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Abstract. Let {Mi} be a tower of coverings of non-compact locally Hermitian symmetric

spaces of finite volume and M i be a smooth compactification of Mi. We show in this paper
that there exists io > 0 such L2 canonical sections on Mi gives an embedding of Mi when
i ⩾ io, and that 2KMi

is very ample for those compactifications with boundary divisors
being union of smooth complex tori in simple normal crossing. The proof also verifies
the convergence of normalized dimension of the space of holomorphic k forms to its von-
Neumann dimension on the universal covering, as well as stability of Bergman kernel in
taking the limit on the level of the tower.

§1. Introduction

1.1 Let M̃ = G/K be a Hermitian symmetric space of non-compact type, where G is a semi-
simple Lie group and K is a maximal compact of G. Let Γ be a lattice. Then M = Γ\G/K
has finite volume with respect to the Bergman metric on M̃ . M is a projective algebraic
variety if Γ is cocompact, and a quasi-projective manifold if Γ is non-cocompact. M is
smooth if we assume that Γ is neat. In this article, by a finite locally Hermitian symmetric

space, we always mean Γ\M̃ with Γ cofinite and neat. It is known that given any locally
Hermitian symmetric space of finite covolume, there is a finite covering corresponding to
a subgroup Γ′ of finite index of the associated lattice Γ, such that Γ′ is neat and the
corresponding locally Hermitian symmetric space is finite in our sense.

There are two main goals in this article. The first is to install a method to study stability
properties of Bergman kernel and L2-embedding properties on a tower of non-compact
Kähler manifolds, implemented in this case to a tower of finite locally Hermitian symmetric
space. The second is to introduce a method to study effective Kodaira embedding type
statements for appropriate compactification M of a non-compact Kähler manifold M by
relating geometry ofM to L2 embedding properties ofM , implemented to appropriate finite
Hermitian symmetric spaces.

We recall some notations. By a tower of coverings {Mi} of M, we mean a sequence
of finite coverings Mi+1 → Mi with M1 = M, such that π1(Mi+1) < π1(Mi) is a normal
subgroup of π1(M1) with finite index and ∩∞

i=1π1(Mi) = {1}. For a locally symmetric space
Γ\G/K, a tower of coverings corresponds to a sequence of nested normal subgroups {Γi} of
the lattice Γ. Our main interest is to investigate whether interesting geometric properties

of Mi, such as birational properties, can be reflected from the universal covering M̃ of Mi.

Key words: very ampleness, non-compact locally Hermitian symmetric space, compactificaitions, tower of
coverings
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The questions are interesting from the view of both geometry and automorphic forms, since

the pull-back of pluricanonical sections to M̃ gives rise to Γ sections of canonical sections

on M̃ and can be interpreted as automorphic forms of certain weights.
We say that a Hermitian holomorphic line bundle (L, h) on a non-compact manifold

complexM equipped with a Kähler metric g is L2 very ample if its L2-sections with respect
to the Hermitian metric h and the volume form induced by g give an embedding of M .
Similarly, given any N > 0, we say that L is L2 N -jet generating if the L2-sections of L
with respect to the Hermitian metric h and the volume form induced by g generates N -th
jet at every point on M .

In the case that L is the canonical line bundle KM , we equip the line bundle with the
metric induced by the Bergman metric. The first result of the paper is as follows.

Theorem 1. Let M be a finite locally Hermitian symmetric manifold of non-compact type
as explained. Let {Mi} be a tower of coverings of M . Then there exists io > 0 such that
KMi is L2 very ample with respect to the Bergman metric on Mi for i ⩾ io. Furthermore,
given any N > 0. There exists iN such that KMi is L

2 N -jet generating if i ⩾ iN .

The main difficulty with the finite case comparing to the compact case is that the in-
jectivity radius of the canonical metric at a point approaches 0 as the point approaches to
infinity, no matter how high a level of covering is taken. We overcome the difficulty by uti-
lizing the fact that the manifolds involved can be compactified. For this we need to devise
a method to handle the dificulty that in terms of the local coordinates chart centered at a
point at a compactifying divisor on a smooth compactification of M , the canonical metric
blows up as one approaches the compactifying divisor.

1.2 Theorem 1 in turn reflects geometric properties of its appropriate smooth compactifica-
tionM ofM . A natural question is about the birational properties of some compactification
of finite Hermitian symmetric spaces. Earlier results in this direction of relating properties
ofM toM include [Mu], [T], and more recently [WY1], [WY3] and references therein. Here
is our contribution in this direction.

Theorem 2. Let M be a finite locally Hermitian symmetric manifold. Let {Mi} be a
tower of coverings of M . Denote by M i a smooth compactification of Mi. Assume that
compactifying divisor Di = M i −Mi is a divisors in simple normal crossing with each of
the irreducible component being a smooth Abelian variety. Then there exists io > 0 such
that 2KM i

is very ample on M i for i ⩾ io.

We remark that the conditions are satisfied by all smooth complex ball quotients after
passing to some appropriate finite unramified coverings, cf. [Mo], [AMTR].

To put the result in perspective, note that from the work of Mumford [M] and Tai [T],
there exists io > 0 such that M i is of general type for i ⩾ io. In the special case that M a
complex ball quotient,for n ⩾ 3, it is proved in [BT] that KM1

is ample. From [N1], [WY2],

it is also known thatM i is Kobayashi hyperbolic for i ⩾ io. Theorem 2 gives very ampleness
of 2KM i

for i sufficiently large. Note also that without going to a finite unramified covering,
it may not even be true that KM is ample in the case of n = 2. Examples include those of
Hirzebruch in [Hi]. The results in this paper can also be considered as a type of effective
Kodaira Embedding Theorem in terms of unramified coverings instead of power of canonical
line bundle as given in Fujita conjecture, cf. [F], [AS], [He].
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The proof of Theorem 2 relies on Theorem 1 together with a careful study of the geometry
near the compactifying divisor, which is an abelian variety. It is at this place that we need
to have extra leeway given by 2KM i

to work with instead of KM i
.

We have the following immediate corollary to Theorem 2, which for complex ball quotients
follow from [BT].

Corollary 1. LetM be a finite locally Hermitian symmetric spaces in the setting of Theorem
2 above. There exists io > 0 such that KM i

is very ample if i > io.

1.3 Along the way of proving Theorem 1, we have also proved stability of the Bergman
kernel, namely the convergence of the normalized dimension of the space of L2-holomorphic

forms onMi to its von-Neumann dimension on the universal covering M̃ , again in the cofinite
setting. There are a lot of research results known for cocompact lattices, more recent ones
include [LZ], [W], [YY], [YuZ] and references therein. The results for non-compact ones are
much more limited. In such situation, the corresponding results for cusps forms, namely
forms vanishing at the infinity of M , have been proved by Savin in [S]. Together with the
techniques developed in [Y2, Y5], a stability result in the sense of pointwise convergence of

the k-th Bergman kernel on Mi to the corresponding one on M̃ is also obtained.

Theorem 3. Let M be a (non-compact) locally Hermitian symmetric manifold of finite
volume. Let {Mi} be a tower of coverings of M .
(a). For k = 0, . . . , n,

hk(2)(Mi,KMi)

[Γ,Γi]
→ hkv,(2)(M̃,K2

M̃
)

as i→ ∞.
(b). Let xo be a point in a fundamental domain Σ of M1 =M on M̃ . Then

B0
(2)(Mi,KMi)(x) → B0

(2)(M̃,K
M̃
)(x)

uniformly in a neighborhood U of xo as i→ ∞. Furthermore, given any differential operator

Dl =
∂l

∂zi1 ···∂zil
of degree l on Σ,

DlB
0
(2)(Mi,KMi)(x) → DlB

0
(2)(M̃,K

M̃
)(x)

uniformly in a neighborhood U of xo as i→ ∞.

1.4 Here we describe the structure of the paper. Some preliminary discussions about tools
needed are explained in §2. The main new technical input of this article is given in the
proof of Proposition 1 in §3, which allows us to control the geometry near infinity. In §4,
we combines the ingredient in §3 with results in [Y2, Y5] to give a proof of Theorem 3
about stability of the Bergman kernels. In §5, we give a proof of Theorem 1, following a
new formulation which improves and simplifies the formulations taken in [Y2, Y5]. In §6,
we analyze the geometry around a compactifying divisor and use L2-estimates to construct
enough sections to give a proof of Theorem 2.

§2. Preliminaries and formulation
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2.1 Let us recall some standard terminologies involving L2-cohomology. Let M be a com-
plete Kähler manifold. Let (L, h) be a Hermitian line bundle on M. Denote by H i

(2)(M,L)

the space of L2 2∂-harmonic L-valued (0, i)-forms on M with respect to the Hermitian
metric h of the line bundle L and the volume form on M. This corresponds to the reduced

L2 cohomology on M̃ . The L2-norm of φ is defined by

∥φ∥2 =

∫
M
φ ∧ ∗φ.

=

∫
M

|φ|2hωn,

where ω is the Kähler form onM and ∗φ is the Hodge dual of φ with respect to h and ω. In
the setting of Hermitian symmetric space of non-compact type M and L being a multiple
of KM , the metric h is induced from the Bergman metric, and ωn is the volume form of the
Bergman metric with Kähler form ω on M. We would also omit h in the subscript when
there is no danger of confusion.

Let {fk} be an orthonormal basis of H i
(2)(M,L). The Bergman kernel is defined to be

B0,i
M,L(x, y) :=

∑
k

fk(x) ∧ ∗fk(y).

As such we are regarding Bp,0
M as a section of p∗1(Ω

0,i
M ⊗ L) ⊗ p∗2(Ω

n,n−i
M ⊗ L∗), where pa is

the projection of M ×M into the a-th factor, a = 1, 2.

We are mainly interested in the trace of the kernel, B0,i
M,L(x, x). We define the von-

Neumann dimension of L-valued i-form to be

h0,iv,(2) =

∫
Σ
B0,i

M,L(x, x),

where Σ is a fundamental domain of M.
As the Bergman kernel is independent of the choice of a basis, for each fixed point x ∈M,

the trace of the Bergman kernel

B0,i
M,L(x, x) = sup

f∈H0,i
(2)

(M,L),∥f∥=1

|f(x)|2h = sup
f∈H0,i

(2)
(M,L),∥f∥=1

|fU (x)|2hωn,

where ∥ · ∥ stands for the L2-norm, and we have written f = fU (dzj1 ∧ · · · ∧ dzji) ⊗ e in
terms of local coordinates (z1, . . . , zn) and local basis e of L.

Let Σi a the fundamental domain of Mi in M̃ . We may assume that Σi ⊂ Σi+1. Σ = Σ1

is a fundamental domain of M on M̃ . We fix such a Σ in the following discussions.

The von-Neumann arithmetic genus on the universal covering M̃ of M is defined by

χv,(2)(M̃) =

n∑
i=0

(−1)ih0,iv,(2)(M̃) =

n∑
i=0

(−1)ihi,0v,(2)(M̃),

from the Hodge identities on a complete Kähler manifold, where h0,iv,(2)(M̃) = dimH0,i
v,(2)(M̃).

In general, for L a holomorphic line bundle on M̃ invariant under deck-transformation,
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define

χv,(2)(M̃, L) =

n∑
i=0

(−1)ih0,iv,(2)(M̃, L).

2.2 In this paper we are mainly interested in holomorphic forms. These are also the space of
harmonic forms of type (i, 0) on a Kähler manifold. Let L be a Hermitian holomorphic line

bundle. We will use Hi,0
(2)(M,L) to denote the space of holomorphic (i, 0) L-valued forms

which are L2 with respect to the Bergman metric on M and the Hermitian metric on L.
The corresponding Bergman kernel is

Bi,0
M (x, y) :=

∑
k

fk(x) ∧ fk(y).

The space of all such L2 holomorphic sections of the canonical line bundle is also denoted
by Γ(2)(M,KM ) ∼= Hn,0(M,O).

From Hodge theory, these spaces reflect the reduced L2-cohomology on a complete non-
compact manifold, cf. [Da].

2.3 We recall some standard facts about some compactification of M , which is cofinite in
our sense.

Lemma 1. ([BB], [AMRT], [SY], [MZ], [Mo]) (a). M admits a smooth compactification
M , so that D =M −M is a normal crossing divisor.
(b). D can be chosen to be a union of algebraic tori.
(c). In the case that M is a complex ball quotient, M can be found such that D is a disjoint
union of Abelian varieties.

For arithmetic lattice Γ, this follows from Bailey-Borel [BB] compactification and res-
olution of singularity of Hironka. A smooth toroidal compactification is given by Ash-
Mumford-Rapoport-Tai in [AMRT] for arithmetic Γ. For such compactification, D is a
union of algebraic tori in the study of toric varieties.

In the case that Γ is non-arithmetic, this only happens if M̃ ∼= Bn
C. In such case, there

is the work of Siu-Yau [SY] on the compactification of M by a finite number of cusps, and
Mok in [Mo] showed that a resolution in terms of toroidal compactification still works in

this case. In particular, for M̃ = Bn
C, it is known that D is a disjoint union of tori, cf.

[AMRT], [Mo].
In general, compactification satisfying (a) follows from the work of [MZ], [Y1] once we are

given a non-compact Kähler manifold equipped with a Kähler metric of bounded sectional
curvature, Ricci curvature bounded from above by a negative constant, and finite volume.

2.4 For a general Hermitian symmetric space M̃ and a finite M = M̃/Γ, the compactifying
divisor D has irreducible components which may have non-trivial intersections among them.
In such case, for any x ∈ D ⊂ X, there is a neighborhood U ⊂ X of x in X with local
coordinates (z1, . . . , zn) such that U ∩D = {z1 · · · zk = 0} (1 ≤ k ≤ n) and the complement

U := U − U ∩ D ∼= (∆∗
1/2)

k × ∆n−k
1/2 ⊂ (∆∗)k × ∆n−k, where the ∆r,∆

∗
r refer to disk or

puncture disks of radius r in C. By a Poincaré metric on U , by mean the restriction of the
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product of the Poincaré metrics on the disks and puncture disks ∆ and ∆∗. Let us first
give some estimates on the Bergman metric near the boundary divisor.

Lemma 2. The Bergman metric near a point D in a toroidal compactification M of M is
quasi-isometric to a Poincaré metric with Kähler form given by

ωP :=

√
−1dz1 ∧ dz1

|z1|2(log |z1|2)2
+ · · ·+

√
−1dzk ∧ dzk

|zk|2(log |zk|2)2
+
∑

i=k+1

√
−1giidzi ∧ dzi (1)

in some local coordinates near a point on D, where
c1

(log |z|)α
⩽ gii ⩽ c2 (2)

with constants a, c1, c2 > 0.

Proof Let ωU,P be the Poincaré metric on U . Since the Bergman metric on M has holo-
morphic sectional curvature bounded from below by a negative constant and ωU,P has holo-
morphic sectional curvature bounded from above by a negative constant, the usual Schwarz
Lemma of Ahlfors, cf. [Ro], implies that there is a constant c3 > 0 such that

gB ⩽ c3gU,P .

On the other hand, the normal component of gB is well-known to be of the form of the
standard Poincaré metric on the punctured disk. For the component of the metric parallel to
the direction of the divisor, from the fact that the metric is good in the sense of Mumford in
[Mu], we know that there is a lower bound of c1

(log |z|)α for some positive constant α > 0. □

§3. Convergence in asymptotic dimension

3.1 Recall that we denote by hiv,(2)(M̃,K
M̃
) the von Neumann dimension of the space of

L2-holomorphic j forms on M̃ with respect to M . We need the following result in later
sections.

Proposition 1. For k = 0, . . . , n,

hk(2)(Mi,KMi)

[Γ,Γi]
→ hkv,(2)(M̃,K2

M̃
)

as i→ ∞.

For the space of cusp forms, which correspond to L2-holomorphic forms vanishing at
the cusps, a similar result was obtained Savin in [S]. In our situation, there may be L2

holomorphic forms which do not vanish at the infinity. The proof here is also very different.
The more geometric argument is applicable to general non-compact Kähler manifolds with
appropriate conditions imposed as well.

As mentioned earlier, this type of statement was classical for compact Mi and follows for
example from [K] and [Y2]. Let us explain the non-compact case here.

We know from standard facts that hi(2)(M̃,K2
M̃
) = 0 for 0 ⩽ i < n and > 0 for i = n.

We try to relate the geometric properties of Mi to M . Though the basic strategy is the
same as for the compact analogues used in [Y2] and [Y4], there is the complication given by
non-compactness of Mi, which renders Kazhdan’s approach in [K] not applicable without
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preventing escape of some sort of mass to the infinity. Eventually we show that such a loss

of mass to infinity cannot happen and prove that
hk
(2)

(Mi,KMi
)

[Γ,Γi]
⩽ hk(2)(M̃,K2

M̃
) for each k,

from which index theorem type of argument is applied to prove that equality of the two
quantities for k = n.

3.2

Lemma 3. Let f ∈ Γ(2)(M,KM ) with ∥f∥ = 1. There exists an open neighborhood U of D

in M and such that

sup
x∈U

|f |2o(x) ⩽ sup
y∈∂U

|f |2o(y) and sup
x∈U

|f |2g(x) ⩽ sup
y∈∂U

|f |2g(y)

where the first one is measured with respect to the Euclidean metric goon U , and the second
with respect to the Kähler metric g = gB, for U sufficiently small .

Proof Let us for simplicity assume first the case that M̃ = Bn
C. In such case, as mentioned

in 2.2. there exists M = M ∪D and D = ∪n
i=1Ti is a disjoint union of a finite number of

tori of complex dimension n− 1. The canonical line bundle KM restricts to KM on M . A
holomorphic section f ∈ Γ(2)(M,KM ) extends as a meromorphic section of KM . Since L2

norm of KM is conformal invariant, we know that f is L2 respect to a smooth Hermitian
metric on M as well. One consider a trivialization of KM on a neighborhood V of a point
z ∈ D. From Fubini Theorem, we may assume that the restriction of f to s generic disk
∆ transversal to D is actually L2 on D. Consider the Laurent expansion of f on D. It
follows that from L2 finiteness that f |D cannot have any pole along D. This also follows
from Riemann Extension Theorem. Hence actually f extends to a holomorphic section of
KM .

The first estimates in the lemma now follows from maximal principle.
For the second estimates, let us first consider the case of complex ball quotients. In this

case, the volume form of gB is of form

|dz1 ∧ · · · ∧ dzn|2

|z1|2| log |z1||n+1

in suitable local coordinates around D, with D given locally by z1 = 0, cf. [Mo]. Hence the
induced metric on the canonical line bundle is |z1|2| log |z1||n+1 and is decreasing in z1.

For a general Hermitian symmetric space M̃ and a finiteM = M̃/Γ, the only difference is
that the compactifying divisor D may have irreducible components which have non-trivial
intersections among them. In such case, for any x ∈ D ⊂ X, there is a neighborhood
U ⊂ X of x in X with local coordinates (z1, . . . , zn) as given in 2.4. The Bergman metric
has estimates given by (1) and (2). In particular, the volume form is of form

|dz1 ∧ · · · ∧ dzn|2∏k
j=1 (|zj |2 · | log |zj ||γj )

on U of form ∆∗
1
2

×∆ 1
2
in local coordinates for some fixed numbers γj , as explained in §2.

Again the metric on the canonical line bundle is
∏k

j=1

(
|zj |2 · (log |zj |2)γj

)
and is decreasing

as z gets closer to the compactifying divisor. The earlier argument applies again.
□
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3.3

Lemma 4. Let 1 ⩽ l ⩽ n. Let f ∈ Γ(2)(M,Ωl
Mi

).There exists an open neighborhood W of

D in M and a constant C > 0 independent of f and x such that

∥f∥Mi−π−1
i (W ) :=

(∫
Mi−π−1

i (W )
|f |2

)1/2

⩾ C∥f∥Mi .

Proof Consider first the case of l = n. Let us illustrate the proof for a standard neighbor-
hood of a point on D as discussed in 2.4 to be of form U ∼= (∆∗

1/2)
k × ∆n−k

1/2 with k = 1.

The other cases are exactly the same except that the notation is more complicated. Again,
as explained in 2.3, up to quasi-isometry we may assume that

ωB ∼
√
−1dz1 ∧ dz1

|z1|2(log |z1|2)2
+

n∑
i=2

√
−1

(log |z1|)αi
dzi ∧ dzi (3)

for some αi > 0. Here we say that two Kähler forms ω1 and ω2 satisfies ω1 ∼ ω2 if there
exists a constant c > 0 such that 1

cω1 ⩽ ω2 ⩽ cω1.

Note that ∂U ∩Σ is a relatively compact set on Σ, the fundamental domain of M in M̃ .
Hence on identifying Σ with M , the injectivity radius of a point on ∂U in M is bounded
from below by a positive constant. Hence we may assume that there exists r1 > 0 so that the
Euclidean ball Br1(x) is embedded in U for each point x ∈ ∂U . Replacing r1 by min(14 , r1)

if necessary, we may assume that r1 <
1
4 . It follows from Cauchy estimates that there exists

a constant c > 0 such that ∫
Br1 (y)

|f |2 ⩾ c|f(y)| (4)

for each y ∈ ∂U . Let V = ∪x∈∂UBr1(x). Let W = U − V . It follows that for each x ∈ U1,

|f(x)|2 ⩽ 1

c

∫
Br1 (y)

|f |2 ⩽ 1

c

∫
V
|f |2. (5)

Integrating over x ∈ U1, we get ∫
W

|f(x)|2 ⩽ c1

∫
V
|f |2 (6)

for c1 =
Vol(U 1

2−r1
(0),go)

c . Since π−1(U) can be considered as a disjoint union ∪jγjU for γi
in the deck transformation group of πi and γj acts by isomorphism, we conclude that the
same estimates holds for each γjU and hence

∥f∥2
π−1
i (W )

⩽ c1∥f∥2π−1
i (V )

⩽ c1∥f∥2Mi−π−1
i (W )

. (7)

Since the left hand side of the expression above is just ∥f∥2Mi
−∥f∥2

Mi−π−1
i (W )

, we conclude

that

∥f∥2
Mi−π−1

i (W )
⩾

c1
1 + c1

∥f∥2Mi
, (8)

which concludes the proof for k = n.
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Consider now l < n. In such case, the L2-norm is not conformal and depends on the metric
and we need to pay more attention. Again let us illustrate the proof for U ∼= (∆∗

1/2)
k×∆n−k

1/2

with k = 1, since the other cases are exactly the same except that the notation is more
complicated. .

An holomorphic k-form on M is of form

f =
∑
J

fj1,...,jldz
j1 ∧ · · · ∧ dzjl =

∑
J

fJdz
J ,

where J denotes the tuple (j1, . . . , jl) and each fJ is a holomorphic function on U .
I
Consider a fixed subscript I. In such case, up to quasi-isometry, we may assume that the

metric takes the form (3) and∫
U
|fI |2gdVg =

∫
U
|fI |2g det gdVgo =

∫
U
|fI |2gohdVgo , (9)

h =

{
1

|z1|2(log |z1|)2
∏

s ̸∈I
1

(log |z1|)αjs
, if 1 ̸∈ I,∏

s̸∈I
1

(log |z1|)αjs
, if 1 ∈ I.

(10)

in our local coordinates. The estimates in (4), (5) and (6) are replaced by∫
Br1 (y)

|f |2h ⩾ cI |f(y)| (11)

|f(x)|2 ⩽
1

cI

∫
V
|f |2h (12)∫

W
|f(x)|2h ⩽ cI1

∫
V
|f |2h, (13)

(14)

where cI > 0 is a constant and cI1 =
Vol(U 1

2−r1
(0),h)

cI
. Note that the reason that the argument

works is that Vol(U 1
2
−r1

(0), h) is finite with respect to our h defined in (10).

Hence as in (8), we get

∥fI∥2Mi−π−1
i (W )

⩾ cI2∥fI∥2Mi
(15)

for cI2 = c1
1+c1

.
Summing over all I, we conclude that there exists a constant c > 0, taking to be the

minimum of all the cI2, such that

∥f∥Mi−π−1
i (W ) ⩾ c∥f∥Mi . (16)

□

3.4

Lemma 5. In terms of the earlier notation with 0 ⩽ k ⩽ n, we have∫
Mi−π−1

i (W )
Bk,0

Mi
⩾ c

∫
Mi

Bk,0
Mi
.
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Proof This follows from the definition of Bergman kernel as mentioned in 2.1. □

3.5 Proof of Proposition 1 Consider first 0 ⩽ k < n. It is a classical fact that there is

no L2-holomorphic k-forms on the bounded symmetric domain M̃ for k < n with respect

to the Bergman metric, cf. [Y6]. Hence it follows that hkv,(2)(M̃) = 0.

We claim that limk→∞
hk
(2)

(Mi,KMi
)

[Γ,Γi]
= 0 for 0 ⩽ k < n. The case of k = 0 is trivial.

Assume now that 1 ⩽ k ⩽ n−1. Let ϵ > 0. Suppose that
hk
(2)

(Mi,OMi
)

[Γ,Γi]
⩾ ϵ for a (sub)sequence

of i. From Kähler identity, hk(2)(Mi,OMi) = hk,0(M), which implies 1
[Γ,Γi]

∫
Mi
Bk,0

Mi
⩾ ϵ

Hence we conclude that 1
[Γ,Γi]

∫
Mi−π−1W Bk,0

Mi
⩾ cϵ Since the Bergman kernel is invariant

under automorphism, this implies that∫
Σ−p−1(U)

Bk,0
Mi

⩾ cϵ,

where p : M̃ → M is the universal covering map. Hence in terms of extremal sections
as described in 2.1, there exists a holomorphic k-form fi on Mi with ∥fi∥Mi = 1 and
|fi(xo)|g ⩾ ϵ at some point xo ∈ Σ−p−1(U). Since Σ−p−1(U) is relatively compact, a normal

family argument as given by Kazhdan [K], see also [Y2], leads to a section f ∈ Hk,0
(2)(Ñ)

with f non-trivial at a point xo ∈ Σ− p−1(U). This contradicts the earlier statement that

Hk,0
(2)(Ñ) = 0 for 0 ⩽ k < n and M̃ a bounded symmetric domain. Hence the claim is

proved. Hence the Proposition is proved for k < n.
Now consider k = N . The conclusion of Lemma 3 in fact implies that the supremum of

an L2-section is bounded away from D. Hence same argument as above implies that

hk(2)(Mi,KMi)

[Γ,Γi]
⩽ hkv,(2)(M̃,K2

M̃
). (17)

The equality will follows from covering index type of statement. For complex rank one
case this also follows from the result of Barbarsh-Moscovici [BM]. In all the other cases, the
equality follows from a result of Rohlfs-Speh [RS] as used in §5 of [S].

□

§4. Pointwise convergence and stability

4.1 We begin with an observation. One problem that we need to deal with for a cofinite
locally Hermitian symmetric space M is that the injectivity radius of M is 0, since the
injectivity radius of a point on M tends to 0 as the point approaches the infinity divisor.
Nevertheless, we have the following if a point is fixed on the universal covering. Recall a
fundamental domain of Mi is given by Di and Di ⊂ Di+1 with D = D1.

Lemma 6. Let x ∈ D ⊂ M̃ be a fixed point. Let τi(x) be the injectivity radius of πi(x) ⊂Mi.
Then limi→∞ τi(x) = ∞.

Proof Assume that the contrary is true and there exists γi ∈ Γi with d(γix, x) ⩽ R, a
constant. Then γi(x) → y ∈ BR(x), after passing to a subsequence of {γi} if needed. Hence
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the distance with respect to the Bergman metric, d(γ−1
i γi+1(x), x) = d(γi+1(x), γi(x)) → 0

as i→ ∞, since Γ acts by isometry. This contradicts proper action of Γ on M̃ . □

4.2 The following is the main result of this section. Sometimes it is also called stability
result for the kernel involved. For the Bergman kernel B0

(2)(Mi,KMi), we take the notation

that B0
(2)(Mi,KMi)(x) := B0

(2)(Mi,KMi)(x, x) as trace of the kernel function.

Proposition 2. Let xo ∈ Σ ⊂ M̃ . Then

B0
(2)(Mi,KMi)(x) → B0

(2)(M̃,K
M̃
)(x)

uniformly in a neighborhood U of xo as i→ ∞. Furthermore, given any differential operator

Dl =
∂l

∂zi1 ···∂zil
of degree l on Σ,

DlB
0
(2)(Mi,KMi)(x) → DlB

0
(2)(M̃,K

M̃
)(x)

uniformly in a neighborhood U of xo as i→ ∞.

To prepare for the proof of Proposition 2, we make the following observation.

Lemma 7. B0
(2)(Mi,KMi)(x) ⩽ C for all x ∈ D and i ∈ N.

Proof Note that B0
(2)(Mi,KMi) is biholomorphic invariant. Hence it suffices to consider

x ∈ D. Again we consider nested fundamental domains so that D = D1 and Di ⊂ Di+1.
Let V ⊂ U be neighborhoods of D on M . Consider now separately V and M − V .

For x ∈M−V , the injectivity radius ofM is uniquely bounded from below by a constant
τo. Hence the injectivity radius of Mi at x is uniquely bounded from below by τo as well.
Hence for f ∈ H0

(2)(Mi,KMi) with ∥f∥Mi,g = 1, it follows from Cauchy’s estimates that

|f |g(x) ⩽ C∥f∥Mi,g = C

for some constant C > 0, cf. [Y2].
Consider now x ∈ U . It follows from Lemma 3 that supx∈U |f |2g(x) ⩽ C supy∈∂U |f |2g(y).

As ∂U ⊂ M − V , we conclude from the last paragraph that supy∈∂U |f |2g(y) ⩽ C. We
conclude that

sup
x∈U

|f |2g(x) ⩽ CC1

for another positive constant C1.
The above two paragraphs conclude the proof of the lemma. □

4.3 Proof of Proposition 2 Proposition 1 implies that

lim
i→∞

∫
D
B0

(2)(Mi,KMi) =

∫
D
B0

(2)(M̃,K
M̃
). (18)

We also know that for any point x ∈ D,

lim
i→∞

B0
(2)(Mi,KMi)(x) ⩽ B0

(2)(M̃,K
M̃
)(x). (19)

Our goal is to show that

lim
i→∞

B0
(2)(Mi,KMi)(x) = B0

(2)(M̃,K
M̃
)(x) (20)

uniformly for all x ∈ U , a neighborhood. Using Lemma 6.
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The rest of the argument is similar to the ones in [Y3], [Y4] and [Y6]. We follow the
steps outlined in §4 of [Y6], which we outline here briefly for completeness of presentation.
The main estimate is to evaluate each of the terms on the right hand side of the following.

|BMi,K(x, x)−B
M̃,K

(x, x)| ⩽ |k
M̃,K

(t, x, x)−B
M̃,K

(x, x)| (21)

+|kMi,K(t, x, x)− k
M̃,K

(t, x, x)|+ |kMi,K(t, x, x)−BMi,K(x, x)|.

At this point we remark that BMi,K = BMi,Ωn is the Bergman kernel of holomorphic
n-forms. Similarly, B

M̃,K
= B

M̃,Ωn , kMi,K = kMi,Ωn and k
M̃,K

= k
M̃,Ωn . As argued in §4 of

[C], In the finite volume case,the heat kernel for Ωn on Mi is still related to the heat kernel

for L2 smooth n-forms on M̃ by

kMi,Ωn(t, x, y) =
∑
γ∈Γi

k
M̃,Ωn(t, x̂, γŷ)

where x = πi(x̂, ŷ). This is verified for example by the argument given in §4 of [C] and is

used in our argument similar to the compact case treated in [Y3], [Y4]. Note that as M̃
is a Hermitian symmetric space of non-compact type, there is a rich history of study on

the spectral behavior. In particular, the heat kernel kMi,Ωn(t, x, y) for Ωn on M̃ has similar

estimates as heat kernel for functions on M̃ when the distance d(x, y) is large, cf [LM],
Theorem 1. Together with Lemma 3, the discussions in [Y3], [Y4], as summarized in [Y6]
are applicable.

Hence we need to estimate each of the three expressions in the right hand side of (21).
The estimate of the first term is given by

|k
M̃,K

(t, x, x)−B
M̃,K

(x, x)| ⩽
ϵ

3

uniformly according to Lemma 2 of [Y4]
By Lemma 1 of [Y3], the second term is estimated by

|kMi,K(t, x, x)− k
M̃,K

(t, x, x)| =
∑

γ∈Γ−{1}

k
M̃,K

(t, x, γx)

⩽ ce−
d2(x,γx)

4t

⩽ (
ϵ

3
)2

We will choose t = d(x, γx), which is at least τi.
The third term of inequality (21) is estimated by

|kMi,K(t, x, x)−BMi,K(x, x)|
⩽ |k

M̃,K
(t, x, x)−B

M̃,K
(x, x)|+ |kMi,K(t, x, x)− k

M̃,K
(t, x, x)|

+|kMi,K(t, x, x)−BMi,K(x, x)|

⩽
ϵ

3

where the last inequality follows from convergence of the Bergman kernel as in Lemma 5 of
[Y3], by applying the arguments in Lemma 1, Lemma 3 of [Y4].
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We conclude that given any ϵ > 0, there exists io > 0 such that for all i ⩾ io and
x, y ∈ Di,

|BMi,K(x, x)−B
M̃,K

(x, x)| ⩽ ϵ. (22)

Letting ϵ→ 0, we get the uniform convergence of BMi,K(x, x) to B
M̃,K

(x, x) as i→ ∞.

The same argument, replacing BMi,K everywhere by DlBMi,K and B
M̃,K

by DlBM̃,K
,

we will get the uniform convergence of

DlB
0
(2)(Mi,KMi)(x, x) → DlB

0
(2)(M̃,K

M̃
)(x, x)

for x in a small neighborhood of xo ∈ M̃ as was used in [Y3]-[Y6]. This also follows
from the exposition in Lemma 4 and Proposition 2 of [Y4], since the kernels BMi,K(x, y)
is holomorphic in x and conjugate holomorphic in y, and we may apply Cauchy type of
estimates to M ×M .

This concludes the proof of Proposition 2. □

4.4 Proof of Theorem 3
Theorem 3 is now a consequence of Proposition 1 and Proposition 2. □

§5. L2-very ampleness and L2 jet generating.

5.1 We are going to finish the proof of Theorem 1 in this section. The idea is similar to
those in [Y3] and [Y6] for compact cases but with some modifications needed to take care
of the geometry at the infinity, making use of the results in the last section. As usual, we
break the proof into proof of base point freeness, immersion and separation of points.

5.2 Base Point Freeness

From Proposition 1, we know that after passing to a certain Mi for i sufficiently large,
we may assume that Γ(2)(Mi,KMi) ̸= ∅. Hence for simplicity of notation, we may replace

M by Mi if necessary and assume that Γ(2)(M,KM ) = H0
(2)(M,KM ) ̸= ∅.

From the first paragraph in the proof of Lemma 1, we know that a section s ∈ Γ(2)(M,KM )

extends holomorphically to a holomorphic section of Γ(M,KM ), which we use the same no-

tation to represent. Denote the base locus of Γ(2)(M,KM ) onM by Bs(2)(KM ). Then asM
is projective algebraic, there are finite number of subvarieties Vj ⊂ M, j = 1, . . . q so that
Bs(2)(KM ) = ∪q

j=1(VJ). We are going to use induction to show that there exists a covering

Mi of M , so that there exists section s ∈ Γ(2)(Mi,KMi) with pull back s not vanishing on
p∗iVj for each j, where pi :Mi →M is the covering map.

Choose a point x1 ∈ V1. There exists a neighborhood U1 of D so that x1 ∈ M − U1.
Hence ∂U1 is relatively compact in M . It follows from Proposition 2 that there exists s ∈
Γ(2)(Mi,KMi) with s(p

∗
i (xi)) ̸= 0, for i ⩾ io sufficiently large. Hence V11 := Bs(s)(KM )∩V1

is a proper subvariety of V1 and hence of lower dimension. We may now apply induction.
After a finite number of steps, and passing to a corresponding cover MV1 , the base locus
of the canonical sections on MV1 does not intersect the pull-back of V1. Note by pulling
back canonical sections of V1 by pV1 : MV1 → M , we see that Bs(2)(KMV1

) is contained in

p−1
V1

(∪q
j=2Vj).
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Repeat the above procedure for V2 in place of V1, we conclude that after passing to an
appropriate coveringsMV2 , the base locus of the canonical sections ofMV2 does not intersect
V2. In other words, in terms of the projection map

pV2 :MV2 →MV1 →M,

we have Bs(2)(KMV2
) ⊂ p−1

V2
(∪q

j=3Vj).
Repeat the procedure using induction, we conclude that after passing to a covering MVq ,

Bs(2)(KMVq
) = ∅. Hence there exists a covering Mio :=MVa in the tower such that KMio

is

base point free. This also implies that KMi is base point free for i ⩾ io by pulling back the
canonical sections.

5.3 Immersion

Let s1, . . . , sl be a unitary basis of Γ(2)(M,KM ). Let ti,j := d(si/sj) be the meromorphic
function on M coming from the quotients of the two sections. Then the locus of non-
immersion is the set

AM := {x ∈M : rank([ti,k]1⩽i⩽l) < n for all k ⩽ l},

cf. [Y2] or [Y5]. Hence if we set Bk to be the matrix [ti,j ]1⩽i⩽l,

AM := {x ∈M : all (n− 1)× (n− 1) minors of Bk determinant = 0, ∀1 ⩽ k ⩽ l}.

The corresponding set for L2 sections of K
M̃

is

A
M̃

:= {x ∈ M̃ : rank(d(s̃i/ã)1⩽i⩽n) < n ∀s̃i, ã ∈ Γ(2)(M̃,K
M̃
)},

Note that A
M̃

=. In fact as A
M̃

is invariant under biholomorphism on M̃ and M̃ is

homogeneous, it suffices for us to check that rank(d(s̃i/ã)1⩽i⩽n)(0) = n at the point 0 ∈ M̃

in representing M̃ as a bounded symmetric domain in Cn. For this purpose, it suffices for
us to take ã = 1dz1 ∧ · · · ∧ dzn and s̃i = zidz

1 ∧ · · · ∧ dzn.
The argument as given in the part for base-point freeness leads to a proof.

5.4 Separation of points

ConsiderMi×Mi. The non-separate locus is Si ⊂Mi×Mi. Similar to earlier discussions,
we let

Si = {(x, y) ∈Mi ×Mi :
s

t
(x) =

s

t
(y) ∀s, t ∈ Γ(Mi,KMi)}.

Similar to the argument in the earlier subsections, Si+1 ⊂ Si for all i by considering pull-

back canonical sections. On the universal cover M̃ , clearly a corresponding set

S̃ = {(x, y) ∈ M̃ × M̃ :
s

t
(x) =

s

t
(y) ∀s, t ∈ Γ(2)(M̃,K)}

is empty, by considering L2 holomorphic n-forms obtained from multiplying bounded holo-
morphic functions to dz1 ∧ · · · ∧ dzn.

The argument of the subsection for base-point freeness leads to result that Si = ∅ for
i ⩾ io for some io sufficiently large.

5.5 Generation of jets
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Since this involves just more number of derivatives comparing to the prove of immersion,
exactly similar type of arguments can be applied with the availability of Proposition 2, see
also page 221 of [Y3]. We skip the details here.

5.6 Proof of Theorem 1
Theorem 1 now is a direct consequence of discussions in 5.2-5.4. □

§6. On certain smooth compactification

6.1 Throughout this section, we consider those M with compactification as stated in The-
orem 2. To have a clearer picture of the argument, the reader may just consider M to be a
finite complex ball quotient with smooth toroidal compactification as given in [AMRT] and
[Mo], which are also the main examples we have in mind for this paper.

To relate the geometry of M with M , let us first make the following observation.

Lemma 8. H0
(2)(M,KM ) ∼= H0(M,KM ).

Proof Let φ ∈ H0
(2)(M,KM ). As L2-norm on KM is independent of metric chosen, we

may assume that φ is L2 respect to the Euclidean metric on M . On a small coordinate
neighborhood U of a point p ∈ D ∈M , we may write φ = ψdz1∧dz2∧ · · · ∧dzn in terms of
local holomorphic coordinates (z1, z2). It follows from the L2 assumption and the Riemann
Extension Theorem that ψ can be extended holomorphically across D. Hence φ can be
extend as a holomorphic section of H0(M,KM ). □

6.2 The following lemma in the case of complex ball quotients of complex dimension n ⩾ 2
is already proved in [BT], which is stronger for these special cases in the sense that io = 1
and we do not need to go to higher levels in the tower. For any Hermitian locally symmetric
space of complex dimension n, we assume as in Theorem 2 that each irreducible component
Dj of the compactifying divisor D =

∑p
j=1Dj is an Abelian variety of complex dimension

n− 1.

Lemma 9. There exists io > 0 such that KM i
is ample on M i for i ≥ io.

Proof Since an irreducible component Di,j is a torus, the canonical line bundle KDi,j is
trivial. It follows from the Adjunction formula that KM i

|Di,j = −Di,j |Di,j . The latter is a

positive line bundle from [AMRT] for arithmetic Γ. In the case that M is a complex ball
quotient and Γ is non-arithmetic, we only need to consider complex ball quotients and in
the case, this follows from [Mo].

To check the ampleness of KM i
, it suffices for us to check that Kk

M i
· V > 0 for every

complex subvariety V ⊂ M i of complex dimension 0 ⩽ k ⩽ n from Nakai-Moishezon
criterion. cf. [Ha].

In the case of k = n so that V =M , this follows from the Lemma 8 and Theorem 1.
Suppose V is (irreducible) of complex dimension d < N . It suffices for us to show that

KM i
|V is big. Consider first the case that V ∩Mi = V ∩(M i−Di) ̸= ∅. In such case, V ∩Mi

is an analytic subvariety of dimension d inM . I follows again from Theorem 1 that sections
of Γ(2)(Mi,KMi) restricted to V give immersion and separate points on V ∩M . Again from
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Lemma 8, such sections are restriction of sections of Γ(M j ,KMj
). In particular, KMj |V is

big. On the other hand, if V ⊂ Di,j for some j. It follows Adjunction Formula that

KM i
|Di,j = −Di,j |Di,j (23)

is an ample line bundle on Di,j . Hence KM i
|Di,j is big again. The lemma nows follows from

Nakai-Moishizon criterion. □

6.3 We observe that in general, πi : Mi → Mi−1 extends to a holomorphic mapping πi :
M ′

i →M i−1 for some compactificationM ′
i ofMi, by Nagata’s Compactification Theorem, as

explained in [WY2], §4.1-4.2. In the case of toroidal compactification for a locally Hermitian
symmetric space, it is well-known that πi extends to πi : M i → M i−1 as utilized in [Mu],
[T]. Notice in the case of non-arithmetic quotients in complex rank one case, the behavior
near a compactifying divisor is again the same as arithmetic case as explained in [Mo].
Hence a tower of coverings {Mi}∞i=1 can be regarded as the restriction of coverings a tower

{M i}∞i=1 to the quasi-projective parts, for which πi : M i → M i−1 is ramified instead of
unramified covering.

In fact, we may assume that πi is ramified along Di, by considering a sub tower of
sufficiently large gap if necessary, according the earlier work of [M], [T] or [WY2]. In
particular, this is proved in Lemma 4.3 of [WY2]. We refer the reader to §4 of [WY2] for
more related discussions, but just recall the following statement that we need.

Lemma 10. ([WY2], Lemma 4.3). Let r > 0 be a positive number. There exists io > 0
such that for all i ⩾ io, the ramification order of pi :M i →M1 along Di is at lease r.

6.4

Lemma 11. Let r > 0 be a positive number. There exists io > 0 such that there exist
sections s1, . . . , sNi ∈ Γ(M i,KM i

) vanishing along Di to an order greater than r for i ⩾ io
and they generate KMi on Mi.

Proof Write Di = Dij , j = 1, . . . , ni be the irreducible components of Di. Fix i1 such that
Γ(2)(Mi1 ,KMi1

) is very ample on Mi1 from Theorem 1. Let i > i1 and qi := pi1+1 ◦ pi1+1 ◦
· · · ◦ pi :M i →M i1 .

From Lemma 7, πi is ramified. Let r > 0 be a fixed number. Let nij be the ramification

index along Dij . Let φ ∈ Γ(M i1 ,KM i1
). It follows that q∗i φ is a global section in KM i

with

vanishing order along Dij given by nij ⩾ r. This is just a reflection of the usual Hurwitz
formula that KM i

= π∗iKM i−1
+
∑

j(nij − 1)(Dij). □

6.5

Lemma 12. There exists io > 0 such that 2KM i
|Di is very ample for i ≥ io.

Proof From (23), we know that (Di,j ,KMi |Di,j ) is ample for each irreducible component

Di,j of Di = M i − Mi. From Lefschetz’s Theorem, cf. [GH], we know that 3KMi |Di,j

is very ample as Di,j is an abelian variety. The theorem of Lefschetz was generalized
by Ohbuchi [O] to the statement that for an ample line bundle L on an abelian variety
A, 2L is very ample except in the special situation that the pair (A,L) is isomorphic
to (A1 × A2,O(D1 × A2 + A1 × D2), where Ai, i = 1, 2, is an abelian variety and Di is
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an ample line bundle on Ai with dim(A1,O(D1)) = 1. In our situation, it is clear that
K|Di,j = −Di,j |Di,j is not of the above form. Hence 2KMi |Di,j is very ample from the result
of Ohbuchi. □

6.6 We can now complete the proof of Theorem 2.

Proof of Theorem 2
Consider the exact sequence

0 −→ H0(M i, 2KM i
−Di) −→ H0(M i, 2KM i

)
β−→ H0(Di, 2KM i

|Di)

−→ H1(M i, 2KM i
−Di) −→ · · ·

(24)

First we claim that H1(M i, 2KM i
−Di) = {0}. Recall we have sections si, i = 1, . . . , Ni

obtained in Lemma 11 vanishing to order r along Di. When r > 1, we may regard si as
a section ti ∈ Γ(M i,KM i

− Di). It follows that h := (
∑Ni

i=1 |ti|2)−1, in local coordinate
charts, will give a singular Hermitian metric for KM i

− Di which is smooth of KMi as
si, i = 1, . . . , Ni has no common zero on Mi from Lemma 11, since they generate KMi .
The metric is singular only along Di. It follows that h is a singular Hermitian metric with
positive curvature as a current, which is smooth everywhere on Mi and has Lelong number
at least r along Di. It follows from Nadel’s vanishing theorem [N2], or L2-estimates, that

H1(M i, 2KM i
−Di) = H1(M i,KM i

+ (KM i
−Di)) = {0}

and the claim is proved.
From the claim, the homomorphism β in the exact sequence (24) is surjective. Now from

Lemma 12, the global sections in H0(Di, 2KM i
|Di) separate points on Di. including infini-

tesimal ones if i ⩾ io, which is to be assumed below. Since these sections are the restriction
of sections in H0(M i, 2KM i

) from the exact sequence and claim above, we conclude that

sections of Γ(M i, 2KM i
) separate points on Di, including infinitesimal ones.

From Lemma 8 and Theorem 1, we also know that Γ(M i,KM i
) separates points, including

infinitesimal ones, onMi. Squares of such sections gives sections in Γ(M i, 2KM i
) separating

points, including infinitesimal ones on Mi. Hence to complete the proof of Theorem 2, it
remains for us to show that Γ(M i, 2KM i

)

(i) gives an immersion at points of Di, and
(ii) separates points x, y with x ∈Mi and y ∈ Di.

In both cases, the argument of the claim above using L2-estimates or Nadel’s vanishing
theorem [N2] shows that they are valid, by choosing r to be sufficiently large. Let us simply
illustrate this for (i).

Let x ∈ Di ⊂M i. Let U be a small coordinate neighborhood of x inM i, with x given by 0
in coordinates (z1, . . . , zn). We can take this as the pull back of some neighborhood of πi(x)
onM as well. Assume that i is sufficiently large so that the vanishing order ri of πi satisfies
ri ⩾ n+2 after applying Lemma 10. Let s1, . . . , sNi be the sections of Γ(M i,KM i

) obtained

in Lemma 11 vanishing to order ri at x and generates KMi on Mi. Let h = (
∑Ni

i=1 |si|2)−1,

which gives a singular Hermitian metric for KM i
. We also equip M i with a smooth Kähler
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metric g1 with Kähler form ω1. Then it follows that h2 := h · 1
det g1

is a singular Hermitian

metric on 2KM i
, with curvature satisfying

√
−1∂∂ log h2 +Rc(g1) =

√
−1∂∂ log h1 ⩾ cω1 (25)

as a current, for some constant c > 0.
Let ρ be a smooth function supported in a smaller neighborhood Uϵ of U . Let e2K be a

local basis of KM i
on U . The expression ∂(ρzie

2
K) has compact support in U . Extend it by

0 outside of U to get a smooth K2
M i

-valued (0, 1)-form on M i. Standard L2-estimates, cf.

[Ho], allows us to find a solution of

∂u = ∂(ρzie
2
K) (26)

with estimates ∫
M

|u|2h2
⩽
∫
M

1

c
|∂(ρzie2K)|h2 (27)

The right hand side of the above inequality is finite since ∂(ρzie
2
K) vanishes in a neighbor-

hood of x. Hence the left hand side of (27) is finite, which implies that u vanishes to order
at least 2 at x since h has a pole of large order at x. We conclude that fi := ρzie

2
K − u ∈

Γ(2)(M i,KM i
) when evaluated at 0 satisfies

∂

∂zi
fi(0) = (

∂

∂zi
zi(0))e

2
K(0) = e2K(0),

which is non-zero. Since i is arbitrary, we conclude that sections of Γ(M i, 2KM i
) gives an

immersion at x. Since this applies to all x ∈ D, (i) is valid.
(ii) is proved similarly. Note that from Theorem 1 and Lemma 11, we can find sections

in Γ(M i,KM i
) vanishing to arbitrary predetermined order at y ∈ Mi if i is sufficiently

large. Hence the argument earlier as in (1) allows us to construct sections in Γ(M i, 2KM i
)

separating a point x ∈ D and a point y ∈Mi. Hence (ii) is also valid.
Theorem 2 follows.

□
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167-184.

[L] Lück, W., Approximating L2-invariants by their finite-dimensional analogues. Geom.
Funct. Anal. 4(4)(1994), 455–481.



20 SAI-KEE YEUNG

[Mo] Mok, N., Projective-algebraicity of minimal compactifications of complex-hyperbolic
space forms of finite volume, in: Perspectives in analysis, geometry, and topology. On the
occasion of the 60th birthday of Oleg Viro, Progr. Math. 296 (2012), Birkhuser-Verlag.

[MZ] Mok, N., Zhong, J. Q., Compactifying complete Kähler-Einstein manifolds of finite
topological type and bounded curvature. Ann. of Math. (2) 129 (1989), no. 3, 427-470.

[Mu] Mumford, D., Hirzebruch’s proportionality theorem in the noncompact case, Invent.
Math. 42 (1977), 239-272.

[N1] Nadel, A. M., The nonexistence of certain level structures on abelian varieties over
complex function fields, Ann. of Math. (2) 129 (1989), 161-178.

[N2] Nadel, A. M., Multiplier ideal sheaves and Kähler-EinPYstein metrics of positive scalar
curvature, Ann. of Math. (2) 132 (1990), 549-596.

[O] Ohbuchi, A., Some remarks on ample line bundles on abelian varieties, Manuscripta
Math. 57 (1987), 225-238.

[PY1] Prasad, G., Yeung, S.-K., Fake projective planes. Invent. Math. 168(2007), 321-370.

[PY2] Prasad, G., Yeung, S.-K., Addendum to ‘Fake projective planes’, Invent. Math. 168,
321-370 (2007), Invent. Math. 182 (2010), 213-227.

[PY3] Prasad, G., Yeung, S.-K., Arithmetic fake projective spaces and arithmetic fake
Grassmannians, American J.Math. 131(2009), 379-407.

[RS] Rohlfs, J., Speh, B., On limit multiplicities of representations with cohomology in the
cuspidal spectrum, Duke Math. J. 55 (1987), no. 1, 199-211.

[Rh] Rhodes, J.A.: Sequences of metrics on compact Riemann surfaces. Duke Math. J.
72(3), 725–738 (1993)

[Ro] Royden, H. L., The Ahlfors-Schwarz lemma in several complex variables. Comment.
Math. Helv. 55 (1980), 547–558.

[Ss] Savin, G., Limit multiplicities of cusps forms, Invent. Math. 95 (1989), 149–159.

[Si] Siu, Y.-T., Very ampleness part of Fujita’s conjecture and multiplier ideal sheaves of
Kohn and Nadel, Ohio State Univ. Math. Res. Inst. Publ. 9, Walter de Gruyter & Co.,
Berlin, 2001, 171-191.

[SY] Siu, Y-T; Yau, S-T., Compactification of negatively curved complete Kähler manifolds
of finite volume. Seminar on Differential Geometry, pp. 363-380, Ann. of Math. Stud.,
102, Princeton Univ. Press, Princeton, N.J., 1982.

[T] Tai, Y.-S., On the Kodaira dimension of the moduli space of abelian varieties, Invent.
Math. 68 (1982), no. 3, 425-439.

[W] Wang, X., Effective very ampleness of the canonical line bundles on ball quotients, J.
Geom. Anal. 25 (2015), no. 2, 740-760.

[WY1] Wong, K-K, Yeung, S-K., Quasi-Projective Manifolds Uniformized by Carathéodory
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