1. Find the slope of the line containing the points $(-2,4)$ and $(6,-3)$.
A. 4
B. $-7 / 8$
C. $1 / 4$
D. $-8 / 7$
E. $-1 / 2$
2. Suppose 280 tons of corn were harvested in 5 days and 940 tons in 20 days. If the relationship between tons T and days d is linear, express T as a function of d.
A. $T=5 d+280$
B. $T=-44 d+500$
C. $T=44 d+60$
D. $T=60 d+44 \quad$ E. $T=44 d-60$
3. When 30 orange trees are planted per acre each tree yields 150 oranges For each additional tree per acre, the yield decreases by 3 oranges per tree. Express the total yield of oranges per acre, Y, as a function of the number of trees planted per acre, x, if $x \geq 30$.
A. $Y=4500+60 x-3 x^{2}$
B. $Y=\frac{1}{3} x+80$
C. $Y=150 x-3 x^{2}$
D. $Y=240 x-3 x^{2}$
E. $Y=900+3 x-60 x^{2}$
4. A manufacturer can sell dining-room tables for $\$ 70$ apiece. The manufacturer's total cost consists of a fixed overhead of $\$ 8000$ plus production costs of $\$ 30$ per table. How many tables must the manufacturer sell to break even?
$\begin{array}{lllll}\text { A. } 80 & \text { B. } 267 & \text { C. } 200 & \text { D. } 20 & \text { E. } 136\end{array}$
5. If $f(x)=\sqrt{x+1}$ and $g(x)=x^{2}+7$ then $\left.f^{\circ} g(-1)\right)=$
A. 0
B. 3
C. $\sqrt{7}$
D. 7 E. $\sqrt{8}+1$
6. If $f(x)=\frac{2}{x}$ then $\frac{f(x+h)-f(x)}{h}=$
A. $\frac{-2}{x^{2}}$
B. $\frac{2}{x+h}-\frac{2}{x}$
C. $\frac{2}{x(x+h)}$
D. $\frac{-2}{x(x+h)}$ E. $\frac{-2}{(x+h)^{2}}$
7. The domain of $f(x)=\frac{1}{\sqrt[3]{x-1}}$ is all real numbers x such that
A. $x \neq 1$
B. $x>1$
C. $x>0$ D. $x \neq 0$ E. $-1<x<1$
8. $\lim _{x \rightarrow 1} \frac{x^{2}+4 x-5}{x^{2}-1}=$
A. ∞ B. 0 C. 3 D. -3 E. 5
9. $\lim _{x \rightarrow \infty} e^{-x}=$
A. 0 B. 1 C. -1 D. ∞ E. e
10. Suppose

$$
f(x)= \begin{cases}A x-3 & \text { if } x<-1 \\ 3-x+A x^{2} & \text { if } x \geq-1\end{cases}
$$

Find all values of the constant A so that the function $f(x)$ will be continuous at $x=-1$.
A. 1 B. 0 C. -1 D. $-\frac{7}{2}$ E. No value of A.
11. Find all open intervals on which the function $f(x)=2 x^{3}-3 x^{2}-12 x+12$ is increasing.
A. $(-1,2)$
B. $(\infty,-1)$
C. $(2, \infty)$
D. $(-\infty,-1)$ and $(2, \infty) E$. None of these.
12. The derivative of $\frac{x^{2}+1}{x+5}$ is
A. $\frac{(x+5) 2 x-\left(x^{2}+1\right)}{(x+5)^{2}}$
B. $2 x$ C. $\frac{(x+5) 2 x}{\left(x^{2}+1\right)^{2}}$
D. $\frac{\left(x^{2}+1\right)+(x+5) 2 x}{(x+5)^{2}}$
E. $\frac{\left(x^{2}+1\right)-(x+5) 2 x}{(x+5)^{2}}$
13. If $y=\left(3-x^{2}\right)^{3}$ then $y^{\prime \prime}=$
A. $-6 x\left(3-x^{2}\right)^{2}$
B. $24 x^{2}\left(3-x^{2}\right)-6\left(3-x^{2}\right)^{2}$
C. $6\left(3-x^{2}\right)$
D. $24 x^{2}\left(3-x^{2}\right)$
E. None of these.
14. The line tangent to the graph of $f(x)=x-\frac{1}{x}$ at $x=2$ has slope
A. $5 / 4$
B. $3 / 4$
C. $3 / 2$
D. 0 E. $1 / 2$
15. Find an equation for the tangent line to the curve $x^{2} y+x y^{3}=2$ at the point $(1,1)$.
A. $2 x+y=3$
B. $3 x+4 y=7 \quad$ C. $2 x+3 y=5$
D. $5 x-2 y=3$ E. $5 x+3 y=8$
16. After t years the population of a certain town is $P(t)=50+5 t$ thousand people. A population P has an associated $C O_{2}$ level, $C(P)=\left(\sqrt{P^{2}+1}\right) / 2$. In 2 years (when $t=2$), the rate at which CO_{2} level is changing with respect to t will be
A. $5 /(2 \sqrt{5})$
B. $150 / \sqrt{3601}$
C. $30 \sqrt{3601}$
D. $30 / \sqrt{3601}$ E. $50 / \sqrt{3601}$
17. If $y x^{2}+y^{3}=x-y$. Then $y^{\prime}=$
A. $1-2 x y-3 y^{2}$
B. $1-2 x y-x^{2}-3 y^{2}$
C. $(1-2 x y) /\left(3 y^{2}+1\right)$
D. $(1-2 x y) /\left(x^{2}+3 y^{2}+1\right)$
E. None of these.
18. If the concentration $C(t)$ of a certain drug remaining in the bloodstream t minutes after it is injected is given by $C(t)=t /\left(5 t^{2}+125\right)$, then the concentration is a maximum when $t=$ A. 25 B. 15 C. 5 D. 10 E. 20
19. If $f(x)=2 x^{4}-6 x^{2}$ then which one of the following is true?
A. f has a relative max. at $x= \pm \sqrt{3 / 2}$ and a relative min. at $x=0$.
B. f has a relative max. at $x=0$ and a relative min. at $x= \pm \sqrt{3 / 2}$.
C. f has a relative max. at $x=-\sqrt{3 / 2}$ and a relative min. at $x=\sqrt{3 / 2}$.
D. f has no relative max. points, but has relative min. at $x= \pm \sqrt{3 / 2}$.
E. None of these.
20. The derivative of a function f is $f^{\prime}(x)=x^{2}-\frac{8}{x}$. Then at $x=2, f$ has
A. an inflection point B. a relative maximum C. a vertical tangent
D. a discontinuity E. a relative minimum
21. If $f(x)=\frac{1}{3} x^{3}-9 x+2$, then on the closed interval $0 \leq x \leq 4$,
A. f has an absolute max. at $x=3$ and an absolute min. at $x=0$.
B. f has an absolute max. at $x=4$ and an absolute min. at $x=3$.
C. f has an absolute max. at $x=0$ and an absolute min. at $x=4$.
D. f has an absolute max. at $x=0$ and an absolute min. at $x=3$.
E. None of these.
22. The total cost in dollars to manufacture x units is given by the function $C=3 x^{2}+x+48$. For what value of x is the average cost a minimum?
A. 4 B. 0.17 C. 12 D. 6.93 E. 16
23. A display case is in the shape of a rectangular box with a square base. Suppose the volume is 21 cubic ft and it costs $\$ 1$ per square ft. to build the glass top and $\$ 0.50$ per sq. ft. to build the sides and base. If x is the length of one side of the base, what value should x have to minimize the cost? Give your answer to two decimal places.
A. 3.04 ft .
B. 2.41 ft .
C. 3.74 ft .
D. 2.24 ft . E. 3.36 ft .
24. What is the area of the largest rectangle with sides parallel to the axes which can be inscribed in the first quadrant under the parabola $y=4-x^{2}$? (Give your answer correct to 2 decimal places.)
A. 1.15
B. 1.33 C. 3.08
D. 4.00 E. 2.67
25. The radius of a circular oil spill is increasing at the rate of $3 \mathrm{ft} / \mathrm{min}$. How fast is the area increasing when the radius is 4 ft ?
A. $24 \pi \mathrm{ft}^{2} / \mathrm{min}$
B. $48 \pi \mathrm{ft}^{2} / \mathrm{min}$
C. $8 \pi \mathrm{ft}^{2} / \mathrm{min}$
D. $16 \pi \mathrm{ft}^{2} / \mathrm{min}$ E. $32 \pi \mathrm{ft}^{2} / \mathrm{min}$
26. Use differentials to approximate $\sqrt{3.96}$. (Give your answer to 3 decimal places.)
A. 1.989
B. 1.990
C. 1.980
D. 1.975 E. 1.995
27. Water is flowing into a tank which is in the shape of a right circular cylinder standing on its circular base. If the water is flowing in at a rate of $80 \mathrm{cu} . \mathrm{ft}$. per min. and the radius of the base of the tank is 4 ft ., how fast is the water rising when the water is 10 ft . deep?
A. $\frac{\pi}{5} \mathrm{ft} / \mathrm{min}$
B. $5 \pi \mathrm{ft} / \mathrm{min}$
C. $\frac{50}{\pi} \mathrm{ft} / \mathrm{min}$
D. $\frac{5}{\pi} \mathrm{ft} / \mathrm{min}$ E. $50 \pi \mathrm{ft} / \mathrm{min}$
28. A manufacturer has been selling lamps at $\$ 6$ apiece and, at that price, consumers have been buying 3,000 lamps per month. The manufacturer wishes to raise the price and estimates that for each $\$ 1$ increase in the price, 1000 fewer lamps will be sold each month. The manufacturer can produce the lamps at a cost of $\$ 4$ per lamp. At what price should the manufacturer sell each lamp to generate the greatest possible profit?
A. $\$ 6.25$
B. $\$ 6.50$
C. $\$ 7.00$
D. $\$ 7.50$ E. $\$ 7.75$
29. A population grows exponentially $\left(Q=Q_{0} e^{k t}\right)$. In 1960 it was 50,000 and in 1965 it was 100,000 . What was the population in 1970 ?
A. 200,000
B. 150,000
C. 250,000
D. 300,000
E. 225,000
30. If $18^{x}=\sqrt{3}$, then in which of the following intervals does x lie?
A. $(0,1)$
B. $(-1,0)$
C. $(1,2)$
D. $(-2,-1)$ E. $(2,3)$
31. If $y=\ln \sqrt{1-x^{2}}$ then $\frac{d y}{d x}=$
A. $\frac{1}{\sqrt{1-x^{2}}}$
B. $\frac{-2 x}{\sqrt{1-x^{2}}}$ C. $\frac{-x}{1-x^{2}}$
D. $\frac{1}{2\left(1-x^{2}\right)}$ E. $\frac{1}{2 \sqrt{1-x^{2}}}$
32. The amount of a certain radioactive substance remaining after t years is given by a function of the form $Q(t)=Q_{0} e^{-0.003 t}$. The half-life of the substance is
A. 53 years
B. 0.00435 years
C. 333 years
D. 231 years E. 167 years
33. If $y=e^{x^{2}}$ then $\frac{d y}{d x}=$
A. $e^{x^{2}}$
B. $x^{2} e^{x^{2}-1}$
C. $2 x e^{x^{2}-1}$
D. $2 x e^{x^{2}}$ E. $e^{2 x}$
34. What lump sum of money should be deposited in a money market certificate paying 8.25% interest compounded monthly to amount to 5000 in 10 years? Give your answer to the nearest dollar. $\left(B(t)=P(1+r / k)^{k t}\right)$.
A. $\$ 2514$ B. $\$ 4669$
C. $\$ 2740$
D. $\$ 2262$ E. $\$ 2197$
35. How quickly will money double if it is invested at a rate of 8 percent compounded continuously? Give your answer to two decimal places. $\left(B(t)=P e^{r t}\right)$
A. 0.87 years
B. 25 years
C. 5.55 years
D. 8.66 years E. 6.33 years
36. Suppose the total cost in dollars of producing q units is $C(q)=2 e^{-q}+3 q^{2}-2$. Calculate the marginal cost, $M C$, when 5 units have been produced and calculate the actual cost of producing the 6th unit. Give your answer to the nearest cent.
A. $M C=\$ 29.99$, actual cost $=\$ 32.99$
B. $M C=$ actual cost $=\$ 29.99$
C. $M C=\$ 29.99$, actual cost $=\$ 36.00$
D. $M C=\$ 30.01$, actual cost $=\$ 32.99$
E. $M C=$ actual cost $=\$ 30.01$
37. At a certain factory, the daily output is $Q(K)=4000 K^{1 / 2}$ units, where K denotes the firm's capital investment. Use differentials to estimate the percentage increase in output that will result from a 1 percent increase in capital investment.
A. 1%
B. 1.5%
C. 0.5%
D. 2% E. 2.5%
38. A cylindrical can with no top has been made from 27π square inches of metal. Express the volume, V, of the can as a function of its radius, r.
A. $V=27 \pi r^{2} \quad$ B. $V=\frac{\pi}{2} r\left(27-r^{2}\right) \quad$ C. $V=\pi r^{2}\left(27-r^{2}-2 r\right)$
D. $V=27 \pi^{2} r^{2} \quad$ E. $V=\frac{4}{3} \pi r^{2}\left(27-r^{2}\right)$
39. For what value of a does the function $f(x)=x^{2}+a x$ have a relative minimum at $x=1$.
A. -2 B. 0 C. 2 D. -1 E. 1
40. The total cost of manufacturing q units of a certain commodity is $C(q)=3 q^{2}+5 q+75$. At what level of production is the average cost per unit equal to the marginal cost?
A. $q=2$ B. $q=3$ C. $q=4$ D. $q=5$ E. $q=6$

Answers

1. B; 2. C; 3. D; 4. C; 5. B; 6. D; 7. A; 8. C; 9. A; 10. D; 11. D; 12. A; 13. B; 14. A; 15. B; 16. B; 17. D; 18. C; 19. B; 20. E; 21. D; 22. A; 23. B; 24. C; 25. A; 26. B; 27. D; 28. B; 29. A; 30. A; 31. C; 32. D; 33. D; 34. E; 35. D; 36. A; 37. C; 38. B; 39. A; 40. D.
