 64]). Indeed, by [29, (4.22.3)], we have that under (2.19),

(2.20) P (α,β)
n (x) =

(α+m) · · · (α+ n)

m(m+ 1) · · ·n P
(α,β)
m−1 (x) =

(α+m)n−m+1

m(m+ 1) · · ·nP
(α,β)
m−1 (x).

Therefore, there are two degenerate cases:

(2.21) deg(P (α,β)
n ) = m− 1, if (α+m)n−m+1 �= 0,

and

(2.22) P (α,β)
n (x) ≡ 0, if m = −(n+ α+ β) ∈ N, −α ∈ N and 1 ≤ m ≤ −α ≤ n.

Interested readers may refer to [6] for a summary of the degenerate cases of Jacobi
polynomials. We particularly look at the Jacobi polynomials with one or both
parameters being negative integers, which are associated with the transformation
formulas.

• Suppose that P
(α,β)
n (x) does not vanish identically as in (2.22). P

(α,β)
n (1) =

0 if and only if −α = l ∈ N and 1 ≤ l ≤ n. Moreover, the zero x = 1
has a multiplicity l, and there holds the transformation formula (cf. [29,
(4.22.2)]):

(2.23) P (−l,β)
n (x) = dl,βn

(x− 1

2

)l

P
(l,β)
n−l (x), n ≥ l ≥ 1, β ∈ R,

where

(2.24) dl,βn =
(n− l)!(β + n− l + 1)l

n!
.

• Similarly, for β = −m, we find from (2.16) and (2.23) that

(2.25) P (α,−m)
n (x) = dm,α

n

(x+ 1

2

)m

P
(α,m)
n−m (x), n ≥ m ≥ 1, α ∈ R.

• If α = −l and β = −m with l,m ∈ N, we deduce from (2.23)-(2.25) that

(2.26) P (−l,−m)
n (x) =

(x− 1

2

)l(x+ 1

2

)m

P
(l,m)
n−l−m(x), n ≥ l +m.
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Using the contiguous relation [3, (2.5.15)] and the definition (2.15), one can
derive the following recurrence relation: for α, β ∈ R,

(2.27) aα,βn P
(α,β)
n+1 (x) = (bα,βn x− cα,βn )P (α,β)

n (x)− eα,βn P
(α,β)
n−1 (x), n ≥ 1,

where

(2.28)

aα,βn = 2(n+ 1)(n+ α+ β + 1)(2n+ α+ β),

bα,βn = (2n+ α+ β)(2n+ α+ β + 1)(2n+ α+ β + 2),

cα,βn = (β2 − α2)(2n+ α+ β + 1),

eα,βn = 2(n+ α)(n+ β)(2n+ α+ β + 2).

Note that by definition,

P
(α,β)
0 (x) = 1, P

(α,β)
1 (x) =

1

2
(α+ β + 2)x+

1

2
(α− β), α, β ∈ R.

For α, β > −1, the classical Jacobi polynomials are orthogonal with respect to
the Jacobi weight function: ω(α,β)(x) = (1− x)α(1 + x)β, namely,

(2.29)

∫ 1

−1

P (α,β)
n (x)P

(α,β)
n′ (x)ω(α,β)(x) dx = γ(α,β)

n δnn′ ,

where δnn′ is the Dirac Delta symbol, and the normalization constant is given by

(2.30) γ(α,β)
n =

2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)n! Γ(n+ α+ β + 1)
.

However, the orthogonality does not carry over to the general case. We refer to [18]
and [17, Ch. 3] for details.

2.3. Bateman fractional integral formula. We recall the fractional integral
formula of hypergeometric functions due to Bateman [5] (also see [3, p. 313]): for
real c, ρ ≥ 0,
(2.31)

2F1(a, b; c+ ρ;x) =
Γ(c+ ρ)

Γ(c)Γ(ρ)
x1−(c+ρ)

∫ x

0

tc−1(x− t)ρ−1
2F1(a, b; c; t) dt, |x| < 1,

where the hypergeometric function 2F1 is defined in (2.13). Observe from (2.2)
that one can use the left-hand side of the fractional integral operator (but the left
endpoint 0) to express (2.31).

The following formulas, derived from (2.15) and (2.31) (cf. [29, p. 96]), are
indispensable for the subsequent discussion.

Lemma 2.3. Let ρ ∈ R
+, n ∈ N0, and x ∈ Λ.

(i) For α > −1 and β ∈ R,

(2.32) (1− x)α+ρP
(α+ρ,β−ρ)
n (x)

P
(α+ρ,β−ρ)
n (1)

=
Γ(α+ ρ+ 1)

Γ(α+ 1)Γ(ρ)

∫ 1

x

(1− y)α

(y − x)1−ρ

P
(α,β)
n (y)

P
(α,β)
n (1)

dy.

(ii) For α ∈ R and β > −1,

(2.33) (1 + x)β+ρP
(α−ρ,β+ρ)
n (x)

P
(β+ρ,α−ρ)
n (1)

=
Γ(β + ρ+ 1)

Γ(β + 1)Γ(ρ)

∫ x

−1

(1 + y)β

(x− y)1−ρ

P
(α,β)
n (y)

P
(β,α)
n (1)

dy.
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1610 SHENG CHEN, JIE SHEN, AND LI-LIAN WANG

Remark 2.3. The formulas (2.32)-(2.33) can be found in several classical books on
orthogonal polynomials, but it appears that their derivation is not well described.
In fact, taking a = −n, b = n + α + β + 1, c = α + 1 and t = (1 − y)/2 in (2.31),
we obtain the formula (2.32) from (2.15). Similarly, (2.33) follows from (2.16) and
(2.32). �

Using the notation in Definition 2.1 and working out the constants by (2.16), we
can rewrite the formulas in Lemma 2.3 as follows.

Lemma 2.4. Let ρ ∈ R
+, n ∈ N0, and x ∈ Λ.

• For α > −1 and β ∈ R,

(2.34) xI
ρ
1

{
(1− x)αP (α,β)

n (x)
}
=

Γ(n+ α+ 1)

Γ(n+ α+ ρ+ 1)
(1− x)α+ρP (α+ρ,β−ρ)

n (x).

• For α ∈ R and β > −1,

(2.35) −1I
ρ
x

{
(1 + x)βP (α,β)

n (x)
}
=

Γ(n+ β + 1)

Γ(n+ β + ρ+ 1)
(1 + x)β+ρP (α−ρ,β+ρ)

n (x).

Thanks to (2.9), we obtain from Lemma 2.4 the following useful “inverse” rules.

Lemma 2.5. Let s ∈ R
+, n ∈ N0, and x ∈ Λ.

• For α > −1 and β ∈ R,

(2.36) xD
s
1

{
(1− x)α+sP (α+s,β−s)

n (x)
}
=

Γ(n+ α+ s+ 1)

Γ(n+ α+ 1)
(1− x)αP (α,β)

n (x).

• For α ∈ R and β > −1,

(2.37) −1D
s
x

{
(1 + x)β+sP (α−s,β+s)

n (x)
}
=

Γ(n+ β + s+ 1)

Γ(n+ β + 1)
(1 + x)βP (α,β)

n (x).

Observe that if α = 0 in (2.36), the fractional derivative operator xD
s
1 takes

(1−x)sP
(s,β−s)
n (x) to the polynomial P

(0,β)
n (x). Conversely, if α+ s = k ∈ N0, xD

s
1

takes the polynomial (1−x)kP
(k,β−s)
n (x) to (1−x)k−sP

(k−s,β)
n (x). Such remarkable

properties are essential for efficient spectral algorithms to be developed later.
In the forthcoming section, we show that these non-polynomial functions are

intimately related to the generalized Jacobi functions introduced in [13]. Moreover,
the Jacobi poly-fractonomials first introduced in [32] also have direct bearing on
these basis functions when s ∈ (0, 1).

3. Generalized Jacobi functions

In this section, we modify two subclasses of GJFs defined in [13], leading to
the new basis functions, which are still referred to as GJFs. We demonstrate in
Section 5 that spectral algorithms using GJFs as basis functions produce spectrally
accurate solutions for a class of prototypical fractional differential equations.

3.1. Definition of GJFs.

Definition 3.1 (Generalized Jacobi functions). Define

(3.1) +J (−α,β)
n (x) := (1− x)αP (α,β)

n (x), for α > −1, β ∈ R,

and

(3.2) −J (α,−β)
n (x) := (1 + x)βP (α,β)

n (x), for α ∈ R, β > −1,

for all x ∈ Λ and n ∈ N0.
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Remark 3.1. Note that the so-defined GJFs modified the classical Jacobi polyno-
mials in the range of −1 < α, β < 1. �

Recall the GJFs introduced in [13, (2.7)]:
(3.3)

j(α,β)n (x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1− x)−α(1 + x)−βP
(−α,−β)
n̂ (x), (α, β) ∈ ℵ1, n̂ = n− [−α]− [−β],

(1− x)−αP
(−α,β)
n̂ (x), (α, β) ∈ ℵ2, n̂ = n− [−α],

(1 + x)−βP
(α,−β)
n̂ (x), (α, β) ∈ ℵ3, n̂ = n− [−β],

P
(α,β)
n (x), (α, β) ∈ ℵ4,

where [a] denotes the maximum integer ≤ a, and

ℵ1 = {(α, β) : α, β ≤ −1}, ℵ2 = {(α, β) : α ≤ −1, β > −1},
ℵ3 = {(α, β) : α > −1, β ≤ −1}, ℵ4 = {(α, β) : α, β > −1}.

We elaborate below on the connection and difference between the new GJFs and
the GJFs defined in (3.3).

• Comparing (3.1)-(3.2) with (3.3), we find

+J (−α,β)
n (x) = j

(−α,β)
n+[α] (x), if α ≥ 1, β > −1,

−J (α,−β)
n (x) = j

(α,−β)
n+[β] (x), if α > −1, β ≥ 1.

(3.4)

• By (2.23)-(2.25), we find from (3.1)-(3.2) that for any α > −1, k ∈ N0 and
n ≥ k,

+J (−α,−k)
n (x) = 2−kdk,αn (1− x)α(1 + x)kP

(α,k)
n−k (x),

−J (−k,−α)
n (x) = (−1)k2−kdk,αn (1− x)k(1 + x)αP

(k,α)
n−k (x),

(3.5)

which, compared with (3.3), implies that for α ≥ 1 and n ≥ k ≥ 1,

+J (−α,−k)
n (x) = 2−kdk,αn j

(−α,−k)
n+[α] (x), −J (−k,−α)

n (x) = (−1)k2−kdk,αn j
(−k,−α)
n+[α] (x).

(3.6)

Here, the constant dk,αn is defined in (2.24).

We see that we modified the definition of GJFs in [13] for the parameters in the
ranges other than those specified in (3.4) and (3.6). Indeed, this opens up new
applicability of the GJFs in solving fractional differential equations (see Section 5).

3.2. Properties of GJFs. One verifies readily from (2.16) and Definition 3.1 that

(3.7) +J (−α,β)
n (−x) = (−1)n −J (β,−α)

n (x), α > −1, β ∈ R,

and there holds the reflection property

(3.8) +J (−α,−α)
n (x) = (1− x2)α −J (α,α)

n (x), −1 < α < 1.

We derive from (2.27) and (3.1) directly that for α, β ∈ R,

aα,βn
+J

(−α,β)
n+1 (x) =

(
bα,βn x− cα,βn

)
+J (−α,β)

n (x)− eα,βn
+J

(−α,β)
n−1 (x), n ≥ 1,

+J
(−α,β)
0 (x) = (1− x)α, +J

(−α,β)
1 (x) =

(
(α+ β + 2)x+ α− β

)
(1− x)α/2,

(3.9)

where aα,βn , bα,βn , cα,βn , and eα,βn are defined in (2.28). A similar property holds for
−J

(α,−β)
n (x).
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We now study the orthogonality of GJFs. It follows straightforwardly from (2.29)
and Definition 3.1 that for α, β > −1,∫ 1

−1

+J (−α,β)
n (x)+J

(−α,β)
n′ (x)ω(−α,β)(x) dx

=

∫ 1

−1

−J (α,−β)
n (x)−J

(α,−β)
n′ (x)ω(α,−β)(x) dx = γ(α,β)

n δnn′ ,

(3.10)

where γ
(α,β)
n is defined in (2.30). Similarly, by (2.29) and (3.5), we have that for

α > −1 and k ∈ N,

∫ 1

−1

+J (−α,−k)
n (x)+J

(−α,−k)
n′ (x)ω(−α,−k)(x) dx

=

∫ 1

−1

−J (−k,−α)
n (x)−J

(−k,−α)
n′ (x)ω(−k,−α)(x) dx = γ(α,−k)

n δnn′ , n, n′ ≥ k,

(3.11)

where we used the fact

γ(α,−k)
n = 2−2k(dk,αn )2γ

(α,k)
n−k .

Next, we discuss the fractional calculus properties of GJFs. The following frac-
tional derivative formulas can be derived straightforwardly from Lemma 2.5 and
Definition 3.1.

Theorem 3.1. Let s ∈ R
+, n ∈ N0, and x ∈ Λ.

• For α > s− 1 and β ∈ R,

(3.12) xD
s
1

{
+J (−α,β)

n (x)
}
=

Γ(n+ α+ 1)

Γ(n+ α− s+ 1)
+J (−α+s,β+s)

n (x).

• For α ∈ R and β > s− 1,

(3.13) −1D
s
x

{−J (α,−β)
n (x)

}
=

Γ(n+ β + 1)

Γ(n+ β − s+ 1)
−J (α+s,−β+s)

n (x).

Some remarks on Theorem 3.1 are in order.

• If α − s > −1 and β + s > −1 with s ∈ R
+, then by (3.10) and (3.12){

xD
s
1
+J

(−α,β)
n

}
are mutually orthogonal with respect to the weight function

ω(−α+s,β+s)(x). Similarly,
{
−1D

s
x

−J
(α,−β)
n

}
are mutually orthogonal with

respect to ω(α+s,−β+s)(x), when α+ s > −1 and β − s > −1.
• A very important special case of (3.12) is that for α > 0 and β ∈ R,

(3.14)

xD
α
1

{
+J (−α,β)

n (x)
}
=

Γ(n+ α+ 1)

n!
+J (0,α+β)

n (x) =
Γ(n+ α+ 1)

n!
P (0,α+β)
n (x).

Similarly, by (3.13), we have that for α ∈ R and real β > 0,

(3.15) −1D
β
x

{−J (α,−β)
n (x)

}
=

Γ(n+ β + 1)

n!
P (α+β,0)
n (x).

These two formulas imply that performing a suitable order of fractional
derivatives on GJFs leads to polynomials.
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The analysis of the approximability of GJFs essentially relies on the orthogonality
of fractional derivatives of GJFs. Recall the derivative formula of the classical
Jacobi polynomials (see, e.g., [27, p. 72]): for α, β > −1 and n ≥ l,
(3.16)

DlP (α,β)
n (x) = κ

(α,β)
n,l P

(α+l,β+l)
n−l (x), where κ

(α,β)
n,l :=

Γ(n+ α+ β + l + 1)

2lΓ(n+ α+ β + 1)
.

Noting that xD
s+l
1 = (−1)lDl

xD
s
1 and −1D

s+l
x = Dl

−1D
s
x for s ∈ R

+ and l ∈ N,
we derive from (2.29) and (3.14)-(3.16) the following orthogonality.

• For α > 0 and α+ β > −1,

(3.17)

∫ 1

−1
xD

α+l
1

+J (−α,β)
n (x) xD

α+l
1

+J
(−α,β)
n′ (x)ω(l,α+β+l)(x) dx = h

(α,β)
n,l δnn′ ,

n, n′ ≥ l ≥ 0,

where

h
(α,β)
n,l :=

Γ2(n+ α+ 1)

(n!)2
(
κ
(0,α+β)
n,l

)2
γ
(l,α+β+l)
n−l

=
2α+β+1Γ2(n+ α+ 1) Γ(n+ α+ β + l + 1)

(2n+ α+ β + 1)n! (n− l)! Γ(n+ α+ β + 1)
.

(3.18)

• For α+ β > −1 and β > 0,

(3.19)

∫ 1

−1
−1D

β+l
x

−J (α,−β)
n (x) −1D

β+l
x

−J
(α,−β)
n′ (x)ω(α+β+l,l)(x) dx = h

(β,α)
n,l δnn′ ,

n, n′ ≥ l ≥ 0.

Another attractive property of GJFs is that they are eigenfunctions of fractional
Sturm-Liouville-type equations. To show this, we define the fractional Sturm-
Liouville-type operators:

+L2s
α,βu := ω(α,−β)

−1D
s
x

{
ω(−α+s,β+s)

xD
s
1 u

}
;

−L2s
α,βu := ω(−α,β)

xD
s
1

{
ω(α+s,−β+s)

−1D
s
x u

}
.

(3.20)

Theorem 3.2. Let s ∈ R
+, n ∈ N0, and x ∈ Λ.

• For α > s− 1 and β > −1,

(3.21) +L2s
α,β

+J (−α,β)
n (x) = λ(α,β)

n,s
+J (−α,β)

n (x),

where

(3.22) λ(α,β)
n,s :=

Γ(n+ α+ 1)

Γ(n+ α− s+ 1)

Γ(n+ β + s+ 1)

Γ(n+ β + 1)
.

• For α > −1 and β > s− 1,

(3.23) −L2s
α,β

−J (α,−β)
n (x) = λ(β,α)

n,s
−J (α,−β)

n (x).

Proof. By Definition 3.1 and (3.12), we have that for α > s− 1,

(1− x)−α+s(1 + x)β+s
xD

s
1

{
+J (−α,β)

n (x)
}

=
Γ(n+ α+ 1)

Γ(n+ α− s+ 1)
(1 + x)β+sP (α−s,β+s)

n (x).
(3.24)
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Applying −1D
s
x on both sides of the above identity and tracking the constants, we

derive from (2.37) that for β > −1,

−1D
s
x

{
ω(−α+s,β+s)(x) xD

s
1

{
+J (−α,β)

n (x)
}}

= λ(α,β)
n,s (1 + x)βP (α,β)

n (x)

= λ(α,β)
n,s ω(−α,β)(x)+J (−α,β)

n (x).

This yields (3.21).
Property (3.23) can be proved in a very similar fashion. �

Remark 3.2. The above results can be viewed as an extension of the standard
Sturm-Liouville problems of GJFs to the fractional derivative case. In [13], we
showed that GJFs defined therein are the eigenfunctions of the standard Sturm-
Liouville problems. �

Remark 3.3. We derive immediately from (3.22) and Stirling’s formula (see (4.26)
below) that for fixed s, α, β,

λ(α,β)
n,s = O(n2s), for n � 1.

When s → 1, this recovers the O(n2) growth of eigenvalues of the standard Sturm-
Liouville problem. �

Note that the fractional Sturm-Liouville operators defined in (3.20) are not self-
adjoint in general. However, when s ∈ (0, 1), the singular fractional Sturm-Liouville
problems are self-adjoint.

Corollary 3.1. Let s ∈ (0, 1), n ∈ N0, and x ∈ Λ.

• For 0 < α < s and β > −s, we have that in (3.21),

(3.25) +L2s
α,β

+J (−α,β)
n = ω(α,−β)

−1D
s
x

{
ω(−α+s,β+s) C

xD
s
1

+J (−α,β)
n

}
,

and

(
+L2s

α,β
+J (−α,β)

n ,+J (−α,β)
m

)
ω(−α,β) =

(
C
xD

s
1
+J (−α,β)

n , C
xD

s
1
+J (−α,β)

m

)
ω(−α−s,β+s)

=
(
+J (−α,β)

n ,+L2s
α,β

+J (−α,β)
m

)
ω(−α,β) = λ(α,β)

n,s γ(−α,β)
n δnm.

(3.26)

• Similarly, for α > −s and 0 < β < s, we have that in (3.23),

(3.27) −L2s
α,β

−J (α,−β)
n = ω(−α,β)

xD
s
1

{
ω(α+s,−β+s) C

−1D
s
x

−J (α,−β)
n

}
,

and

(−L2s
α,β

−J (α,−β)
n ,−J (α,−β)

m

)
ω(α,−β) =

(
C

−1D
s
x

−J (α,−β)
n , C

−1D
s
x

−J (α,−β)
m

)
ω(α+s,−β−s)

=
(−J (α,−β)

n ,−L2s
α,β

−J (α,−β)
m

)
ω(α,−β) = λ(β,α)

n,s γ(α,−β)
n δnm.

(3.28)

Proof. We just prove the results for +J
(−α,β)
n (x). For α > 0 and s ∈ (0, 1), since

+J
(−α,β)
n (1) = 0, we find from (2.11) that xD

s
1 can be replaced by C

xD
s
1. Accordingly,

(3.25) follows from (3.21) immediately.
We now show the fractional integration by parts can get through. By (2.35) and

(3.24),

(3.29) −1I
1−s
x

{
ω(−α+s,β+s) C

xD
s
1
+J (−α,β)

n

}
= d̃α,βn,s (1 + x)β+1P (α−1,β+1)

n (x),
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where the constant d̃α,βn,s can be worked out. Clearly, it vanishes at x = −1. On the

other hand, +J
(−α,β)
m (1) = 0. Therefore, we can perform the rule (2.12a) to obtain

the second identity in (3.26). The orthogonality follows from (3.10) and (3.25).

The results for −J
(α,−β)
n (x) can be derived similarly. �

3.3. Relation with Jacobi poly-fractonomials. In a very recent paper, Za-
yernouri and Karniadakis [32] introduced a family of Jacobi poly-fractonomials
(JPFs), which were defined as the eigenfunctions of a singular factional Sturm-
Liouville problem.

Definition 3.2 (Jacobi poly-fractonomials [32]). For μ ∈ (0, 1), the Jacobi poly-
fractonomials of order μ are defined as follows.

• For −1 < α < 2− μ and −1 < β < μ− 1,

(1)P(α,β,μ)
n (x) = (1 + x)μ−(β+1)P

(α+1−μ,μ−(β+1))
n−1 (x), n ∈ N.(3.30)

• For −1 < α < μ− 1 and −1 < β < 2− μ,

(3.31) (2)P(α,β,μ)
n (x) = (1− x)μ−(α+1)P

(μ−(α+1),β+1−μ)
n−1 (x), n ∈ N.

As shown in [32, Thm. 4.2], the left JPFs are eigenfunctions of the singular
fractional Sturm-Liouville equation:

xD
μ
1

{
ω(α+1,β+1)(x) C

−1D
μ
x {(1)P(α,β,μ)

n (x)}
}

= (1)λ(α,β,μ)
n ω(α+1−μ,β+1−μ)(x) (1)P(α,β,μ)

n (x),
(3.32)

where
(1)λ(α,β,μ)

n =
Γ(n+ α+ 1)Γ(n+ μ− β − 1)

Γ(n− β − 1)Γ(n− μ+ α+ 1)
, n ≥ 1.

The right JPFs satisfy a similar equation.
The relation below follows from (3.1)-(3.2) and (3.30)-(3.31):

(3.33)
(1)P(α,β,μ)

n (x) = −J
(α+1−μ,β+1−μ)
n−1 (x), (2)P(α,β,μ)

n (x) = +J
(α+1−μ,β+1−μ)
n−1 (x).

Observe that with the parameters {μ, α+1−μ, μ− (β+1)} in place of {s, α, β} in
(3.27), we obtain (3.32) exactly. However, the range of the parameters is α > −1
and −1 < β < 1−μ, so the condition on α is relaxed as opposite to that for (3.30).
Indeed, the difference between the range of α is not surprising, as the GJFs here
and JPFs in [32] are defined by different means.

4. Approximation by generalized Jacobi functions

The main concern of this section is to show that approximation by GJFs leads
to truly spectral convergence for functions in properly weighted Sobolev spaces
involving fractional derivatives. Such approximation results play a crucial role in
the analysis of spectral methods for fractional differential equations (see Section 5).

For simplicity of presentation, we only provide the detailed analysis for
{
+J

(−α,β)
n

}
as the results can be extended to

{−J
(α,−β)
n

}
straightforwardly, thanks to (3.7). In

the first place, we highlight some special GJFs of particular interest.

• In view of the fractional factor (1−x)α, we have that for α > 0 and β ∈ R,

(4.1) Dl +J (−α,β)
n (1) = 0, for l = 0, 1, . . . , [α]− 1.
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1616 SHENG CHEN, JIE SHEN, AND LI-LIAN WANG

Suppose that P
(α,β)
n (x) does not degenerate for all n ≥ 0 (cf. (2.19)-(2.22)).

Then we can naturally impose the one-sided boundary conditions: u(l)(1) =
0 for l = 0, 1, . . . , [α]−1.More importantly, the basis matches the singularity
of the solution for prototypical FIVPs, thanks to the fractional factor (1−
x)α. Moreover, we can choose the parameter β (e.g., β = −α) so that
under the GJF basis, the resulting linear system can be sparse and well
conditioned (see Section 5). However, it is noteworthy that the choice of β
does not affect the approximability of the basis.

• For α > 0, β = −[α] and n ≥ [α], we find from (3.5) that

(4.2) Dl +J (−α,−[α])
n (±1) = 0, for l = 0, 1, . . . , [α]− 1,

which allows us to deal with the two-sided boundary condition u(l)(±1) = 0,
and to match the singularity of the underlying solution (see Section 5).

We introduce some notation to be used later. Let PN be the set of all algebraic
(real-valued) polynomials of degree at most N. Let �(x) > 0, x ∈ Λ, be a generic
weight function. The weighted space L2

�(Λ) is defined as in Adams [2] with inner
product and norm

(u, v)� =

∫
Λ

u(x)v(x)�(x)dx, ‖u‖� = (u, u)1/2� .

If � ≡ 1, we omit the weight function in the notation. In what follows, the Sobolev
space H1(Λ) is also defined as usual.

4.1. Approximation results for GJFs
{
+J

(−α,β)
n

}
. In view of the applications,

we restrict the parameters to the set

(4.3) +Υα,β :=
{
(α, β) : α > 0, α+ β > −1

}
,

which we further split into three disjoint subsets:

+Υα,β
1 :=

{
(α, β) : α > 0, β > −1

}
;

+Υα,β
2 :=

{
(α, β) : α > 0, −α− 1 < β = −k ≤ −1, k ∈ N

}
;

+Υα,β
3 :=

{
(α, β) : α > 0, −α− 1 < β < −1, −β �∈ N

}
.

(4.4)

4.1.1. Case I: (α, β) ∈ +Υα,β
1 ∪ +Υα,β

2 . Let us first consider (α, β) ∈ +Υα,β
1 . In this

case, we define the finite-dimensional fractional-polynomial space:

(4.5) +F (−α,β)
N (Λ) =

{
φ = (1− x)αψ : ψ ∈ PN

}
= span

{
+J (−α,β)

n : 0 ≤ n ≤ N
}
.

By the orthogonality (3.10), we can expand any u ∈ L2
ω(−α,β)(Λ) as

(4.6)

u(x) =

∞∑
n=0

û(−α,β)
n

+J (−α,β)
n (x), where û(−α,β)

n =
1

γ
(α,β)
n

∫ 1

−1

u +J (−α,β)
n ω(−α,β) dx,

and there holds the Parseval identity

(4.7) ‖u‖2ω(−α,β) =

∞∑
n=0

γ(α,β)
n

∣∣û(−α,β)
n

∣∣2.
Consider the L2

ω(−α,β)-orthogonal projection upon +F (−α,β)
N (Λ), defined by

(4.8)
(
+π

(−α,β)
N u− u, vN

)
ω(−α,β) = 0, ∀ vN ∈ +F (−α,β)

N (Λ).
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By definition, we have

(4.9) (+π
(−α,β)
N u

)
(x) =

N∑
n=0

û(−α,β)
n

+J (−α,β)
n (x).

Remark 4.1. In the above, we have used the completeness of {+J (−α,β)
n } in

L2
ω(−α,β)(Λ). Here, we provide a justification for this. Note that for any u ∈

L2
ω(−α,β)(Λ), we have (1− x)−αu ∈ L2

ω(α,β)(Λ). For (α, β) ∈ +Υα,β
1 , i.e., α > 0, β >

−1, {P (α,β)
n }n≥0 are mutually orthogonal and complete in L2

ω(α,β)(Λ), so we can
uniquely expand

(4.10) (1− x)−αu(x) =
∞∑

n=0

ṽ(α,β)n P (α,β)
n (x),

where by (2.29), (3.1), and (4.6),

ṽ(α,β)n =
1

γ
(α,β)
n

∫ 1

−1

(1− x)−αu(x)P (α,β)
n (x)ω(α,β)(x)dx

=
1

γ
(α,β)
n

∫ 1

−1

u(x)+J (−α,β)
n (x)ω(−α,β)(x)dx = û(−α,β)

n .

Multiplying both sides of (4.10) by (1− x)α, we obtain the unique representation

(4.6). Hence, we can claim the completeness of
{
+J

(−α,β)
n

}
in L2

ω(−α,β)(Λ). �

We now consider (α, β) ∈ +Υα,β
2 . In this case, we modify (4.5) as

(4.11)
+F (−α,−k)

N (Λ) =
{
φ = (1− x)αψ : ψ ∈ PN such that ψ(l)(−1) = 0, 0 ≤ l ≤ k− 1

}
,

which incorporates the homogeneous boundary conditions at x = −1. Thanks to
(3.5), we have

(4.12) +F (−α,−k)
N (Λ) = span

{
+J (−α,−k)

n (x) : k ≤ n ≤ N
}
.

In view of the orthogonality (3.11), we have an expansion like (4.6), that is, for any
u ∈ L2

ω(−α,−k)(Λ),

(4.13) u(x) =
∞∑

n=k

û(−α,−k)
n

+J (−α,−k)
n (x),

where

(4.14) û(−α,−k)
n =

1

γ
(α,−k)
n

∫ 1

−1

u(x) +J (−α,−k)
n (x)ω(−α,−k)(x) dx.

Note that the identity (4.7) also holds for this expansion. The partial sum

(4.15) +π
(−α,−k)
N u(x) =

N∑
n=k

û(−α,−k)
n

+J (−α,−k)
n (x),

is the L2
ω(−α,−k)-orthogonal projection upon +F (−α,−k)

N (Λ), namely,

(4.16)
(
+π

(−α,−k)
N u− u, vN

)
ω(−α,−k) = 0, ∀ vN ∈ +F (−α,−k)

N (Λ).
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Remark 4.2. Like Remark 4.1, we need to justify {+J (−α,−k)
n } is complete in

L2
ω(−α,−k)(Λ). For (α, β) ∈ +Υα,β

2 (so α > 0 and −β = k ∈ N), one verifies that

for any u ∈ L2
ω(−α,−k)(Λ), we have ω(−α,−k)u ∈ L2

ω(α,k)(Λ), which can be uniquely

expressed in series of {P (α,k)
n−k }n≥k. In view of (3.5), we can show the completeness

of {+J (−α,−k)
n } in L2

ω(−α,−k)(Λ) in the same fashion as in Remark 4.1. �

Remark 4.3. It is worthwhile to point out that for (α, β) ∈ +Υα,β
1 ∪+Υα,β

2 , we have

(4.17)
(
xD

α+l
1 (+π

(−α,β)
N u− u), DlwN

)
ω(l,α+β+l) = 0, ∀wN ∈ PN ,

for all l ∈ N0. Notice that

(+π
(−α,β)
N u− u)(x) =

∞∑
n=N+1

û(−α,β)
n

+J (−α,β)
n (x),

and PN = span
{
P

(0,α+β)
n : 0 ≤ n ≤ N

}
. Using the property xD

α+l
1 = (−1)lDl

xD
α
1

for α > 0 and l ∈ N, we obtain (4.17) from (3.14), (3.16), and the orthogonality of
the classical Jacobi polynomials (cf. (2.29)). �

To characterise the regularity of u, we introduce the non-uniformly Jacobi weigh-
ted space involving fractional derivatives:

(4.18) +Bm
α,β(Λ) :=

{
u ∈ L2

ω(−α,β)(Λ) : xD
α+l
1 u ∈ L2

ω(l,α+β+l)(Λ)

for 0 ≤ l ≤ m
}
, m ∈ N0.

By (3.17) and (4.6) or (4.13), we have that for (α, β) ∈ +Υα,β
1 ∪ +Υα,β

2 and l ∈ N0,

∥∥
xD

α+l
1 u

∥∥2
ω(l,α+β+l) =

∞∑
n=l̃

h
(α,β)

n,l̃

∣∣û(α,β)
n

∣∣2,(4.19)

where l̃ = l for (α, β) ∈ +Υα,β
1 ; l̃ = max{l, k} for (α, β) ∈ +Υα,β

2 , and h
(α,β)

n,l̃
is

defined in (3.18).
The main result on the projection errors for these two cases is stated as follows.

Theorem 4.1. Let (α, β) ∈ +Υα,β
1 ∪ +Υα,β

2 , and let u ∈ +Bm
α,β(Λ) with m ∈ N0.

• For 0 ≤ l ≤ m ≤ N,∥∥
xD

α+l
1 (+π

(−α,β)
N u− u)

∥∥
ω(l,α+β+l)

≤ N (l−m)/2

√
(N −m+ 1)!

(N − l + 1)!

∥∥
xD

α+m
1 u

∥∥
ω(m,α+β+m) .

(4.20)

In particular, if m is fixed, then∥∥
xD

α+l
1 (+π

(−α,β)
N u− u)

∥∥
ω(l,α+β+l) ≤ cN l−m

∥∥
xD

α+m
1 u

∥∥
ω(m,α+β+m) .(4.21)

• For 0 ≤ m ≤ N, we also have the L2
ω(−α,β)-estimates

∥∥+π(−α,β)
N u− u

∥∥
ω(−α,β) ≤ cN−α

√
(N −m+ 1)!

(N +m+ 1)!

∥∥
xD

α+m
1 u

∥∥
ω(m,α+β+m) .(4.22)
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In particular, if m is fixed, then∥∥+π(−α,β)
N u− u

∥∥
ω(−α,β) ≤ cN−(α+m)

∥∥
xD

α+m
1 u

∥∥
ω(m,α+β+m) .(4.23)

Here, c ≈ 1 for N � 1.

Proof. By (4.6) (or (4.13)), (4.8) (or (4.16)) and (4.19),∥∥
xD

α+l
1 (+π

(−α,β)
N u− u)

∥∥2
ω(l,α+β+l)

=
∞∑

n=N+1

h
(α,β)
n,l

∣∣û(α,β)
n

∣∣2 =
∞∑

n=N+1

h
(α,β)
n,l

h
(α,β)
n,m

h(α,β)
n,m

∣∣û(α,β)
n

∣∣2

≤
h
(α,β)
N+1,l

h
(α,β)
N+1,m

∥∥
xD

α+m
1 u

∥∥2
ω(m,α+β+m) .

(4.24)

We now estimate the constant factor. By (2.14), (3.18) and a direct calculation,
we find that for 0 ≤ l ≤ m ≤ N,

h
(α,β)
N+1,l

h
(α,β)
N+1,m

=
Γ(N + α+ β + l + 2)

Γ(N + α+ β +m+ 2)

(N −m+ 1)!

(N − l + 1)!

=
1

(N + α+ β + 2 + l) · · · (N + α+ β + 1 +m)

(N −m+ 1)!

(N − l + 1)!

≤ N l−m (N −m+ 1)!

(N − l + 1)!
,

(4.25)

where we used the fact that α + β > −1. Therefore, the estimate (4.20) follows
from (4.24)-(4.25) immediately.

We now turn to (4.21). Let us recall the property of the Gamma function (see
[1, (6.1.38)]):

(4.26) Γ(x+ 1) =
√
2πxx+1/2 exp

(
− x+

θ

12x

)
, ∀x > 0, 0 < θ < 1.

We can show that for any constant a, b ∈ R, n ∈ N, n + a > 1 and n + b > 1 (see
[33, Lemma 2.1]),

(4.27)
Γ(n+ a)

Γ(n+ b)
≤ νa,bn na−b,

where

(4.28) νa,bn = exp
( a− b

2(n+ b− 1)
+

1

12(n+ a− 1)
+

(a− b)2

n

)
.

Using the property Γ(n+ 1) = n! and (4.27), we find that for m ≤ N,

(N −m+ 1)!

(N − l + 1)!
≤ ν2−m,2−l

N N l−m,(4.29)

where ν2−m,2−l
N ≈ 1 for fixed m and N � 1. Thus, we obtain (4.21) from (4.20)

immediately.
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The L2
ω(−α,β)-estimates can be obtained by using the same argument. We sketch

the derivation below. By (4.7) and (4.19),

∥∥+π(−α,β)
N u− u

∥∥2
ω(−α,β) =

∞∑
n=N+1

γ(α,β)
n

∣∣û(α,β)
n

∣∣2

≤
γ
(α,β)
N+1

h
(α,β)
N+1,m

∞∑
n=N+1

h(α,β)
n,m

∣∣û(α,β)
n

∣∣2 ≤
γ
(α,β)
N+1

h
(α,β)
N+1,m

∥∥
xD

α+m
1 u

∥∥2
ω(m,α+β+m) .

(4.30)

Working out the constants by (2.30) and (3.18), we use (4.27) again to get that

γ
(α,β)
N+1

h
(α,β)
N+1,m

=
Γ(N + β + 2)

Γ(N + α+ 2)

Γ(N +m+ 2)

Γ(N + α+ β +m+ 2)

(N −m+ 1)!

(N +m+ 1)!

≤ να+2,β+2
N Nβ−α ν2,α+β+2

N (N +m)−(α+β) (N −m+ 1)!

(N +m+ 1)!

≤ cN−2(α+m) (if m is fixed).

(4.31)

This ends the proof. �

Remark 4.4. We see from the above estimates that an optimal order of convergence

can be attained for approximation of u by its orthogonal projection +π
(−α,β)
N u in

both L2
ω(−α,β)(Λ) and +Bl

α,β(Λ), when u belongs to a properly weighted space in-
volving proper orders of fractional derivatives. �

4.1.2. Case II: (α, β) ∈ +Υα,β
3 . In this case, the main difficulty resides in that the

GJFs {+J (−α,β)
n } are no longer orthogonal. In what follows, we adopt a different

route to derive the approximation results. For any u such that xD
α
1 u ∈ L2

ω(0,α+β)(Λ),
it admits the unique Jacobi series expansion

(4.32) xD
α
1 u(x) =

∞∑
n=0

v̂(0,α+β)
n P (0,α+β)

n (x),

where by orthogonality (2.29)

(4.33) v̂(0,α+β)
n =

1

γ
(0,α+β)
n

∫ 1

−1
xD

α
1 u(x) P

(0,α+β)
n (x) (1 + x)α+β dx.

From the definition of the L2
ω(0,α+β)-orthogonal projection: Π

(0,α+β)
N :L2

ω(0,α+β)(Λ)→
PN , we have

(4.34)
(
Π

(0,α+β)
N (xD

α
1 u)− xD

α
1 u, vN

)
ω(0,α+β) = 0, ∀ vN ∈ PN ,

and

(4.35) Π
(0,α+β)
N (xD

α
1 u)(x) =

N∑
n=0

v̂(0,α+β)
n P (0,α+β)

n (x).

Let +F (−α,β)
N (Λ) be the finite-dimensional space as defined in (4.5), but for (α, β) ∈

Υα,β
3 .
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Lemma 4.1. Let (α, β) ∈ Υα,β
3 , i.e., α > 0,−α − 1 < β < −1 and −β �∈ N. Then

for any u such that xD
α
1 u ∈ L2

ω(0,α+β)(Λ), there exists a unique uN =: +π
(−α,β)
N u ∈

+F (−α,β)
N (Λ) such that

(4.36) Π
(0,α+β)
N (xD

α
1 u)(x) = xD

α
1 (

+π
(−α,β)
N u)(x)

and

(4.37)
(
xD

α
1 (

+π
(−α,β)
N u− u), vN

)
ω(0,α+β) = 0, ∀ vN ∈ PN .

Proof. From the coefficients
{
v̂
(0,α+β)
n

}N

n=0
in (4.33), we construct

(4.38) uN (x) =

N∑
n=0

n! v̂
(0,α+β)
n

Γ(n+ α+ 1)
+J (−α,β)

n (x) ∈ +F (−α,β)
N (Λ).

Acting xD
α
1 on both sides, we obtain from (3.14) and (4.35) that

xD
α
1 uN (x) =

N∑
n=0

v̂(0,α+β)
n P (0,α+β)

n (x) = Π
(0,α+β)
N (xD

α
1 u)(x).

Note that the expansion in (4.33) is unique, so we specifically denote uN by
+π

(−α,β)
N u, and (4.36) is shown.
The property (4.37) is a direct consequence of (4.34) and (4.36). �

With Lemma 4.1 at our disposal, we can obtain the following error estimates.

Theorem 4.2. Let (α, β) ∈ Υα,β
3 , i.e., α > 0,−α− 1 < β < −1 and −β �∈ N, and

let +π
(−α,β)
N be defined in Lemma 4.1. Suppose that xD

α+l
1 u ∈ L2

ω(l,α+β+l)(Λ) with
0 ≤ l ≤ m ≤ N. Then we have

∥∥
xD

α
1 (

+π
(−α,β)
N u− u)

∥∥
ω(0,α+β) ≤ N−m/2

√
(N −m+ 1)!

(N + 1)!

∥∥
xD

α+m
1 u

∥∥
ω(m,α+β+m) .

(4.39)

In particular, if m is fixed, we have∥∥
xD

α
1 (

+π
(−α,β)
N u− u)

∥∥
ω(0,α+β) ≤ cN−m

∥∥
xD

α+m
1 u

∥∥
ω(m,α+β+m) ,(4.40)

where the constant c ≈ 1 for N � 1.

Proof. Using the relation (4.36), we derive from (2.29), (4.32), and (4.35) that∥∥
xD

α
1 (

+π
(−α,β)
N u− u)

∥∥2
ω(0,α+β) =

∥∥Π(0,α+β)
N (xD

α
1 u)− xD

α
1 u

∥∥2
ω(0,α+β)

=
∞∑

n=N+1

γ(0,α+β)
n

∣∣v̂(0,α+β)
n

∣∣2.(4.41)

We find from (2.29), (3.16), and (4.32) that

(4.42)
∥∥
xD

α+m
1 u

∥∥2
ω(m,α+β+m) =

∞∑
n=m

μ(0,α+β)
n,m

∣∣v̂(0,α+β)
n

∣∣2,
where for n ≥ m,
(4.43)

μ(0,α+β)
n,m =

(
κ(0,α+β)
n,m

)2
γ
(m,α+β+m)
n−m =

2α+β+1n! Γ(n+ α+ β +m+ 1)

(2n+ α+ β + 1) (n−m)! Γ(n+ α+ β + 1)
.
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In view of the above facts, we work out the constants by using (2.30) and obtain

∥∥
xD

α
1 (

+π
(−α,β)
N u− u)

∥∥2
ω(0,α+β) ≤

γ
(0,α+β)
N+1

μ
(0,α+β)
N+1,m

∥∥
xD

α+m
1 u

∥∥2
ω(m,α+β+m)

=
1

(N + α+ β + 2)m

(N + 1−m)!

(N + 1)!

∥∥
xD

α+m
1 u

∥∥2
ω(m,α+β+m)

≤ N−m (N + 1−m)!

(N + 1)!

∥∥
xD

α+m
1 u

∥∥2
ω(m,α+β+m) .

(4.44)

This yields (4.39). For fixed m, we apply (4.27) to deal with the above factorials
and derive (4.40) immediately. �

4.2. Approximation results for GJFs
{−J

(α,−β)
n

}
. Thanks to (3.7), the esti-

mates established in the previous subsection can be extended to
{−J

(α,−β)
n

}
straight-

forwardly. To avoid repetition, we sketch the corresponding results.
Like (4.3), we define the parameter set

(4.45) −Υα,β :=
{
(α, β) : β > 0, α+ β > −1

}
,

which we split into three disjoint subsets:

−Υα,β
1 :=

{
(α, β) : β > 0, α > −1

}
;

−Υα,β
2 :=

{
(α, β) : β > 0, −β − 1 < α = −k ≤ −1, k ∈ N

}
;

−Υα,β
3 :=

{
(α, β) : β > 0, −β − 1 < α < −1, −α �∈ N

}
.

(4.46)

Consider the L2
ω(α,−β)-orthogonal projection: −π

(α,−β)
N u ∈ −F (α,−β)

N (Λ) for

(α, β) ∈ −Υα,β
1 ∪ −Υα,β

2 , where the notation is defined in a fashion similar to that
in the previous subsection. In this context, we define

(4.47) −Bm
α,β(Λ) :=

{
u ∈ L2

ω(α,−β)(Λ) : −1D
β+l
x u ∈ L2

ω(α+β+l,l)(Λ)

for 0 ≤ l ≤ m
}
, m ∈ N0.

Following the argument as in the proof of Theorem 4.1, we can derive the following
error estimates.

Theorem 4.3. Let (α, β) ∈ −Υα,β
1 ∪ −Υα,β

2 , and let u ∈ −Bm
α,β(Λ) with m ∈ N0.

• For 0 ≤ l ≤ m ≤ N,∥∥−1D
β+l
x (−π

(α,−β)
N u− u)

∥∥
ω(α+β+l,l)

≤ N (l−m)/2

√
(N −m+ 1)!

(N − l + 1)!

∥∥−1D
β+m
x u

∥∥
ω(α+β+m,m) .

(4.48)

In particular, if m is fixed, we have∥∥−1D
β+l
x (−π

(α,−β)
N u− u)

∥∥
ω(α+β+l,l) ≤ cN l−m

∥∥−1D
β+m
x u

∥∥
ω(α+β+m,m) .(4.49)

• For 0 ≤ m ≤ N, we also have the L2
ω(α,−β)-estimates

∥∥−π(α,−β)
N u− u

∥∥
ω(α,−β) ≤ cN−β

√
(N −m+ 1)!

(N +m+ 1)!

∥∥−1D
β+m
x u

∥∥
ω(α+β+m,m) .(4.50)
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In particular, if m is fixed, then∥∥−π(α,−β)
N u− u

∥∥
ω(α,−β) ≤ cN−(β+m)

∥∥−1D
β+m
x u

∥∥
ω(α+β+m,m) .(4.51)

Here, c ≈ 1 for N � 1.

Next, we consider (α, β) ∈ −Υα,β
3 . For −1D

β
x u ∈ L2

ω(α+β,0)(Λ), we define the

operator −Π
(α,−β)
N similarly as that in Lemma 4.1. Following the lines as in the

proof of Theorem 4.2, we can obtain the following estimates.

Theorem 4.4. Let (α, β) ∈ −Υα,β
3 . Suppose that −1D

β+l
x u ∈ L2

ω(α+β+l,l)(Λ) with
0 ≤ l ≤ m ≤ N. Then we have

∥∥−1D
β
x (

−π
(α,−β)
N u− u)

∥∥
ω(α+β,0) ≤ N−m/2

√
(N −m+ 1)!

(N + 1)!

∥∥−1D
β+m
x u

∥∥
ω(α+β+m,m) .

(4.52)

In particular, if m is fixed, we have∥∥−1D
β
x (

−π
(α,−β)
N u− u)

∥∥
ω(α+β,0) ≤ cN−m

∥∥−1D
β+m
x u

∥∥
ω(α+β+m,m) ,(4.53)

where the constant c ≈ 1 for N � 1.

Remark 4.5. To have a better understanding of the above approximation results,
we compare the GJF with the Legendre approximation to the function

(4.54) u(x) = (1 + x)bg(x), b ∈ R
+, x ∈ Λ,

where g is analytic in a domain containing Λ. Recall the best L2-approximation of
u by its orthogonal projection πL

Nu (see, e.g., [27, Ch. 3])

‖πL
Nu− u‖ ≤ cN−m‖Dmu‖ω(m,m) .

If b is non-integer, a direct calculation shows that u has a limited regularity: m <
1 + 2b − ε for small ε > 0, in this usual weighted norm involving derivatives of
integer order.

We now consider the GJF approximation (see (4.50)) to u in (4.54). Using
the explicit formulas for fractional integral/derivative of (1 + x)b and the Leibniz
formula (see [7, Ch. 2]), we find that if β = b, −1D

β+m
x u is analytic for any m ∈ N0,

so by (4.50) with α = 0, β = b and m = N, and using (4.26), we have

∥∥−π(0,−β)
N u−u

∥∥≤∥∥−π(0,−β)
N u−u

∥∥
ω(0,−β) ≤cN−(β+1/4)

( e

2N

)N∥∥−1D
β+N
x u

∥∥
ω(β+N,N) .

This implies the exponential convergence O(e−cN ).
Also note that if u is smooth, i.e., b ∈ N, we can only get a limited convergence

rate by choosing a non-integer β. Indeed, a direct calculation by using the Leibniz
formula in [7] yields

−1D
β+m
x u = (1 + x)b−β−mh(x),

where h is analytic. Therefore,
∥∥−1D

β+m
x u

∥∥
ω(β+m,m) < ∞, only when m + 2β <

1 + 2b− ε. �
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5. Applications to fractional differential equations

It is well known that the underlying solution of an FDE usually exhibits singu-
lar behaviors at one or both endpoint(s), even when the given data are smooth.
Accordingly, the solution and data are not always in the same types of Sobolev
spaces as opposite to differential equations of integer derivatives. Hence, the use of
polynomial approximations can only achieve a limited convergence order. In this
section, we shall construct Petrov-Galerkin spectral methods using GJFs as basis
functions for several prototypical FDEs, and demonstrate the following:

(i) The convergence rate of our approach only depends on the regularity of
the data in the usual weighted Sobolev space, regardless of the singular
behavior of their solutions. Truly spectral accuracy can be achieved, if the
input of a FDE is smooth enough.

(ii) With a suitable choice of the parameters in the GJF basis, the resulting
linear systems are usually sparse and sometimes diagonal.

We shall provide ample numerical results to validate the theoretical analysis. We
remark that the study of these prototypical FDEs can shed light on the investigation
of more complicated FDEs.

5.1. Fractional initial value problems (FIVPs). As the first example, we con-
sider the fractional initial value problem of order s ∈ (k − 1, k) with k ∈ N :

xD
s
1 u(x) = f(x), x ∈ Λ; u(l)(1) = 0, l = 0, · · · , k − 1,(5.1)

where f is continuous on Λ̄.

The GJF-spectral-Petrov-Galerkin scheme is to find uN ∈ +F (−s,−s)
N (Λ) (defined

in (4.5)) such that

(5.2) (xD
s
1 uN , vN ) = (INf, vN ), ∀ vN ∈ PN ,

where INf is the Legendre-Gauss-Lobatto interpolation of f on (N +1) Legendre-
Gauss-Lobatto points. Note that

(5.3) (INf)(x) =

N∑
n=0

f̃n Pn(x),

where Pn is the Legendre polynomial of degree n, and {f̃q} are the “pseudo-spectral”
coefficients computed by the discrete Legendre transform (see, e.g., [27, Ch. 3]).
Using the GJF basis, we can write

(5.4) uN (x) =
N∑

n=0

ũ(s)
n

+J (−s,−s)
n (x) ∈ +F (−s,−s)

N (Λ).

Taking vN = Pl in (5.2), we obtain from (3.14) and the orthogonality of Legendre
polynomials that

(5.5) ũ(s)
n =

n!

Γ(n+ s+ 1)
f̃n, 0 ≤ n ≤ N.

Therefore, we obtain the numerical solution uN by inserting (5.5) into (5.4).
The following error estimate shows the spectral accuracy of this GJF-Petrov-

Galerkin scheme.
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Theorem 5.1. Let u and uN be the solutions of (5.1) and (5.2), respectively.
If f ∈ C(Λ̄) and f (l) ∈ L2

ω(l−1,l−1)(Λ) for all 1 ≤ l ≤ m, then we have that for
s ∈ (k − 1, k) with k ∈ N, and 1 ≤ m ≤ N + 1,

(5.6) ‖xDs
1(u− uN )‖+ ‖u− uN‖ ≤ cN−m‖f (m)‖ω(m−1,m−1) ,

where c is a positive constant independent of u,N , and m.

Proof. Let +π
(−s,−s)
N u be the same as in (4.16) for 0 < s < 1, and as in (4.37) for

s > 1, respectively. By (4.17) (with l = 0) and (4.37), we have(
xD

s
1(

+π
(−s,−s)
N u− u), ψ

)
= 0, ∀ψ ∈ PN .

Then by (5.1),(
f − xD

s
1

+π
(−s,−s)
N u, ψ

)
=

(
xD

s
1u− xD

s
1

+π
(−s,−s)
N u, ψ

)
= 0, ∀ψ ∈ PN .(5.7)

Let πNf be the L2-orthogonal projection of f upon PN . We infer from (5.7) that

xD
s
1
+π

(−s,−s)
N u = πNf. On the other hand, by (5.2), xD

s
1 uN = INf. Therefore, we

have

(5.8)
∥∥
xD

s
1(

+π
(−s,−s)
N u− uN )

∥∥ = ‖πNf − INf‖.

Using the triangle inequality leads to

‖xDs
1(u− uN )‖ ≤

∥∥
xD

s
1(u− +π

(−s,−s)
N u)

∥∥+ ‖πNf − INf‖

≤
∥∥
xD

s
1(u− +π

(−s,−s)
N u)

∥∥+ ‖πNf − f‖+ ‖f − INf‖.
(5.9)

Therefore, it follows from Theorem 4.1 (with α = −β = s and 0 < s < 1), Theorem
4.2 (with α = −β = s and s > 1), and the Legendre polynomial and interpolation
approximation results (see, e.g., [27, Ch. 3]) that

(5.10) ‖xDs
1(u− uN )‖ ≤ cN−m

(
‖xDs+m

1 u
∥∥
ω(m,m) + ‖f (m)‖ω(m−1,m−1)

)
.

We deduce from (5.1) that∥∥
xD

s+m
1 u

∥∥
ω(m,m) ≤ c

∥∥f (m)
∥∥
ω(m−1,m−1) .

This leads to the estimate of ‖xDs
1(u− uN )‖.

We now turn to the L2-estimate. For s ∈ R
+, xI

s
1 : L2(Λ) → L2(Λ) is a bounded

linear operator (see, e.g., [10]). Thus, we have

(5.11)
∥∥
xI

s
1xD

s
1(u− uN )

∥∥ ≤ c
∥∥
xD

s
1(u− uN )

∥∥.
We next show that

(5.12) u− uN = xI
s
1xD

s
1(u− uN ).

As Dl(u− uN )(1) = 0 for l = 0, . . . , k − 1, we obtain from (2.8) and (2.11) that

(5.13) xD
s
1(u− uN ) = C

xD
s
1(u− uN ) = (−1)kxI

k−s
1 Dk(u− uN ).

Using the properties (cf. [7]): xI
s
1xI

k−s
1 = xI

k
1 and (−1)kxI

k
1D

kv = v, we obtain
(5.12) from (5.13) immediately. Thus, by (5.11) and (5.12), we derive the L2-
estimate. �
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Remark 5.1. One can also construct a similar GJF-Petrov-Galerkin scheme for the
following more general FIVPs of order s ∈ (k − 1, k) with k ∈ N,

L[u] := xD
s
1u(x) + p1(x) xD

s−1
1 u(x) + · · ·+ pk−1(x) xD

s−k+1
1 u(x) = f(x), x ∈ Λ;

u(l)(1) = 0, l = 0, · · · , k − 1,

(5.14)

where f and {pj} are continuous functions on Λ̄.We find from (3.12) that L[+J (−s,s)
n ]

is a combination of products of pj and polynomials. Hence, one can derive spectrally
accurate error estimates as in Theorem 5.1. If {pj} are constants, the corresponding
linear system will be sparse; for general {pj}, one can use a preconditioned iterative
algorithm as in the integer s case by using the problem with suitable constant
coefficients as a preconditioner (cf. [27]). �
5.2. Fractional boundary value problems (FBVPs). In accordance with usual
boundary value problems, it is necessary to classify an FBVP of order ν as even or
odd order as follows.

• If ν = s + k with s ∈ (k − 1, k) and k ∈ N, we say it is of even order. In
this case, 2k boundary conditions should be imposed.

• If ν = s + k with s ∈ (k, k + 1) and k ∈ N, we say it is odd order. In this
case, 2k + 1 boundary conditions should be imposed.

In practice, the boundary conditions can be of integral type or of usual Dirichlet
type, which oftentimes lead to different singular behaviors of the solution and should
be treated quite differently. In what follows, we first consider FBVPs with integral
boundary conditions (BCs), and then discuss Dirichlet boundary conditions.

5.2.1. FBVPs with integral BCs. To fix the idea, we consider the fractional bound-
ary value problem of order ν ∈ (1, 2):

xD
ν
1u(x) = f(x), x ∈ Λ; xI

μ
1 u(±1) = 0,(5.15)

where μ := 2 − ν ∈ (0, 1), and xI
μ
1 is the fractional integral operator defined in

(2.2). Here, f(x) is a given function with regularity to be specified later.
Let H1

0 (Λ) =
{
u ∈ H1(Λ) : u(±1) = 0

}
, and let H−1(Λ) be its dual space.

Recall the property: xD
ν
1 = D2

xI
μ
1 (cf. (2.8)). A weak form of (5.15) is to find

v := xI
μ
1 u ∈ H1

0 (Λ) such that

(5.16) (Dv, Dw) = −(f, w), ∀w ∈ H1
0 (Λ).

It is well known that for any f ∈ H−1(Λ), it admits a unique solution v ∈ H1
0 (Λ).

Then we can recover u uniquely from u = xD
μ
1 v, thanks to (2.9).

As already mentioned, it is important to understand the singular behavior of
the solution so as to compass the choice of the parameter that can match the
singularity. For this purpose, we act on both sides of (5.15) and impose xI

2
1 the

boundary conditions, leading to

(5.17) xI
μ
1 u(x) = xI

2
1f(x)−

xI
2
1f(−1)

2
(1− x).

Using the properties (cf. [7]) xI
2
1 = xI

μ
1 xI

2−μ
1 and xD

μ
1 (1−x) = (1−x)1−μ/Γ(2−μ),

we obtain from (2.9) that

(5.18) u(x) = xD
μ
1 xI

μ
1 u(x) = xI

2−μ
1 f(x)− xI

2
1f(−1)

2Γ(2− μ)
(1− x)1−μ.
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Correspondingly, we define the finite-dimensional fractional-polynomial solution
space

(5.19) VN :=
{
φ = (1− x)1−μψ : ψ ∈ PN−1 such that xI

μ
1 φ(−1) = 0

}
.

The GJF-Petrov-Galerkin approximation is to find uN ∈ VN such that

(5.20) (xD
1−μ
1 uN , DwN ) = (f, wN ), ∀wN ∈ P0

N := PN ∩H1
0 (Λ).

In terms of error analysis, it is more convenient to formulate (5.20) into an
equivalent Galerkin approximation (see (5.25) below). Indeed, note that

(5.21) PN = span
{
P (1−μ,μ−1)
n : 0 ≤ n ≤ N

}
,

and by (2.34) with ρ = μ, α = 1− μ and β = μ− 1,

xI
μ
1

+J (μ−1,μ−1)
n (x) =

Γ(n+ 2− μ)

(n+ 1)!
+J (−1,−1)

n (x) =
Γ(n+ 2− μ)

n!

∫ 1

x

Pn(y)dy,

(5.22)

where we used the formula derived from integrating the Sturm-Liouville equation
of Legendre polynomials and using (3.16),
(5.23)

xI
1
1Pn(x) =

∫ 1

x

Pn(y)dy =
1

2n
(1− x2)P

(1,1)
n−1 (x) =

1

n+ 1
+J (−1,−1)

n (x), n ≥ 1.

Since for n ≥ 1, xI
μ
1

+J
(μ−1,μ−1)
n (±1) = 0, we have

(5.24)

VN = span
{
+J (μ−1,μ−1)

n : 1 ≤ n ≤ N − 1
}
; P0

N = span
{
xI

1
1Pn : 1 ≤ n ≤ N − 1

}
.

Thus, we infer from (5.22) that the operator xI
μ
1 is an isomorphism between VN and

P0
N . Then we can equivalently formulate (5.20) as follows. Find vN := xI

μ
1 uN ∈ P0

N

such that

(5.25) (DvN , DwN ) = −(f, wN ), ∀wN ∈ P0
N .

It admits a unique solution as with (5.16). In fact, this formulation facilitates the
error analysis, which can be accomplished by a standard argument as follows.

Theorem 5.2. Let u and uN be the solution of (5.15) and (5.25), respectively. If

xI
μ
1 u ∈ H1

0 (Λ) and (1− x2)(m−1)/2
xD

m−μ
1 u ∈ L2(Λ) with m ∈ N, then we have

(5.26) ‖xD1−μ
1 (u− uN )‖ ≤ cN1−m‖xDm−μ

1 u‖ω(m−1,m−1) .

In particular, if f (m−2) ∈ L2
ω(m−1,m−1)(Λ) with m ≥ 2, we have

(5.27) ‖xD1−μ
1 (u− uN )‖ ≤ cN1−m‖f (m−2)‖ω(m−1,m−1) .

Here, c is a positive constant independent of N and u.

Proof. Using a standard argument for error analysis of Galerkin approximation, we
find from (5.16) and (5.25) that

(5.28) ‖D(v − vN )‖ = inf
v∗
N∈P0

N

‖D(v − v∗N )‖.

Let π1,0
N be the usual H1

0 -orthogonal projection upon P0
N , and recall the approxi-

mation result (see, e.g., [27, Ch. 3]),

(5.29) ‖D(v − π1,0
N v)‖ ≤ cN1−m‖Dmv‖ω(m−1,m−1) .
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1628 SHENG CHEN, JIE SHEN, AND LI-LIAN WANG

Recall that v = xI
μ
1 u and vN = xI

μ
1 uN , so we take v∗N = π1,0

N v in (5.28) and obtain
the desired estimate (5.26) from (5.29).

The estimate (5.27) follows immediately from (5.15) and (5.26) by noting that

Dm−2f = xD
m−μ
1 u. �

Remark 5.2. By using the duality argument, one can derive an optimal L2-error
estimate for v − vN ,

‖v − vN‖ ≤ cN−m‖Dmv‖ω(m−1,m−1) ,

which implies

‖xIμ1 (u− uN )‖ ≤ cN−m‖xDm−μ
1 u‖ω(m−1,m−1) .

However, due to the lack of regularity for (5.15), we are unable to use the duality
argument to get an improved estimate for ‖u− uN‖. �

Now, we briefly describe the implementation of the scheme (5.20). Setting

uN (x) =

N−1∑
n=1

ûn
+J (μ−1,μ−1)

n (x), fj = (f, I1+Pj), 1 ≤ j ≤ N − 1,

we find from (5.22) and the orthogonality of Legendre polynomials that

(5.30)
(
xD

1−μ
1

+J (μ−1,μ−1)
n , DxI

1
1Pj

)
=

Γ(n+ 2− μ)

n!

2n+ 1

2
δjn.

Then we obtain from (5.20) that

(5.31) ûn =
2(n!)fn

(2n+ 1)Γ(n+ 2− μ)
, 1 ≤ n ≤ N − 1.

We see that using the GJFs as basis functions, the matrix of the linear system is
diagonal.

Remark 5.3. The above approach can be applied to higher-order FBVPs. For
example, we consider the FBVP of “odd” order: for ν = 3− μ with μ ∈ (0, 1),

xD
ν
1u(x) = f(x), x ∈ Λ; xI

μ
1 u(±1) = (xI

μ
1 u)

′(1) = 0.(5.32)

To avoid repetition, we just outline the numerical scheme and implementation.
Define the solution and test function spaces

VN :=
{
φ = (1− x)2−μψ : ψ ∈ PN−2 such that xI

μ
1 φ(−1) = 0

}
,

V ∗
N := {ψ ∈ PN : ψ(±1) = ψ′(−1) = 0}.

(5.33)

The GJF-Petrov-Galerkin scheme is to find uN ∈ VN such that

(5.34) (xD
2−μ
1 uN , DwN ) = (f, wN ), ∀wN ∈ V ∗

N .

Using (2.34) with ρ = μ, α = 2− μ and β = μ− 1, we obtain from (2.25) that

xI
μ
1

+J (μ−2,μ−1)
n (x) =

Γ(n+ 3− μ)

(n+ 2)!
+J (−2,−1)

n (x);

xI
μ
1

+J (μ−2,μ−1)
n (−1) = 0, n ≥ 1.

(5.35)

Hence, we have

VN = span
{
+J (μ−2,μ−1)

n : 1 ≤ n ≤ N − 2
}
,

V ∗
N = span

{−J (−1,−2)
n : 1 ≤ n ≤ N − 2

}
.

(5.36)
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GJFS AND THEIR APPROXIMATIONS TO FDES 1629

By (2.5),

xD
2−μ
1

+J (μ−2,μ−1)
n (x) =

Γ(n+ 3− μ)

n!
P (0,1)
n (x),

D −J (−1,−2)
m (x) = (m+ 2)(1 + x)P (0,1)

m (x),

(5.37)

so by the orthogonality of the Jacobi polynomials {P (0,1)
n }, the matrix of the system

(5.34) is diagonal. �
5.2.2. FBVPs with Dirichlet boundary conditions. Now, we turn to a more com-
plicated case and consider the fractional boundary value problem of even order
ν = s+ k with s ∈ (k − 1, k) and k ∈ N :

xD
ν
1 u(x) = f(x), x ∈ Λ; u(l)(±1) = 0, l = 0, 1, . . . , k − 1,(5.38)

where f(x) is a given function with regularity to be specified later.
We introduce the solution and test function spaces,

U :=
{
u ∈ L2

ω(−s,−k)(Λ) : xD
s
1 u ∈ L2

ω(0,s−k)(Λ)
}
,

V :=
{
v ∈ L2

ω(−k,−s)(Λ) : Dkv ∈ L2
ω(0,k−s)(Λ)

}
,

(5.39)

equipped with the norms

‖u‖U =
(
‖u‖2ω(−s,−k) + ‖xDs

1u‖2ω(0,s−k)

)1/2
,

‖v‖V =
(
‖v‖2ω(−k,−s) + ‖Dkv‖2ω(0,k−s)

)1/2
.

(5.40)

For u ∈ U and v ∈ V , we write

u(x) =

∞∑
n=k

ûn
+J (−s,−k)

n (x) = (1− x)s(1 + x)k
∞∑

n=k

ũnP
(s,k)
n−k (x),

v(x) =

∞∑
n=k

v̂n
−J (−k,−s)

n (x) = (1− x)k(1 + x)s
∞∑

n=k

ṽnP
(k,s)
n−k (x),

(5.41)

where by (3.5), ũn = 2−kdk,sn ûn and ṽn = (−1)k2−kdk,sn v̂n.
With the above setup, we can build in the homogenous boundary conditions and

also perform fractional integration by parts (cf. Lemma 2.2). Hence, a weak form
of (5.38) is to find u ∈ U such that

(5.42) a(u, v) := (xD
s
1u, D

kv) = (f, v), ∀ v ∈ V.

Let +F (−s,−k)
N (Λ) and −F (−k,−s)

N (Λ) be the finite-dimensional spaces as defined
in the previous section. Then the GJF-Petrov-Galerkin scheme for (5.42) is to find

uN ∈ +F (−s,−k)
N (Λ) such that

(5.43) a(uN , vN ) = (xD
s
1uN , DkvN ) = (f, vN ), ∀ vN ∈ −F (−k,−s)

N (Λ).

We next show the unique solvability of (5.42)-(5.43) by verifying the Babuška-
Brezzi inf-sup condition of the involved bilinear form. For this purpose, we first
show the following equivalence of the norms.

Lemma 5.1. Let s ∈ (k − 1, k) and k ∈ N, and let U, V be the space defined in
(5.39) and (5.40), respectively. Then we have

C1,s‖u‖U ≤ ‖xDs
1u‖ω(0,s−k) ≤ ‖u‖U , ∀u ∈ U,

C2,s‖v‖V ≤ ‖Dkv‖ω(0,k−s) ≤ ‖v‖V , ∀v ∈ V,
(5.44)
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where
(5.45)

C1,s =

(
1 +

k!

Γ(k + s+ 1)Γ(s+ 1)

)−1/2

, C2,s =

(
1 +

Γ(s+ 1)

k!Γ(k + s+ 1)

)−1/2

.

Proof. Given the expansion in (5.41), we derive from (3.11) and (3.17) that

(5.46) ‖u‖2ω(−s,−k) =

∞∑
n=k

γ(s,−k)
n

∣∣ûn

∣∣2, ∥∥
xD

s
1u

∥∥2
ω(0,s−k) =

∞∑
n=k

h
(s,−k)
n,0

∣∣ûn

∣∣2,
where by (3.18),

(5.47) h
(s,−k)
n,0 =

Γ2(n+ s+ 1)

(n!)2
γ(0,s−k)
n .

Therefore,

‖u‖2ω(−s,−k) =

∞∑
n=k

γ
(s,−k)
n

h
(s,−k)
n,0

h
(s,−k)
n,0

∣∣ûn

∣∣2 ≤ γ
(s,−k)
k

h
(s,−k)
k,0

∥∥
xD

s
1u

∥∥2
ω(0,s−k) ,

so by (2.30), (5.40), and (5.47),

‖u‖2U ≤
(
1 +

γ
(s,−k)
k

h
(s,−k)
k,0

)∥∥
xD

s
1u

∥∥2
ω(0,s−k) =

1

C2
1,s

∥∥
xD

s
1u

∥∥2
ω(0,s−k) .

This yields the first equivalence relation in (5.44).
Next, we find from (2.7) and (3.13) that

(5.48) Dk
{−J (−k,−s)

n (x)
}
=

Γ(n+ s+ 1)

Γ(n+ s− k + 1)
−J (0,k−s)

n (x),

so we have from the orthogonality (3.10)-(3.11) and (5.41) that

(5.49) ‖v‖2ω(−k,−s) =
∞∑

n=k

∣∣v̂n∣∣2γ(s,−k)
n ;

∥∥Dkv
∥∥2
ω(0,k−s) =

∞∑
n=k

q(s,k)n

∣∣v̂n∣∣2,
where

(5.50) q(s,k)n :=
Γ2(n+ s+ 1)

Γ2(n+ s− k + 1)
γ(0,s−k)
n .

Working out the constants leads to

(5.51) ‖v‖2ω(−k,−s) ≤
γ
(s,−k)
k

q
(s,k)
k

∥∥Dkv
∥∥2
ω(0,k−s) ≤

Γ(s+ 1)

k!Γ(k + s+ 1)

∥∥Dkv
∥∥2
ω(0,k−s) .

Then by (5.40), the second equivalence follows immediately. �

With the aid of Lemma 5.1, we can show the well-posedness of the weak form
(5.42) and the Petrov-Galerkin scheme (5.43).

Theorem 5.3. Let f ∈ L2
ω(k,s)(Λ). Then the problem (5.42) admits a unique solu-

tion u ∈ U , and the scheme (5.43) admits a unique solution uN ∈ +F (−s,−k)
N (Λ).
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Proof. It is clear that we have the continuity of the bilinear form on U × V :

(5.52) |a(u, v)| ≤ ‖u‖U‖v‖V , ∀u ∈ U, ∀ v ∈ V.

The main task is to verify the inf-sup condition; that is, for any 0 �= u ∈ U,

(5.53) sup
0�=v∈V

|a(u, v)|
‖u‖U‖v‖V

≥ η := C1,sC2,s,

where C1,s and C2,s are given in (5.45). For this purpose, we construct v∗ ∈ V
from the expansion of u ∈ U in (5.41):

(5.54) v∗(x) :=
∞∑

n=k

v̂∗n
−J (−k,−s)

n (x) with v̂∗n =
Γ(n+ s− k + 1)

n!
ûn.

By construction, one verifies by using the orthogonality (2.29), (5.46) and (5.49)
that

(5.55) a(u, v∗) =
∥∥
xD

s
1u

∥∥2
ω(0,s−k) =

∥∥Dkv∗
∥∥2
ω(0,k−s) .

Thus, using Lemma 5.1, we infer that for any 0 �= u ∈ U, there exists 0 �= v∗ ∈ V
such that

(5.56) a(u, v∗) =
∥∥
xD

s
1u

∥∥
ω(0,s−k)

∥∥Dkv∗
∥∥
ω(0,k−s) ≥ C1,sC2,s‖u‖U‖v∗‖V .

This implies (5.53).
It remains to verify the “transposed” inf-sup condition

(5.57) sup
0�=u∈U

|a(u, v)| > 0, ∀ 0 �= v ∈ V.

It can be shown by a converse process. In fact, assuming that 0 �= v∗ ∈ V is an
arbitrary function, we construct

u(x) =
∞∑

n=k

ûn
+J (−s,−k)

n (x) with ûn =
n!

Γ(n+ s− k + 1)
v̂∗n.

Then we can derive (5.57) using (5.55).
Finally, if f ∈ L2

ω(k,s)(Λ), we obtain from the Cauchy-Schwarz inequality that

|(f, v)| ≤ ‖f‖ω(k,s)‖v‖ω(−k,−s) ≤ ‖f‖ω(k,s)‖v‖V .
Therefore, we claim from the Babuška-Brezzi theorem (cf. [4]) that the problem
(5.2) has a unique solution.

Note that the inf-sup condition (5.53) is also valid for the discrete problem (5.43),
which therefore admits a unique solution. �

With the help of the above results, we can follow a standard argument to carry
out the error analysis.

Theorem 5.4. Let s ∈ (k − 1, k) with k ∈ N, and let u and uN be the solutions
of (5.42) and (5.43), respectively. If u ∈ U ∩ +Bm

s,−k(Λ) with 0 ≤ m ≤ N, then we
have the error estimates:

(5.58) ‖u− uN‖U ≤ cN−m
∥∥
xD

s+m
1 u

∥∥
ω(m,s−k+m) .

In particular, if f (m−k) ∈ L2
ω(m,s−k+m)(Λ) for m ≥ k, we have

(5.59) ‖u− uN‖U ≤ cN−m
∥∥f (m−k)

∥∥
ω(m,s−k+m) .

Here, c is a positive constant independent u,N and m.
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Proof. Thanks to the inf-sup condition derived in the proof of the previous theorem,
we have

(5.60) ‖u− uN‖U ≤ (1 + η−1)‖u− φ‖U , ∀φ ∈ +F (−s,−k)
N (Λ),

where η is the inf-sup constant in (5.53). Let +π
(−s,−k)
N be the orthogonal projection

operator as defined in (4.15)-(4.16). Taking φ = +π
(−s,−k)
N u in (5.60), we obtain

from Theorem 4.1 and Lemma 5.1 that

‖u− uN‖U ≤ (1 + η−1)‖u− +π
(−s,−k)
N u‖U

≤ (1 + η−1)(C1,s)
−1

∥∥
xD

s
1(u− +π

(−s,−k)
N u)

∥∥
ω(0,s−k)

≤ cN−m
∥∥
xD

s+m
1 u

∥∥
ω(m,s−k+m) .

(5.61)

This yields (5.58).

From the original equation (5.38), we obtain xD
ν
1u = xD

s+k
1 u = f , so (5.59)

follows from (5.58) immediately. �

Remark 5.4. By using a similar procedure as above, we can also construct a spectral
Petrov-Galerkin method for the odd order FBVP of order ν = s+k and s ∈ (k, k+1)
with k ∈ N,

xD
ν
1u(x) = f(x), x ∈ Λ, u(l)(±1) = 0, l = 0, 1, . . . , k − 1, u(k)(1) = 0,(5.62)

and establish an error estimate as in Theorem 5.4. �

5.3. Numerical results. In what follows, we provide numerical results to illus-
trate the accuracy of the proposed GJF-Petrov-Galerkin schemes and to validate the
theoretical results. We consider two typical situations for both FIVP and FBVP:

(i) the source term f(x) is smooth, but the solution u(x) is singular; and
(ii) the solution u(x) is smooth, but the source term f(x) is singular.

We measure the numerical errors by the discrete version of ‖xDs
1(u− uN )‖ (called

“fractional norm” for simplicity) and discrete L2-norm.

5.3.1. Fractional initial value problems. (i) We consider the FIVP (5.1) with f(x) =
1 + x + cosx, whose solution has a singular behavior O((1 − x)s). In this case,
it is hard to find a closed form solution of (5.1), so we use very fine grids to
compute a reference “exact” solution. (ii) We take the exact solution of (5.1) to be
u(x) = (1 − exp(1 − x))(1 − x3) and note that the source term has singularity at
x = 1.

As predicted by Theorem 5.1, the errors of the former are expected to decay
exponentially fast, despite the singular behavior of the solution near x = 1. Indeed,
we observe such a decay from Figure 5.1 (left). In the second case, following the
argument in Remark 4.5, we find from u = (1− exp(1− x))(1− x3) ∼ (1− x)2g(x)
that

xD
s+m
1 u(x) = O((1− x)2−s−m), x → 1,

which implies ‖xDs+m
1 u‖ω(m,m) < +∞, if m < 5 − 2s. In Figure 5.1 (right), we

depict the errors against log10 N for s = 1.4 and s = 1.9. Indeed, the slopes of the
lines are approximately −2 and −1, which agree well with the theoretical result.
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Figure 5.1. Examples of FIVPs. Left: f(x) = 1 + x + cosx.
Right: u(x) = (1− exp(1− x))(1− x3).

We also observe from Figure 5.1 (left) that the L2-errors for s = 1.3, 2.7 are
nearly the same, owing to the fact that the convergence of the scheme is completely
determined by regularity of the source term f(x) in the usual Sobolev space (see
Theorem 5.1).

5.3.2. Fractional boundary value problems with integral boundary conditions. We
now consider the FBVP (5.15) with μ ∈ (0, 2) and

(i) ν = 3− μ and smooth source term f(x) = sinx, and
(ii) ν = 2− μ and smooth exact solution u(x) = (1− x)3 − 6(1− x)2/(3 + μ).

As shown in Theorem 5.2, we observe an exponential convergence for case (i) (see
Figure 5.2 (left)) and an algebraic convergence for case (ii) (see Figure 5.2 (right)).
As before, we can estimate the rate of algebraic decay for case (ii) by a direct
calculation of the norms in the upper bounds of the estimates in Theorem 5.2,
which again agrees with the numerical results in Figure 5.2 (right).
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Figure 5.2. FBVPs with integral boundary conditions. Left:
f(x) = sinx. Right: u(x) = (1− x)3 − 6(1− x)2/(3 + μ).

5.3.3. Fractional boundary value problems with homogeneous boundary conditions.
Next, we provide numerical results for the FBVP (5.38). Once again, we consider
two cases:

(i) ν = 2 + s and smooth source term f(x) = xex, and
(ii) ν = 1 + s and smooth solution u(x) = (1− x) sin(πx).

Like the previous cases, the error plots in Figure 5.3 show the convergence be-
haviours in accordance with the estimates in Theorem 5.4.
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Figure 5.3. FBVPs with homogeneous boundary conditions.
Left: f(x) = xex. Right: u(x) = (1− x) sin(πx).

6. Extension to Caputo fractional derivatives

In this section, we extend the GJF approximation in Sobolev spaces involving
Riemann-Liouville fractional derivatives to Caputo fractional derivatives. We con-
clude the paper with some remarks.

6.1. Important formulas. It is seen that the formulas in Lemma 2.5 and The-
orem 3.1 are exceedingly important in the analysis and spectral algorithms for
FDEs involving Riemann-Liouville derivatives. Remarkably, similar formulas are
also available for the Caputo fractional derivatives. Like Lemma 2.5, we have the
following formulas.

Lemma 6.1. Let s ∈ [k − 1, k) with k ∈ N, n ∈ N0, and x ∈ Λ.

• For α > −1 and β ∈ R,
C
xD

s
1

{
(1− x)α+kP (α+k,β−k)

n (x)
}

=
Γ(n+ α+ k + 1)

Γ(n+ α+ k − s+ 1)
(1− x)α+k−sP (α+k−s,β−k+s)

n (x).
(6.1)

• For α ∈ R and β > −1,
C

−1D
s
x

{
(1 + x)β+kP (α−k,β+k)

n (x)
}

=
Γ(n+ β + k + 1)

Γ(n+ β + k − s+ 1)
(1 + x)β+k−sP (α−k+s,β+k−s)

n (x).
(6.2)

Proof. Let us first derive (6.1). In view of xD
k
1 = (−1)kDk with k ∈ N (cf. (2.7)),

we obtain from (2.36) that

(6.3) Dk
{
(1− x)α+kP (α+k,β−k)

n (x)
}
= (−1)k

Γ(n+ α+ k + 1)

Γ(n+ α+ 1)
(1− x)αP (α,β)

n (x).

By Definition 2.1, we have C
xD

s
1v = (−1)kxI

k−s
1 (Dkv), so using (2.34) with ρ = k−s

and (6.3) leads to

C
xD

s
1

{
(1− x)α+kP (α+k,β−k)

n (x)
}

=
Γ(n+ α+ k + 1)

Γ(n+ α+ 1)
xI

k−s
1

{
(1− x)αP (α,β)

n (x)
}

=
Γ(n+ α+ k + 1)

Γ(n+ α+ k − s+ 1)
(1− x)α+k−sP (α+k−s,β−k+s)

n (x).

This yields (6.1). The formula (6.2) can be derived similarly. �
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The counterpart of Theorem 3.1 takes a slightly different form in the range of
parameters, which is a direct consequence of Lemma 6.1.

Theorem 6.1. Let s ∈ [k − 1, k) with k ∈ N, n ∈ N0 and x ∈ Λ.

• For α > k − 1 and β ∈ R,

(6.4) C
xD

s
1

{
+J (−α,β)

n (x)
}
=

Γ(n+ α+ 1)

Γ(n+ α− s+ 1)
+J (−α+s,β+s)

n (x).

• For α ∈ R and β > k − 1,

(6.5) C
−1D

s
x

{−J (α,−β)
n (x)

}
=

Γ(n+ β + 1)

Γ(n+ β − s+ 1)
−J (α+s,−β+s)

n (x).

Proof. With (α− k, β + k) in place of (α, β) in (6.1), we obtain (6.4) immediately
from the definition (3.1). The rule (6.5) can be obtained in the same fashion.

Alternatively, note that

(6.6) Dl+J (−α,β)
n (x) = Dl((1− x)αP (α,β)

n (x)) = (1− x)α−lφ(x),

for some φ ∈ Pn, so Dl+J
(−α,β)
n (1) = 0 for l = 0, . . . , k − 1. Then by (2.11),

we have C
xD

s
1
+J

(−α,β)
n (x) = xD

s
1
+J

(−α,β)
n (x). Therefore, (6.4) follows from (3.12)

straightforwardly. �

Taking s = α in (6.4) leads to that for α > 0 and β ∈ R,

(6.7) C
xD

α
1

{
+J (−α,β)

n (x)
}
=

Γ(n+ α+ 1)

n!
P (0,α+β)
n (x).

Similarly, we derive from (6.5) an important formula; that is, for α ∈ R and real
β > 0,

(6.8) C
−1D

β
x

{−J (α,−β)
n (x)

}
=

Γ(n+ β + 1)

n!
P (α+β,0)
n (x).

When α ∈ N, the above formulas are identical to (3.12)-(3.13), respectively.

6.2. Approximation results. The argument to derive the GJF approximation
results in Subsection 4.1 essentially relies on the orthogonality of Riemann-Liouville
fractional derivatives of GJFs. Notably, we have very similar orthogonal properties
in the Caputo case.

Using (3.16) and (6.7)-(6.8), the orthogonality (3.17) and (3.19) takes the fol-
lowing form.

• For α > 0 and α+ β > −1,∫ 1

−1

Dl C
xD

α
1

+J (−α,β)
n (x) Dl C

xD
α
1

+J
(−α,β)
n′ (x)ω(l,α+β+l)(x) dx = h

(α,β)
n,l δnn′ .(6.9)

• For α+ β > −1 and β > 0,∫ 1

−1

Dl C
−1D

β
x

−J (α,−β)
n (x) Dl C

−1D
β
x

−J
(α,−β)
n′ (x)ω(α+β+l,l)(x) dx = h

(β,α)
n,l δnn′ .(6.10)

Here, l ∈ N0 and h
(α,β)
n,l is defined in (3.18).
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In view of the above orthogonality, we modify the definition of the space in (4.18)
as
(6.11)

C
+Bm

α,β(Λ) :=
{
u ∈ L2

ω(−α,β)(Λ) : Dl C
xD

α
1 u ∈ L2

ω(l,α+β+l)(Λ), l = 0, 1, · · · ,m
}
,

for m ∈ N0. Similarly, we can define C
−Bm

α,β(Λ). Let
+Υα,β

i , i = 1, 2, 3, be the same

as in (4.4). Then (4.19) holds for (α, β) ∈ +Υα,β
1 ∪ +Υα,β

2 and l ∈ N0, with Dl C
xD

α
1

in place of xD
α+l
1 , namely,

∥∥Dl C
xD

α
1 u

∥∥2
ω(l,α+β+l) =

∞∑
n=l̃

h
(α,β)

n,l̃

∣∣û(α,β)
n

∣∣2.(6.12)

Thanks to (6.9)-(6.10), we can extend the results in Subsection 4.1 to the Caputo
fractional derivatives by using the same argument.

Theorem 6.2. The approximation results in Theorems 4.1 and 4.2 hold for the
Caputo derivatives with Dk C

xD
α
1 (k = 0, l,m) and C

+Bm
α,β(Λ) in place of xD

α+k
1 (k =

0, l,m) and +Bm
α,β(Λ), respectively. Likewise, the results in Theorems 4.3 and 4.4

can be extended to the left-hand side of the Caputo derivatives.

Proof. Note that in the Riemann-Liouville case, we have xD
α+k
1 = (−1)kDk

xD
α
1

and −1D
α+k
x = Dk

−1D
α
x for α ∈ R

+ and k ∈ N, but this rule does not hold
for the Caputo fractional derivatives. Leaving the derivative operator Dk as it
stands, we can use the orthogonality (6.9)-(6.10) (to replace (3.17) and (3.19)), and
follow the same lines as in the proofs of Theorems 4.1 and 4.2 to derive the desired
approximation results. �

6.3. Discussions and concluding remarks. We considered in this paper spec-
tral approximation of FDEs by introducing a class of priorly defined GJFs.

Our main contributions are twofold:

• We introduce a new class of GJFs, which extend the range of definition
of poly-fractonomials [32] so that high-order fractional derivatives can be
treated, and their relations with fractional derivatives, and their approxi-
mation properties can be studied.

• We constructed Petrov-Galerkin spectral methods for a class of prototypical
FDEs, including arbitrarily high-order FIVPs and FBVPs which have not
been numerically studied before, which led to sparse matrices. We derived
error estimates with convergence rate only depending on the smoothness of
data. In particular, if the data are analytic, we obtain exponential conver-
gence, despite the fact that the solution is singular.

The results presented in this paper indicate that, at least for the simple FDEs
considered here, one can develop spectral methods to solve them with the same
kind of computational complexity and accuracy as one solves usual PDEs.

This is a first but important step towards developing efficient and accurate spec-
tral methods for solving FDEs. While we have only considered a class of very simple
prototypical FDEs, the general principles and the approximation results developed
in this paper open up new possibilities for dealing with more general FDEs.

Licensed to Purdue Univ. Prepared on Tue Jul 26 09:27:25 EDT 2016 for download from IP 128.210.126.199.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



GJFS AND THEIR APPROXIMATIONS TO FDES 1637

References

[1] M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York,
1972.

[2] R. A. Adams, Sobolev Spaces, Academic Press. Pure and Applied Mathematics, Vol. 65. [A
subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR0450957
(56 #9247)

[3] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics
and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR1688958
(2000g:33001)
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