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Abstract. The Riemann hypothesis originates as a conjecture concerning the zeros of a par-
ticular entire function which is motivated by properties of zeros of polynomials. The Riemann

hypothesis is generalized as a conjecture about the zeros of entire functions which resemble
the entire function chosen by Riemann. The Hermite class of entire functions identifies entire

functions which resemble polynomials in being essentially determined by their zeros. Poly-

nomial members of the Hermite class are applied by Stieltjes in an integral representation of
nonnegative linear functionals on polynomials. Arbitrary members of the Hermite class are

applied in an analogous construction [2] of Hilbert spaces whose elements are entire func-

tions. The Riemann hypothesis for Hilbert spaces of entire functions [3] identifies a class of
entire functions which resemble the original entire function of the Riemann hypothesis. The

Riemann hypothesis is strengthened as the conjecture that the Riemann hypothesis for entire
functions applies. The conjecture is shown [4] to be correct in a modified form appropriate

to the singularity of the Euler zeta function. Since the proof is an elementary argument in

Fourier analysis, delays in verification are due to unfamiliarity with concepts which are here
reviewed.

The Riemann hypothesis is an assertion which applies to the zeros of an entire function
which is not a polynomial. Entire functions which admit a relationship to zeros found in
polynomials were discovered by Charles Hermite. The Hermite class of entire functions
permits a reformulation of the Riemann hypothesis as the conjecture that some entire
function belongs to the class.

A nontrivial entire function is said to be of Hermite class if it can be approximated
by polynomials whose zeros are restricted to a given half–plane. For applications to the
Riemann hypothesis the upper half–plane is chosen as the half–plane free of zeros. If
an entire function E(z) of z is of Hermite class, then the modulus of E(x + iy) is a
nondecreasing function of positive y which satisfies the inequality

|E(x− iy)| ≤ |E(x+ iy)|

for every real number x. These necessary conditions are also sufficient.

An entire function of Hermite class which has no zero is the exponential

expF (z)
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of an entire function F (z) of z with derivative F ′(z) such that the real part of

iF ′(z)

is nonnegative in the upper half–plane. The function

iF ′(z) = a− ibz

is a polynomial of degree less than two by the Poisson representation of functions which
are nonnegative and harmonic in the upper half–plane. The constant coefficient a has
nonnegative real part and b is nonnegative.

If an entire function E(z) of z is of Hermite class and has a zero w, then the entire
function

E(z)/(z − w)

is of Hermite class. A sequence of polynomials Pn(z) exists such that

E(z)/Pn(z)

is an entire function of Hermite class for every nonnegative integer n and such that

E(z) = limPn(z)En(z)

uniformly on compact subsets of the upper half–plane for entire functions En(z) of Hermite
class which have no zeros.

An analytic weight function is defined as a function W (z) of z which is analytic and
without zeros in the upper half–plane. An entire function of Hermite class is an analytic
weight function in the upper half–plane. Hilbert spaces of functions analytic in the upper
half–plane were introduced in Fourier analysis by Godfrey Hardy.

The weighted Hardy space F(W ) is defined as the Hilbert space of functions F (z) of z,
which are analytic in the upper half–plane, such that the least upper bound

‖F‖2F(W ) = sup

∫ +∞

−∞
|F (x+ iy)/W (x+ iy)|2dx

taken over all positive y is finite. The classical Hardy space is obtained when W (z) is
identically one. Multiplication by W (z) is an isometric transformation of the classical
Hardy space onto the weighted Hardy space with analytic weight function W (z).

An isometric transformation of the weighted Hardy space F(W ) into itself is defined by
taking a function F (z) of z into the function

F (z)(z − w)/(z − w−)

of z when w is in the upper half–plane. The range of the transformation is the set of
elements of the space which vanish at w.
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A continuous linear functional on the weighted Hardy space F(W ) is defined by taking
a function F (z) of z into its value F (w) at w whenever w is in the upper half–plane. The
function

W (z)W (w)−/[2πi(w− − z)]

of z belongs to the space when w is in the upper half–plane and acts as reproducing kernel
function for function values at w.

A Hilbert space of functions analytic in the upper half–plane which contains a nonzero
element is isometrically equal to a weighted Hardy space if an isometric transformation of
the space onto the subspace of functions which vanish at w is defined by taking F (z) into

F (z)(z − w)/(z − w−)

and if a continuous linear functional is defined on the space by taking F (z) into F (w) for
every element w of the upper half–plane.

Examples of weighted Hardy spaces which apply in Fourier analysis are constructed
from the gamma function discovered by Leonard Euler. The gamma function is a function
Γ(s) of s which is analytic in the complex plane with the exception of singularities at the
nonpositive integers and which satisfies the recurrence relation

sΓ(s) = Γ(s+ 1).

An analytic weight function

W (z) = Γ(s)

is defined by

s = 1
2 − iz.

A maximal dissipative transformation is defined in the weighted Hardy space F(W ) by
taking F (z) into F (z + i) whenever the functions of z belong to the space.

A relation T with domain and range in a Hilbert space is said to be maximal dissipative
if a contractive transformation of the space into itself is defined for some, and hence every,
λ in the right half–plane by taking

Tc+ λc

into

Tc− λ−c

whenever c is in the domain of T . The transformation T is said to be dissipative if
a contractive transformation with domain and range in the Hilbert space is defined for
some, and hence every, element λ of the right half–plane.

The existence of a maximal dissipative transformation in a weighted Hardy space is a
Riemann hypothesis for analytic weight functions.
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Theorem 1. A maximal dissipative transformation is defined in a weighted Hardy space
F(W ) by taking F (z) into F (z+ i) whenever the functions of z belong to the space if, and
only if, the function

W (z + 1
2
i)/W (z − 1

2
i)

of z admits an extension which is analytic and has nonnegative real part in the upper
half–plane.

Proof of Theorem 1. A Hilbert space H whose elements are functions analytic in the
upper half–plane is constructed when a maximal dissipative transformation is defined in
the weighted Hardy space F(W ) by taking F (z) into F (z + i) whenever the functions of
z belong to the space. The space H is constructed from the graph of the adjoint of the
transformation which takes F (z) into F (z + i) whenever the functions of z belong to the
space.

An element
F (z) = (F+(z), F−(z))

of the graph is a pair of analytic functions of z, which belong to the space F(W ), such
that the adjoint takes F+(z) into F−(z). The scalar product

〈F (t), G(t)〉 = 〈F+(t), G−(t)〉F(W ) + 〈F−(t), G+(t)〉F(W )

of elements F (z) and G(z) of the graph is defined as the sum of scalar products in the space
F(W ). Scalar self–products are nonnegative in the graph since the adjoint of a maximal
dissipative transformation is maximal dissipative.

An element K(w, z) of the graph is defined by

K+(w, z) = W (z)W (w − 1
2 i)
−/[2πi(w− + 1

2 i− z)]

and
K−(w, z) = W (z)W (w + 1

2 i)
−/[2πi(w− − 1

2 i− z)]

when w is in the half–plane
1 < iw− − iw.

The identity
F+(w + 1

2 i) + F−(w − 1
2 i) = 〈F (t), K(w, t)〉

holds for every element
F (z) = (F+(z), F−(z))

of the graph. An element of the graph which is orthogonal to itself is orthogonal to every
element of the graph.

An isometric transformation of the graph onto a dense subspace of H is defined by
taking

F (z) = (F+(z), F−(z))



THE RIEMANN HYPOTHESIS FOR STIELTJES SPACES OF ENTIRE FUNCTIONS 5

into the function
F+(z + 1

2 i) + F−(z − 1
2 i)

of z in the half–plane
1 < iz− − iz.

The reproducing kernel function for function values at w in the space H is the function

[W (z + 1
2 i)W (w − 1

2 i)
− +W (z − 1

2 i)W (w + 1
2 i)
−]/[2πi(w− − z)]

of z in the half–plane when w is in the half–plane.

Division by W (z + 1
2
i) is an isometric transformation of the space H onto a Hilbert

space appearing in the Poisson representation of functions which are analytic and have
nonnegative real part in the upper half–plane. The function

φ(z) = W (z − 1
2 i)/W (z + 1

2 i)

of z admits an analytic extension to the upper half–plane. The function

[φ(z) + φ(w)−]/[2πi(w− − z)]

of z belongs to the space when w is in the upper half–plane and acts as reproducing
kernel function for function values at w. Since multiplication by W (z+ 1

2 i) is an isometric
transformation of the space into H, the elements of H have analytic extensions to the
upper half–plane. The function

[W (z + 1
2 i)W (w − 1

2 i)
− +W (z − 1

2 i)W (w + 1
2 i)
−]/[2πi(w− − z)]

of z belongs to the space when w is in the upper half–plane and acts as reproducing kernel
function for function values at w.

The argument is reversed to construct a maximal dissipative transformation in the
weighted Hardy space F(W ) when the function φ(z) of z admits an extension which is
analytic and has nonnegative real part in the upper half–plane. The Poisson representation
constructs a Hilbert space whose elements are functions analytic in the upper half–plane
and which contains the function

[φ(z) + φ(w)−]/[2πi(w− − z)]

of z as reproducing kernel function for function values at w when w is in the upper half–
plane. Multiplication by W (z+ 1

2 i) acts as an isometric transformation of the space onto a
Hilbert space H whose elements are functions analytic in the upper half–plane and which
contains the function

[W (z + 1
2 i)W (w − 1

2 i)
− +W (z − 1

2 i)W (w + 1
2 i)
−]/[2πi(w− − z)]

of z as reproducing kernel function for function values at w when w is in the upper half–
plane.
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A transformation is defined in the space F(W ) by taking F (z) into F (z + i) whenever
the functions of z belong to the space. The graph of the adjoint is a space of pairs

F (z) = (F+(z), F−(z))

of elements of the space such that the adjoint takes the function F+(z) of z into the function
F−(z) of z. The graph contains

K(w, z) = (K+(w, z), K−(w, z))

with
K+(w, z) = W (z)W (w − 1

2
i)−/[2πi(w− + 1

2
i− z)]

and
K−(w, z) = W (z)W (w + 1

2
i)−/[2πi(w− − 1

2
i− z)]

when w is in the half–plane
1 < iw− − iw.

The elements K(w, z) of the graph span the graph of a restriction of the adjoint. The
transformation in the space F(W ) is recovered as the adjoint of the restricted adjoint.

A scalar product is defined on the graph of the restricted adjoint so that an isometric
transformation of the graph of the restricted adjoint into the space H is defined by taking

F (z) = (F+(z), F−(z))

into
F+(z + 1

2 i) + F−(z − 1
2 i).

The identity

〈F (t), G(t)〉 = 〈F+(t), G−(t)〉F(W ) + 〈F−(t), G+(t)〉F(W )

holds for all elements
F (z) = (F+(z), F−(z))

and
G(z) = (G+(z), G−(z))

of the graph of the restricted adjoint. The restricted adjoint is dissipative since scalar self–
products are nonnegative in its graph. The adjoint is dissipative since the transformation
in the space F(W ) is the adjoint of its restricted adjoint.

The dissipative property of the adjoint is expressed in the inequality

‖F+(t)− λ−F−(t)‖F(W ) ≤ ‖F+(t) + λF−(t)‖F(W )

for elements
F (z) = (F+(z), F−(z))
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of the graph when λ is in the right half–plane. The domain of the contractive transforma-
tion which takes the function

F+(z) + λF−(z)

of z into the function
F+(z)− λ−F−(z)

of z is a closed subspace of the space F(W ). The maximal dissipative property of the
adjoint is the requirement that the contractive transformation be everywhere defined for
some, and hence every, λ in the right half–plane.

Since K(w, z) belongs to the graph when w is in the half–plane

1 < iw− − iw,

an element H(z) of the space F(W ) which is orthogonal to the domain satisfies the identity

H(w − 1
2 i) + λH(w + 1

2 i) = 0

when w is in the upper half–plane. The function H(z) of z admits an analytic extension
to the complex plane which satisfies the identity

H(z) + λH(z + i) = 0.

A zero of H(z) is repeated with period i. Since

H(z)/W (z)

is analytic and of bounded type in the upper half–plane, the function H(z) of z vanishes
everywhere if it vanishes somewhere.

The space of elements H(z) of the space F(W ) which are solutions of the equation

H(z) + λH(z + i) = 0

for some λ in the right half–plane has dimension zero or one. The dimension is independent
of λ.

If τ is positive, multiplication by
exp(iτz)

is an isometric transformation of the space F(W ) into itself which takes solutions of the
equation for a given λ into solutions of the equation with λ replaced by

λ exp(τ).

A solution H(z) of the equation for a given λ vanishes identically since the function

exp(−τz)H(z)
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of z belongs to the space for every positive number τ and has the same norm as the function
H(z) of z.

The transformation which takes F (z) into F (z + i) whenever the functions of z belong
to the space F(W ) is maximal dissipative since it is the adjoint of its adjoint, which is
maximal dissipative.

This completes the proof of the theorem.

An example of an analytic weight function which satisfies the hypotheses of the theorem
is obtained when

W (z) = Γ( 1
2 − iz)

since
W (z + 1

2 i)/W (z − 1
2 i) = −iz

is analytic and has nonnegative real part in the upper half–plane by the recurrence relation
for the gamma function. The weight functions which satisfy the hypotheses of the theorem
are generalizations of the gamma function in which an identity is replaced by an inequality.

The gamma function is a special solution of a recurrence relation since it defines an
analytic weight function with special properties. An Euler weight function is defined as
an analytic weight function W (z) such that a maximal dissipative transformation in the
weighted Hardy space F(W ) is defined for h in the interval [0, 1] by taking F (z) into
F (z + ih) whenever the functions of z belong to the space.

An analytic weight function W (z) is an Euler weight function if, and only if, for every h
in the interval [0, 1] a function φh(z) of z which is analytic and has nonnegative real part
in the upper half–plane exists such that the identity

W (z + 1
2
ih) = W (z − 1

2
ih)φh(z)

holds for z in the upper half–plane. The identity

φh+k(z) = φh(z − 1
2
ik)φk(z + 1

2
ih)

holds for z in the upper half–plane when h, k, and h+ k are in the interval [0, 1].

Auxiliary Hilbert spaces of analytic functions are applied in the construction of Euler
weight functions. The Hilbert space D is the set of functions F (z) of z analytic in the
upper half–plane such that the integral

‖f(z)‖2D =

∫ ∞
0

∫ +∞

−∞
|f(x+ iy)|2dxdy

converges. When h is positive, the Hilbert space Dh is the set of functions f(z) of z analytic
in the upper half–plane such that the least upper bound

sup

∫ +∞

−∞
|f(x+ iy)|2dx
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taken over all positive y is finite and such that the sum

‖f(z)‖2Dh =
∑∫ +∞

−∞
|f(x+ inh)|2hdx

taken over all nonnegative integers n converges. When n is zero, the integral∫ +∞

−∞
|f(x)|2dx = lim

∫ +∞

−∞
|f(x+ iy)|2dx

is interpreted as a limit as y decreases to zero.

If the function
[f(z + 1

2 ih)− f(z − 1
2 ih)]/h

of z belongs to the space Dh for some function f(z) of z which is analytic in the half–plane

iz− − iz > −h,

then

f(z) =

∫ ∞
0

exp(2πitz)F (t)dt

is formally the Fourier transform of a function F (t) of positive t since the function

−[f(z + 1
2 ih)− f(z − 1

2 ih)]/h

=

∫ +∞

−∞
exp(2πitz)F (t)[exp(πht)− exp(−πht)]dt

of z is the Fourier transform of a square integrable function

F (t)[exp(πht)− exp(−πht)]/h

of positive t such that the identity

‖[f(z + 1
2 ih)− f(z − 1

2 ih)]/h‖2Dh

=

∫ +∞

−∞
|F (t)|2 exp(πht)[exp(πht)− exp(−πht)]/h dt

is satisfied. The identity reads

‖f ′(z)‖2D = 2π

∫ ∞
0

|F (t)|2tdt

in the limit as h decreases to zero.

The function
1

2π(z − w−)(w− − ih− z)
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of z belongs to the space Dh and acts as reproducing kernel function for function values
at w when w is in the upper half–plane.

The function
1

2π(z − w−)(w− − z)
of z belongs to the space D and acts as reproducing kernel function for function values at
w when w is in the upper half–plane.

If a nontrivial function φ(z) of z is analytic and has nonnegative real part in the upper
half–plane, the logarithm

logφ(z)

is defined as an analytic function of z in the upper half–plane whose values lie in a horizontal
strip of width π centered on the real axis. An Euler weight function W (z) is constructed
which satisfies the identity

W (z + 1
2 i) = W (z − 1

2 i)φ(z).

If the function log φ(z) of z belongs to the space D1, the Euler weight function W (z) is
defined formally by the Fourier integral

logW (z) =

∫ ∞
0

exp(2πitz)k(t)dt

of a function k(t) of positive t such that

− logφ(z) =

∫ ∞
0

exp(2πitz)k(t)[exp(πt)− exp(−πt)]dt.

A function φh(z) of z which is analytic and has nonnegative real part in the upper half–
plane is defined when h is in the interval (0, 1) by the integral

− logφh(z) =

∫ ∞
0

exp(2πitz)k(t)[exp(πht)− exp(−πht)]dt.

The logarithm of φh(z) belongs to the space Dh when the logarithm of φ(z) belongs to
the space D1 since the integral

‖ logφh(z)‖2Dh =

∫ ∞
0

|k(t)‖2 exp(πht)[exp(πht)− exp(−πht)]hdt

converges. The properties of φh(z) are obtained from the integral representation

logφh(z) = sin(πh)

∫ +∞

−∞

logφ(z − t)dt
cos(2πit) + cos(πh)
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which holds when z is in the upper half–plane since

sin(πh)

cos(2πiz) + cos(πh)
=

∫ +∞

−∞
exp(2πitz)

exp(πht)− exp(−πht)
exp(πt)− exp(−πt) dt.

The identity implies that φh(z) has nonnegative real part in the upper half–plane since φ(z)
has nonnegative real part in the upper half–plane. The computation of Fourier integrals
is an application of the Euler representation∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)

of the gamma function, which applies when a and b are complex numbers with positive
real part, and of the Euler identity

Γ( 1
2 + z)Γ( 1

2 − z) =
π

cos(πz)
.

The integral representation of the logarithm of φh(z) in terms of the logarithm of φ(z)
applies also when the logarithm of φ(z) does not belong to the space D1. The identity

φa+b(z) = φa(z − 1
2 ib)φb(z + 1

2 ia)

holds when a and b are positive but not greater than one since

sin(πa+ πb)

cos(2πiz) + cos(πa+ πb)

=
sin(πa)

cos(2πiz + πb) + cos(πa)
+

sin(πb)

cos(2πiz − πa) + cos(πb)
.

When the logarithm of φ(z) belongs to the space D1, the logarithmic derivative

iW ′(z)/W (z) = limh−1 log φh(z)

of the desired weight function W (z) is obtained as a limit as h decreases to zero. The
logarithmic derivative of the weight function belongs to the space D since the integral

‖W ′(z)/W (z)‖2D = 2π

∫ ∞
0

|k(t)|2tdt

converges. The identity

logW (z + 1
2 ih)− logW (z − 1

2 ih) = logφh(z)

is obtained by integration with respect to h.
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Theorem 2. If a maximal dissipative transformation is defined in the weighted Hardy
space F(W ) by taking F (z) into F (z + i) whenever the functions of z belong to the space,
then the analytic weight function W (z) is the product of an Euler weight function and an
entire function which is periodic of period i and has no zeros.

Proof of Theorem 2. Since a maximal dissipative transformation is defined in the weighted
Hardy space F(W ) by taking F (z) into F (z + i) whenever the functions of z belong to
space, a function φ(z) of z exists by Theorem 1 which is analytic and has nonnegative real
part in the upper half–plane such that

W (z + 1
2 i) = W (z − 1

2 i)φ(z).

A function φh(z) of z which is analytic and has nonnegative real part in the upper
half–plane is defined when h is in the interval (0, 1) by the integral representation

logφh(z) = sin(πh)

∫ +∞

−∞

logφ(z − t)dt
cos(2πit) + cos(πh)

of its logarithm from the logarithm of

φ1(z) = φ(z)

defined with values in a horizontal strip of width π centered on the real axis. The identity

φh+k(z) = φh(z − 1
2 ik)φk(z + 1

2 ih)

holds when h and k are positive with sum not greater than one. A maximal dissipative
transformation Th with domain and range in the weighted Hardy space F(W ) is con-
structed by the proof of Theorem 1 to take F (z) into

F (z + ih)W (z)φh(z + 1
2
ih)/W (z + ih)

whenever the functions of z belong to the space. The identity

Th+k = ThTk

holds when h and k are positive with sum not greater than one. The domain of Th+k is
the set of elements of the domain of Tk which are mapped by Tk int the domain of Th.

A differentiable group of transformations parametrized by real numbers h is obtained
in a space of entire functions which are periodic of period i and have no zeros. An entire
function

lim [W (z)φh(z + 1
2 ih)/W (z + ih)− 1]/(ih)

which is periodic of period i is obtained as a uniform limit on compact subsets of the upper
half–plane as h decreases to zero.



THE RIEMANN HYPOTHESIS FOR STIELTJES SPACES OF ENTIRE FUNCTIONS 13

Since the limit
W ′(z) = lim [W (z + ih)−W (z)]/(ih)

exists uniformly on compact subsets of the complex plane as h decreases to zero, the limit

lim [φh(z + 1
2 ih)− 1]/(ih)

exists uniformly on compact subsets of the upper half–plane as h decreases to zero. An
entire function S(z) of z which is periodic of period i and has no zeros is obtained such
that

S(z)W (z)

is an Euler weight function.

This completes the proof of the theorem.

Entire functions of Hermite class are examples of analytic weight functions which are
limits of polynomials having no zeros in the upper half–plane. Such polynomials appear
in the Stieltjes representation of positive linear functionals on polynomials.

A linear functional on polynomials with complex coefficients is said to be nonnegative
if it has nonnegative values on polynomials whose values on the real axis are nonnegative.
A positive linear functional on polynomials is a nonnegative linear functional on polyno-
mials which does not vanish identically. A nonnegative linear functional on polynomials is
represented as an integral with respect to a nonnegative measure µ on the Baire subsets
of the real line. The linear functional takes a polynomial F (z) into the integral∫

F (t)dµ(t).

Stieltjes examines the action of a positive linear functional on polynomials of degree less
than r for a positive integer r. A polynomial which as nonnegative values on the real axis
is a product

F (z)F ∗(z)

of a polynomial F (z) and the conjugate polynomial

F ∗(z) = F (z−)−.

If the positive linear functional does not annihilate

F (z)F ∗(z)

for any nontrivial polynomial F (z) of degree less than r, then a Hilbert space exists whose
elements are the polynomials of degree less than r and whose scalar product

〈F (t), G(t)〉
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is defined as the action of the positive linear functional on the polynomial

G∗(z)F (z).

Stieltjes shows that the Hilbert space of polynomials of degree less than r is contained
isometrically in a weighted Hardy space F(W ) whose analytic weight function W (z) is a
polynomial of degree r having no zeros in the upper half–plane.

Examples of such spaces are applied by Legendre and Gauss in quadratic approximations
of periodic motion and motivate the applications to number theory made precise by the
Riemann hypothesis.

An axiomatization of the Stieltjes spaces is stated in a general context [2]. Hilbert
spaces are examined whose elements are entire functions and which have these properties:

(H1) Whenever an entire function F (z) of z belongs to the space and has a nonreal zero
w, the entire function

F (z)(z − w−)/(z − w)

of z belongs to the space and has the same norm as F (z).

(H2) A continuous linear functional on the space is defined by taking a function F (z)
of z into its value F (w) at w for every nonreal number w.

(H3) The entire function
F ∗(z) = F (z−)−

of z belongs to the space whenever the entire function F (z) of z belongs to the space, and
it has the same norm as F (z).

An example of a Hilbert space of entire functions which satisfies the axioms is obtained
when an entire function E(z) of z satisfies the inequality

|E(x− y)| < |E(x+ iy)|

for all real x when y is positive. A weighted Hardy space F(W ) is defined with analytic
weight function

W (z) = E(z).

A Hilbert space H(E) which is contained isometrically in the space F(W ) is defined as
the set of entire functions F (z) of z such that the entire functions F (z) of z and F ∗(z) of
z belong to the space F(W ). The entire function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

of z belongs to the space H(E) for every complex number w and acts as reproducing kernel
function for function values at w.

A Hilbert space H of entire functions which satisfies the axioms (H1), (H2), and (H3)
is isometrically equal to a space H(E) if it contains a nonzero element. The proof applies
reproducing kernel functions which exist by the axiom (H2).
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For every nonreal number w a unique entire function K(w, z) of z exists which belongs
to the space and acts as reproducing kernel function for function values at w. The function
does not vanish identically since the axiom (H1) implies that some element of the space
has a nonzero value at w when some element of the space does not vanish identically.
The scalar self–product K(w,w) of the function K(w, z) of z is positive. The axiom (H3)
implies the symmetry

K(w−, z) = K(w, z−)−.

If λ is a nonreal number, the set of elements of the space which vanish at λ is a Hilbert
space of entire functions which is contained isometrically in the given space. The function

K(w, z)−K(w, λ)K(λ, λ)−1K(λ, z)

of z belongs to the subspace and acts as reproducing kernel function for function values at
λ. The identity

[K(w, z)−K(w, λ)K(λ, λ)−1K(λ, z)](z − λ−)(w− − λ)

= [K(w, z)−K(w, λ−)K(λ−, λ−)−1K(λ−, z)](z − λ)(w− − λ−)

is a consequence of the axiom (H1).

An entire function E(z) of z exists such that the identity

K(w, z) = [E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

holds for all complex z when w is not real. The entire function can be chosen with a
zero at λ when λ is in the lower half–plane and with a zero at λ− when λ is in the upper
half–plane. The function is then unique within a constant factor of absolute value one. A
space H(E) exists and is isometrically equal to the given space H.

Examples of Hilbert spaces of entire functions which satisfy the axioms (H1), (H2), and
(H3) are constructed from the analytic weight function

W (z) = aizΓ( 1
2
− iz)

for every positive number a. The space is contained isometrically in the weighted Hardy
space F(W ) and contains every entire function F (z) such that the functions F (z) and
F ∗(z) of z belong to the space F(W ). The space of entire functions is isometrically equal
to a space H(E) whose defining function E(z) is a confluent hypergeometric series [1].
Selected properties of the space define a class of Hilbert spaces of entire functions.

An Euler space of entire functions is a Hilbert space of entire functions which satisfies
the axioms (H1), (H2), and (H3) such that a maximal dissipative transformation is defined
in the space for every h in the interval [0, 1] by taking F (z) into F (z + ih) whenever the
functions of z belong to the space.
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Theorem 3. A maximal dissipative transformation is defined in a Hilbert space H(E)
of entire functions for a positive number h by taking F (z) into F (z + ih) whenever the
functions of z belong to the space if, and only if, a Hilbert space H of entire functions
exists which contains the function

[E(z + 1
2 ih)E(w − 1

2 ih)
− − E∗(z + 1

2 ih)E(w− + 1
2 ih)]/[2πi(w

− − z)]
+[E(z − 1

2
ih)E(w + 1

2
ih)− − E∗(z − 1

2
ih)E(w− − 1

2
ih)]/[2πi(w− − z)]

of z as reproducing kernel function for function values at w for every complex number w.

Proof of Theorem 3. The space H is constructed from the graph of the adjoint of the
transformation which takes F (z) into F (z + ih) whenever the functions of z belong to the
space. An element

F (z) = (F+(z), F−(z))

of the graph is a pair of entire functions of z, which belong to the space H(E) such that
the adjoint takes F+(z) into F−(z). The scalar product

〈F (t), G(t)〉 = 〈F+(t), G−(t)〉H(E) + 〈F−(t), G+(t)〉H(E)

of elements F (z) and G(z) of the graph is defined as a sum of scalar products in the space
H(E). Scalar self–products are nonnegative since the adjoint of a maximal dissipative
transformation is maximal dissipative.

An element
K(w, z) = (K+(w, z), K−(w, z))

of the graph is defined for every complex number w by

K+(w, z) = [E(z)E(w− 1
2 ih)

− − E∗(z)E(w− + 1
2 ih)]/[2πi(w

− + 1
2 ih− z)]

and

K−(w, z) = [E(z)E(w+ 1
2
ih)− − E∗(z)E(w− − 1

2
ih)]/[2πi(w− − 1

2
ih− z)].

The identity
F+(w + 1

2 ih) + F−(w − 1
2 ih) = 〈F (t), K(w, t)〉

holds for every element
F (z) = (F+(z), F−(z))

of the graph. An element of the graph which is orthogonal to itself is orthogonal to every
element of the graph.

A partially isometric transformation of the graph onto a dense subspace of the spaceH
is defined by taking

F (z) = (F+(z), F−(z))
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into the entire function
F+(z + 1

2 ih) + F−(z − 1
2 ih)

of z. The reproducing kernel function for function values at w in the space H is the function

[E(z + 1
2 ih)E(w − 1

2 ih)
− − E∗(z + 1

2 ih)E(w− + 1
2 ih)]/[2πi(w

− − z)]
+[E(z − 1

2
ih)E(w + 1

2
ih)− − E∗(z − 1

2
ih)E(w− − 1

2
ih)]/[2πi(w− − z)]

of z for every complex number w.

This completes the construction of a Hilbert space H of entire functions with the desired
reproducing kernel functions when the maximal dissipative transformation exists in the
space H(E). The argument is reversed to construct the maximal dissipative transformation
in the space H(E) when the Hilbert space of entire functions with the desired reproducing
kernel functions exists.

A transformation is defined in the space H(E) by taking F (z) into F (z+ ih) whenever
the functions of z belong to the space. The graph of the adjoint is a space of pairs

F (z) = (F+(z), F−(z))

such that the adjoint takes the function F+(z) of z into the function F−(z) of z. The graph
contains

K(w, z) = (K+(w, z), K−(w, z))

with

K+(w, z) = [E(z)E(w− 1
2
ih)− − E∗(z)E(w− + 1

2
ih)]/[2πi(w− + 1

2
ih− z)]

and

K−(w, z) = [E(z)E(w+ 1
2 ih)

− − E∗(z)E(w− − 1
2 ih)]/[2πi(w

− − 1
2 ih− z)]

for every complex number w. The elements K(w, z) of the graph span the graph of a
restriction of the adjoint. The transformation in the space H(E) is recovered as the adjoint
of its restricted adjoint.

A scalar product is defined on the graph of the restricted adjoint so that an isometric
transformation of the graph of the restricted adjoint into the space H is defined by taking

F (z) = (F+(z), F−(z))

into
F+(z + 1

2
ih) + F−(z − 1

2
ih).

The identity
〈F (t), G(t)〉 = 〈F+(t), G−(t)〉H(E) + 〈F−(t), G+(t)〉H(E)

holds for all elements
F (z) = (F+(z), F−(z))
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of the graph of the restricted adjoint. The restricted adjoint is dissipative since scalar self–
products are nonnegative in its graph. The adjoint is dissipative since the transformation
in the space H(E) is the adjoint of its restricted adjoint.

The dissipative property of the adjoint is expressed in the inequality

‖F+(t)− λ−F−(t)‖H(E) ≤ ‖F+(t) + λF−(t)‖H(E)

for elements
F (z) = (F+(z), F−(z))

of the graph when λ is in the right half–plane. The domain of the contractive transforma-
tion which takes the function

F+(z) + λF−(z)

of z into the function
F+(z)− λ−F−(z)

of z is a closed subspace of the space H(E). The maximal dissipative property of the
adjoint is the requirement that the contractive transformation be everywhere defined for
some, and hence every, λ in the right half–plane.

Since K(w, z) belongs to the graph for every complex number w, an entire function
H(z) of z which belongs to the space H(E) and is orthogonal to the domain is a solution
of the equation

H(z) + λH(z + i) = 0.

The function vanishes identically if it has a zero since zeros are repeated periodically with
period i and since the function

H(z)/E(z)

of z is of bounded type in the upper half–plane. The space of solutions has dimension zero
or one. The dimension is zero since it is independent of λ.

The transformation which takes F (z) into F (z+ ih) whenever the functions of z belong
to the space H(E) is maximal dissipative since it is the adjoint of its adjoint, which is
maximal dissipative.

This completes the proof of the theorem.

A construction of Hilbert spaces of entire functions which satisfy the axioms (H1), (H2),
and (H3) appears in the spectral theory of ordinary differential equations of second order
which are formally self–adjoint. The spectral theory is advantageously reformulated as a
spectral theory of first order differential equations for pairs of scalar functions. Differential
equations are inverted as integral equations. Formally self–adjoint difference equations are
included in the spectral theory.

A canonical form for the integral equation is obtained with a continuous matrix function

m(t) =

(
α(t) β(t)
β(t) γ(t)

)
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of positive t with real entries such that the matrix inequality

m(a) ≤ m(b)

holds when a is less than b. It is assumed that α(t) is positive when t is positive, that

limα(t) = 0

as t decreases to zero, and that the integral∫ 1

0

α(t)dγ(t)

is finite.

The matrix

I =

(
0 −1
1 0

)
is applied in the formulation of the integral equation. When a is positive, the integral
equation

M(a, b, z)I − I = z

∫ b

a

M(a, b, z)dm(t)

admits a unique continuous solution

M(a, b, z) =

(
A(a, b, z) B(a, b, z)
C(a, b, z) D(a, b, z)

)
as a function of b greater than or equal to a for every complex number z. The entries of
the matrix are entire functions of z which are self–conjugate and of Hermite class for every
b. The matrix has determinant one. The identity

M(a, c, z) = M(a, b, z)M(b, c, z)

holds when a ≤ b ≤ c.
A bar is used to denote the conjugate transpose

M− =

(
A− C−

B− D−

)
of a square matrix

M =

(
A B
C D

)
with complex entries and also for the conjugate transpose

C− = (C−+ , C
−
− )
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of a column vector

C =

(
C+

C−

)
with complex entries. The space of column vectors with complex entries is a Hilbert space
of dimension two with scalar product

〈u, v〉 = v−u = v−+u+ + v−−u−.

When a and b are positive with a less than or equal to b, a unique Hilbert space
H(M(a, b)) exists whose elements are pairs

F (z) =

(
F+(z)
F−(z)

)
of entire functions of z such that a continuous transformation of the space into the Hilbert
space of column vectors is defined by taking F (z) into F (w) for every complex number w
and such that the adjoint takes a column vector c into the element

[M(a, b, z)IM(a, b, w)−− I]c/[2π(z − w−)]

of the space.

An entire function
E(c, z) = A(c, z)− iB(c, z)

of z which is of Hermite class exists for every positive number c such that the self–conjugate
entire functions A(c, z) and B(c, z) satisfy the identity

(A(b, z), B(b, z)) = (A(a, z), B(a, z))M(a, b, z)

when a is less than or equal to b and such that the entire functions

E(c, z) exp[β(c)z]

of z converge to one uniformly on compact subsets of the complex plane as c decreases to
zero.

A space H(E(c)) exists for every positive number c. The space H(E(a)) is contained
contractively in the space H(E(b)) when a is less than or equal to b. The inclusion is
isometric on the orthogonal complement in the space H(E(a)) of the elements which are
linear combinations

A(a, z)u+B(a, z)v

with complex coefficients u and v. These elements form a space of dimension zero or one
since the identity

v−u = u−v

is satisfied.
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A positive number b is said to be singular with respect to the function m(t) of t if it
belongs to an interval (a, c) such that

[α(c)− α(a)][γ(c)− γ(a)] = [β(c)− β(a)]2

with m(b) unequal to m(a) and unequal to m(c). A positive number is said to be regular
with respect to m(t) if it is not singular with respect to the function of t.

If a and c are positive numbers such that a is less than c and if an element b of the interval
(a, c) is regular with respect to m(t), then the space H(M(a, b)) is contained isometrically
in the space H(M(a, c)) and multiplication by M(a, b, z) is an isometric transformation
of the space H(M(b, c)) onto the orthogonal complement of the space H(M(a, b)) in the
space H(M(a, c)).

If a and b are positive numbers such that a is less than b and if a is regular with respect
to m(t), then the space H(E(a)) is contained isometrically in the space H(E(b)) and an
isometric transformation of the space H(M(a, b)) onto the orthogonal complement of the
space H(E(a)) in the space H(E(b)) is defined by taking(

F+(z)
F−(z)

)
into √

2 [A(a, z)F+(z) +B(a, z)F−(z)].

A function τ(t) of positive t with real values exists such that the function

m(t) + Iih(t)

of positive t with matrix values is nondecreasing for a function h(t) of t with real values
if, and only if, the functions

τ(t)− h(t)
and

τ(t) + h(t)

of positive t with real values are nondecreasing. The function τ(t) of t, which is continuous
and nondecreasing and which is unique within an added constant, is called the greatest
nondecreasing function such that

m(t) + Iiτ(t)

is nondecreasing.

If a and b are positive numbers such that a is less than b, multiplication by

exp(ihz)

is a contractive transformation of the space H(E(a)) into the space H(E(b)) for a real
number h, if, and only if, the inequalities

τ(a)− τ(b) ≤ h ≤ τ(b)− τ(a)
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are satisfied. The transformation is isometric when a is regular with respect to m(t).

An analytic weight function W (z) may exist such that multiplication by

exp[iτ(c)z]

is an isometric transformation of the space H(E(c)) into the weighted Hardy space F(W )
for every positive number c which is regular with respect to m(t). The analytic weight
function is unique within a constant factor of absolute value one if the function

α(t) + γ(t)

of positive t is unbounded in the limit of large t. The function

W (z) = limE(c, z) exp[iτ(c)z]

can be chosen as a limit uniformly on compact subsets of the upper half–plane.

If multiplication by
exp(iτz)

is an isometric transformation of a space H(E) into the weighted Hardy space F(W ) for
some real number τ and if the space H(E) contains an entire function F (z) of z whenever
the function

(z − w)F (z)

of z belongs to the space for a real number w, then the space H(E) is isometrically equal
to the space H(E(c)) for some positive number c which is regular with respect to m(t).

The construction of Hilbert spaces of entire functions associated with an analytic weight
function applied to every Euler weight function.

Theorem 4. If W (z) is an Euler weight function, then for some real number τ a Hilbert
space of entire functions which satisfies the axioms (H1), (H2), and (H3) and which con-
tains a nonzero element exists such that multiplication by

exp(iτz)

is an isometric transformation of the space into the weighted Hardy space F(W ) and such
that the space contains every entire function F (z) of z such that the functions

exp(iτz)F (z)

and
exp(iτz)F ∗(z)

of z belong to the weighted Hardy space. A Hilbert space of entire functions which satisfies
the axioms (H1), (H2), and (H3) and which contains a nonzero element is an Euler space
of entire functions if multiplication by

exp(iτz)

is an isometric transformation of the space into the weighted Hardy space and if an entire
function F (z) of z belongs to the space whenever the function

(z − w)F (z)

of z belongs to the space for some real number w.
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