Planned
-
Fri 04/23: Ch 6, pp. 204-207: Radon transform: uniqueness and reconstruction.
-
Wed 04/21: Ch 6, pp. 201-204: Radon transform in
R3
-
Mon 04/19: Ch 6, pp. 198-201: Radon transform, X-ray transform in
R2.
Covered
-
Fri 04/16: Review for Midterm Exam
-
Wed 04/14: Ch 6, pp. 196-198: Radial symmetry and Bessel functions.
-
Mon 04/12: Ch 6, pp. 175-184: Convolutions, Plancherel formula, Fourier inversion formula
-
Fri 04/09: Ch 6, pp. 175-184: Schwartz class. Definition and properties of Fourier transform. Gaussian functions.
-
Wed 04/07: Ch 6, pp. 175-184: Integration on
Rd. Rotations. Polar (spherical) coordinates.
-
Mon 04/05: Ch 5, pp. 158- 161: Heisenberg uncertainty principle
-
Fri 04/02: Ch 5, pp. 153-158: Poisson summation formula, theta function, heat and Poisson kernels on the circle.
-
Wed 03/31: Ch 5, pp. 152-153: Harmonic functions: mean value property, maximum principle, uniqueness (in bounded and unbounded domains)
-
Mon 03/29: Ch 5, pp. 149 -152: Laplace's equation in a halfplane, Poisson kernel
-
Fri 03/26: Ch 5, pp. 146-149: Heat equation on
R
-
Wed 03/24:Ch 5, pp. 144-146: Weierstrass Approx. Theorem, heat equation on
R
-
Mon 03/22: Ch 5, pp. 142-144: Plancherel Formula
-
Mon 03/15 - Fri 03/19: Spring break
-
Fri 03/12: Cancelled (because of the Midterm Exam)
-
Wed 03/10: Ch 5, pp. 139-142: Gaussian Kernels, Fourier Inversion Formula
-
Mon 03/08: Overview of Midterm Exam
-
Fri 03/05: Ch 5, pp. 136-139: The Schwartz space (continued), Gaussian Functions.
-
Wed 03/03: Ch 5, pp. 134-136: Definition of Fourier Transform, the Schwartz space.
-
Mon 03/01: Ch 5, pp. 129-134: Integration on
R
-
Fri 02/26: Review for Midterm Exam
-
Wed 02/24: Ch 4, pp. 116-120: Continuous nowhere differentiable function (continued), Heat equation on circle
-
Mon 02/22: Ch 4, pp. 113-116: Continuous nowhere differentiable function
-
Fri 02/19: Ch 4, pp. 108-112: Weyl's equidistribution theorem continued.
-
Wed 02/17: Ch 4, pp. 104-108: Isoperimetric inequality (finish), Weyl's equidistribution theorem
-
Mon 02/15: Ch 4, pp. 100-104: Curves, lengths, and area, Isoperimetric inequality (start)
-
Fri 02/12: Ch 3, pp. 85-87: Finish the counterexample of diverging Fourier series.
-
Wed 02/10: Ch 3, pp. 84-86: Counterexample of diverging Fourier series, breaking the symmetry
-
Mon 02/08: Ch 3, pp. 80-83: Parseval's identity, back to pointwise convergence, localization
-
Fri 02/05: Ch 3, pp. 75-80: Hilbert and Pre-Hilbert spaces, mean-square convergence
-
Wed 02/03: Ch 3, pp. 70-74: Review of Vector spaces and inner products
-
Mon 02/01: Ch 2, pp. 53-58: Abel means and summation, Poisson kernel and Dirichlet problem.
-
Fri, 01/29: Ch 2, pp. 48-53: Good kernels, Cesaro means and summation, Fejer kernel.
-
Wed, 01/27: Ch 2, pp. 44-48: Convolutions
-
Mon, 01/25: Ch 2, pp. 39-44 : Uniqueness of Fourier series
-
Fri, 01/22: Ch 2, pp. 29-33: Riemann integrable functions, functions on unit circle, pp. 34-38: Definition of Fourier series, Dirichlet and Poisson kernels.
-
Wed, 01/20: Ch 1, pp. 18-23: Heat equation, Laplace's equation.
-
Mon, 01/18: no class (MLK day)
-
Fri, 01/15: Ch 1, pp. 15-18: Fourier series, plucked string.
-
Wed, 01/13: Ch 1, pp. 10-15: D'Alembert's formula, standing waves, separation of variables, Fourier sine series
-
Mon, 01/11: Ch 1, pp. 1-10: Simple harmonic motion, derivation of wave equation, traveling waves.