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Currently used finite volume methods are essentially low order methods. In this paper, we
present a systematic way to derive higher order finite volume schemes from higher order mixed
finite element methods. Mostly for convenience but sometimes from necessity, our procedure
starts from the hybridization of the mixed method. It then approximates the inner product of
vector functions by an appropriate, critical quadrature rule; this allows the elimination of the
flux and Lagrange multiplier parameters so as to obtain equations in the scalar variable, which
will define the finite volume method. Following this derivation with different mixed finite
element spaces leads to a variety of finite volume schemes. In particular, we restrict ourselves
to finite volume methods posed over rectangular partitions and begin by studying an efficient
second-order finite volume method based on the Brezzi–Douglas–Fortin–Marini space of in-
dex two. Then, we present a general global analysis of the difference between the solution of
the underlying mixed finite element method and its related finite volume method. Then, we de-
rive finite volume methods of all orders from the Raviart–Thomas two-dimensional rectangu-
lar elements; we also find finite volume methods to associate with BDFM2 three-dimensional
rectangles. In each case, we obtain optimal error estimates for both the scalar variable and the
recovered flux.
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1. Introduction

Numerical methods for partial differential equations are divided into three general
categories: finite difference methods (FDMs), finite element methods (FEMs), and finite
volume methods (FVMs). Finite difference and finite element methods have received
much more attention than finite volume methods and, as a result, have been developed
to a higher degree of sophistication than finite volume techniques; thus, there are well-
known higher order finite difference and finite element methods. In general, finite dif-
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ference methods are easier to implement than finite element methods, but finite element
methods are more easily adapted to general geometries of the underlying domain on
which the differential problem is formulated and to the practical treatment of inhomoge-
neous physical properties of the media. Finite volume procedures are usually easier to
implement than finite element procedures and offer most of the advantages of flexibility
in geometry of these methods; in a sense, finite volume methods lie in between the other
two techniques in concept and implementation.

There has been one fundamental disadvantage for finite volume methods in com-
parison to finite difference and finite element methods. Essentially all current finite
volume methods are low order methods based on approximating the solution of the dif-
ferential equations by piecewise-constant functions. Consequently, the finite volume
approximation can converge to the solution of the differential problem globally only at
a rate proportional to the diameter h of the elements in the partition of the domain on
which the problem is set. In some cases, it has been possible to show that certain points
can be identified at which the approximate solution converges at a more rapid rate than
the global rate; this phenomenon is called superconvergence. In the most commonly
used finite volume method based on rectangular elements for elliptic boundary value
problems, convergence at a rate O(h2) takes place at cell centers under some supple-
mentary conditions. Then, second order convergence can be established for a piecewise
multilinear interpolation of these cell-center values, again under proper hypotheses.

In [21], Russell and Wheeler established a relationship between a mixed finite
element method on rectangular meshes and cell-centered finite differences for dif-
fusion problems with coefficient matrix being diagonal. Specifically, they obtained
a positive-definite, cell-centered finite difference method by using the lowest order
Raviart–Thomas (RT0) space (see [20]), applying an appropriate quadrature rule, and
eliminating the flux. This work has been extended to triangular meshes and to a full
tensor coefficient matrix (see, e.g., [1,2]). For similar work, see also the recent paper by
Baranger et al. [6], where cell-centered finite difference procedures were considered to
be finite volume methods. On general triangular meshes, the RT0 space usually leads to
quite complicated finite difference stencils (see [1]) since piecewise-constant pressures
on two adjacent triangles are not enough to represent the flux across their common edge.
These papers are based on the lowest order Raviart–Thomas space and, consequently,
lead to essentially low order methods.

The object of this paper is to present examples of a systematic way for deriving
higher order finite volume methods. Our derivations are similar to those mentioned
above, though we find it convenient to start with the hybridization of the underlying
mixed finite element method. Then, we approximate the weighted inner product of
vector functions by an appropriate quadrature rule so as to diagonalize the resulting
matrix Ah; this allows the immediate elimination of the flux variables. Finally, we em-
ploy the consistency relations across interfaces to permit the elimination of the Lagrange
multipliers introduced in the hybridization process to obtain a system of equations in
the degrees of freedom for the scalar variable in the mixed formulation of the elliptic
problem; this will be our finite volume procedure. It will be clear that the resulting
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method maintains local conservation of whatever is being transported by the flux vari-
able element-by-element, as does the underlying mixed finite element method.

The choice of the quadrature rule is critical in our approach, as it was in [21].
Our guidelines are that the matrix Ah corresponding to the vector inner product is di-
agonal and that the numerical integration does not decrease the rate of convergence of
the original mixed finite element method. Finite volume schemes can be derived in nu-
merous ways (see, e.g., [4,5,11,12,18]), but the point of our derivation is that the same
method can be applied to different mixed finite element spaces to obtain a variety of
finite volume procedures. In this paper, we briefly review the standard lower order finite
volume method based on the rectangular RT0 mixed finite element space and then turn
first to the derivation of a higher order procedure based on the two-dimensional, Brezzi–
Douglas–Fortin–Marini space of index two (BDFM2, see [8]) of rectangular elements.
It is worth noting that the derivation technique used here and in [21] naturally leads to
the employment of the harmonic average of discontinuous diffusion coefficients, which
is physically correct and often is not introduced by other derivations of finite volume
schemes.

The difference between the solution of the BDFM2 mixed method and its related
finite volume method is discussed as a solution of a perturbed mixed method. The analy-
sis is given in a generalized fashion that allows us to treat a variety of mixed methods and
their related finite volume methods by analyzing the effect of the quadrature rule used
in deriving the finite volume procedure. As a consequence of this analysis, we indicate
finite volume schemes related to the Raviart–Thomas–Nedelec rectangular mixed finite
elements in two or three dimensions and show that the resulting finite volume methods
retain the global order of convergence of the RTN methods. We also treat the three-
dimensional BDFM2 case, where optimal order error estimates are obtained, and some
higher order BDFMk elements, where it seems inevitable that the error in the flux vari-
able, at least, cannot obtain the optimal order of accuracy associated with the underlying
mixed method. We defer discussing simplicial methods to future work.

This paper is organized as follows. We end this section by introducing some nota-
tion. In section 2, we introduce the diffusion equation, an equivalent first-order system,
and its mixed variational formulation. In section 3, the mixed finite element approxi-
mations based on the RT0 and BDFM2 are described, along with their hybridizations;
sections 4, 5 and 6 are devoted to the derivation of finite volume methods from the two
mixed methods. Global error estimates for finite volume methods interpretable as per-
tubations of mixed finite elements schemes are considered in section 7, along with the
application of these estimates to the BDFM2-based method. Two- and three-dimensional
RTN-based finite volume methods are indicated and analyzed in section 8. The three-
dimensional BDFM2-based method is derived and analyzed in section 9. The BDFM3

case is discussed in section 10; it is an example that so far has not been shown to lead to
a satisfactory finite volume scheme derivable by the technique of this paper.
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1.1. Notation

We use the standard notation and definition for the Sobolev space Wm,p(B) that
consists of functions whose partial derivatives are Lp-integrable up to order m; its stan-
dard associated norm and seminorm are denoted by ‖ · ‖m,p,B and | · |m,p,B , respectively.
For p = 2, Hm(B) = Wm,2(B) is a Hilbert space and its inner product is denoted by
(·, ·)m,2,B . We omit the subscript B from the notation when B = . For m = 0, Hm(B)

coincides with L2(B). In this case, the inner product and norm will be denoted by (·, ·)B
and ‖ · ‖0,2,B or (·, ·) and ‖ · ‖0,2 when B = , respectively. Let

V = H(div;) = {
v ∈ (L2()

)2
: ∇ · v ∈ L2()

};
V is a Hilbert space under the norm

‖v‖2
V = ‖v‖2

0,2 + ‖∇ · v‖2
0,2.

SetW = L2() and V = V ×W.

2. The elliptic problem, its mixed formulation, and preliminaries

Consider the homogeneous Dirichlet probem:{−∇ · (K∇p)= f in ,

p= 0 on ∂,
(2.1)

where the symbols ∇· and ∇ stand for the divergence and gradient operators, respec-
tively; K ∈ L∞() and f ∈ L2() are given real-valued functions, and the domain 
is the unit square (0, 1)× (0, 1). Assume that the diffusion coefficient K is bounded be-
low and above by positive constants; i.e., there exist positive constants K0 and K1 such
that

0 < K0 � K(x, y) � K1

for almost all (x, y) ∈ .
We introduce the flux variable

u = −K∇p in . (2.2)

Set c(x, y) = K−1(x, y); then 0 < K−1
1 = c0 � c(x, y) � c1 = K−1

0 . Then, the mixed
form of (2.1) is given by 

cu + ∇p= 0 in ,

∇ · u = f in ,

p= 0 on ∂.

(2.3)

The mixed weak formulation of problem (2.1) is obtained by multiplying the first and
second equations of (2.3) by v ∈ V and q ∈ W , respectively, and integrating the two
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equations over ; thus, the weak solution of (2.3) is found by seeking (u, p) ∈ V ≡
V ×W such that {

(cu, v)− (∇ · v, p)= 0, ∀v ∈ V,

(∇ · u, q)= (f, q), ∀q ∈ W. (2.4)

The analysis below will be carried out assuming the Dirichlet boundary condition
imposed above; however, Neumann or Robin boundary conditions can be treated analo-
gously.

3. The mixed finite element method and its hybridization

Let Th be the partition of  into squares with the side length h = N−1:

 =
N⋃

i,j=1

T ij ,

where T ij = [(i−1)h, ih]×[(j−1)h, jh] = [xi−1, xi]×[yj−1, yj ]. (The extension of the
methods in this paper to the connected union of rectangular elements is straightforward.)
Let Vh ≡ Vh ×Wh be an admissible finite-dimensional subspace of V (see, e.g., [10]).
Then, the mixed finite element approximation in Vh is the solution (uh, ph) ∈ Vh =
Vh ×Wh of {

(cuh, v)− (∇ · v, ph)= 0, ∀v ∈ Vh,

(∇ · uh, q)= (f, q), ∀q ∈ Wh. (3.1)

We find it convenient to localize the continuous mixed problem (2.3). By do-
ing so, we can point out exactly the difference between the finite volume method we
associate with the underlying mixed finite element space and the reduction to a sym-
metric, positive-definite algebraic system for the Lagrange multipliers introduced by
Fraeijs de Veubeke [17] in his hybridization of (2.3) and analyzed in detail by Arnold
and Brezzi [3].

For each element T ∈ Th, let T ′ be an adjacent element with a common edge
e = ∂T ∩ ∂T ′. Let Eh be the set of all internal edges and denote restrictions of u and p
to the element T by uT and pT , respectively. Then, solving the system

cuT (x)+ ∇pT (x)= 0, x ∈ T , ∀T ∈ Th,
∇ · uT (x)= f, x ∈ T , ∀T ∈ Th,

p(x)= 0, x ∈ ∂,
(3.2)

is equivalent to solving (2.3) if the consistency conditions{
pT |e − pT ′ |e = 0, ∀e ∈ Eh,

uT · nT |e + uT ′ · nT ′ |e = 0, ∀e ∈ Eh,
(3.3)

hold, where nT and nT ′ are the unit outward vectors normal, respectively, to T and T ′.
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Set

V(T )=H(div;T ), W(T ) = L2(T ),

Vh(T )= {v|T : v ∈ Vh}, Wh(T ) = {q|T : q ∈ Wh}.
Let

〈r, t〉∂T =
∫
∂T

rt ds.

Now, test (3.2) against v ∈ V(T ) and q ∈ W(T ):{
(cuT , vT )T − (pT ,∇ · vT )T + 〈pT , vT · nT 〉∂T = 0,

(∇ · uT , qT )T = (f, qT )T . (3.4)

Note that, though p was required to belong just to L2(), it is actually sufficiently
smooth that its trace on ∂T is clearly defined; however, for all commonly used mixed
finite element spaces, ph is discontinuous across internal edges in Eh. But, (3.4) can be
used as motivation for localizing (3.1) as follows. Let us replace the value of p on e in
the discrete analogue of (3.4) by a single-valued Lagrange multiplier λe on e, which can
be defined as follows. Let

Me = {
(vT · nT )|e: vT ∈ Vh(T )

}
,

and let

 h(e)= {λe ∈ Me: e ∈ Eh},
 h = {

λ: ∀e ∈ Eh, λ ∈  h(e)
}
.

Now, let

Vh = Ṽh ×Wh × h,
where Ṽh = {v: v|T ∈ Vh(T )}. Note that continuity of the normal component of the flux
across the interfaces ∂T ∩ ∂T ′ is not imposed on functions in Ṽh; but, for any v ∈ Ṽh,
the flux consistency condition can be enforced by requiring that∑

T ∈Th
〈vT · nT , µ〉∂T \∂ = 0, ∀µ ∈  h. (3.5)

Thus, (3.1) can be localized (or hybridized) by seeking a triple (uh, ph, λh) ∈ Vh such
that

(cuh, v)T − (∇ · v, ph)T + 〈v · nT , λh〉∂T \∂ = 0, v ∈ Vh(T ), T ∈ Th,
(∇ · uh, q)T = (f, q)T , q ∈ Wh(T ), T ∈ Th,∑
T ∈Th

〈uh · nT , µ〉∂T \∂ = 0, µ ∈  h.
(3.6)

In this paper, we begin by briefly considering the lowest order Raviart–Thomas
element (RT0) (see [20]) and then concentrating on the Brezzi, Douglas, Fortin, and
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Marini element (see [8]) of index two (BDFM2). With appropriate quadrature rules
applied to the inner product (cuh, v), the former leads to the standard low order FVM
and the latter to a second-order FVM that is the first object of this paper. Later, we
consider several other mixed finite element spaces.

Let Pk(T ) be the set of all polynomials on T ∈ Th of total degree not greater
than k; let Pk(z) for z = x or y be the set of all polynomials of one variable z of the
degree not greater than k. Also, let Pk,$ = Pk(x) × P$(y). For the RT0 mixed finite
element space,

Vh=
{

v =
(
v1

v2

)
∈ H(div;): v1|T ∈ P1,0, v2|T ∈ P0,1, ∀T ∈ Th

}
,

Wh = {
q ∈ L2(): q|T ∈ P0(T ), ∀T ∈ Th

}
,

while, for the BDFM2 space,

Vh = {
v ∈ H(div;): v|T ∈ [P2(T )\

{
y2}]× [

P2(T )\
{
x2}], ∀T ∈ Th

}
,

Wh = {
q ∈ L2(): q|T ∈ P1(T ), ∀T ∈ Th

}
.

It is well known that both the RT0 and the BDFM2 spaces satisfy the inf–sup condition
(see, e.g., [10]) and are admissible mixed finite element spaces. Since

vT · nT |e ∈
{
P0(e), for RT0,

P1(e), for BDFM2,

the natural choices of the Lagrange multipliers are given by

 h =
{
λ: ∀e ∈ Eh, λe ∈

{
P0(e), for RT0,
P1(e), for BDFM2

}
.

4. Finite volume methods

We shall derive finite volume schemes based on (3.6) by choosing appropriate
quadrature procedures, first globally in matricial form and then in terms of the local
equations for the degrees of freedom of the scalar variable ph.

Denote basis functions by double indices T for elements or e for edges and j for
the degrees of freedom on T or e. Let {{ξ jT (x, y)}N1

j=1}T∈Th , {{ηjT (x, y)}N2
j=1}T ∈Th , and

{{ζ je (x, y)}N3
j=1}e∈Eh be bases for Ṽh,Wh, and  h, respectively;

N1 =
{

4, RT0,
10, BDFM2,

N2 =
{

1, RT0,

3, BDFM2,
and N3 =

{
1, RT0,

2, BDFM2.
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Let 
AT = (

aTij
)
N1×N1

= ((
cξ
j

T , ξ
i
T

)
T

)
N1×N1

,

BT = (
bTij
)
N1×N2

= ((∇ · ξ iT , η
j

T

)
T

)
N1×N2

,

CT e =
(
cT eij
)
N1×N3

= (〈
ξ iT · n, ζ je

〉
∂T \∂

)
N1×N3

,

(4.1)

and let

A = diag(AT : T ∈ Th)N2×N2 ,

B = diag(BT : T ∈ Th)N2×N2 ,

C = (CT e: T ∈ Th, e ∈ Eh)N2×2N(N−1).

The matrices A and B are block diagonal with the blocks being the 4 × 4 for the RT0 or
10 × 10 for the BDFM2 and 4 × 1 for the RT0 or 10 × 3 for the BDFM2, respectively.
Let

U = (UT )N2×1, P = (PT )N2×1 and λ = (λe)2N(N−1)×1,

where

UT = (
u
j

T

)
N1×1, PT = (

p
j

T

)
N2×1 and λe = (

λje
)
N3×1.

Let F = (FT )N2×1 be the right-hand side vector with FT = ((f, ηiT ))N2×1. Then, (3.6)
can be written in matricial form as

AU + BP + Cλ = 0,
BTU = F,
CTU = 0.

(4.2)

Inverting A in the first equation of (4.2) gives

U = −A−1BP − A−1Cλ. (4.3)

This is a cell-by-cell calculation and, thus, inexpensive. Substituting (4.3) into the sec-
ond and third equations in (4.2) yields{

BTA−1BP + BTA−1Cλ = −F,

CTA−1BP + CTA−1Cλ = 0.
(4.4)

The next choice is whether to eliminate P using the first equation of (4.4) or to eliminate
λ using the second equation of (4.4). Since each component of λ is shared by two ele-
ments, there are approximately two (for RT0) or four (for BDFM2) components of λ per
element and only one (for RT0) or three (for BDFM2) components of P per element. The
well-known Fraeijs de Veubeke [3,17] reduction of the saddle-point problem in (3.6) to a
symmetric, positive-definite linear system in edge degrees of freedom is to solve for P in
terms of λ using the first equation of (4.4) and to substitute this relation into the second
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equation of (4.4) to obtain an equation for λ. If, instead, the second equation of (4.4) is
used to solve for λ in terms of P, then we see that

λ = −(CTA−1C
)−1(

CTA−1B
)
P, (4.5)

and the following equation (in fewer variables than obtained in the Fraeijs de Veubeke
reduction) results:{

BTA−1C
(
CTA−1C

)−1
CTA−1B − BTA−1B

}
P = F. (4.6)

With the block diagonal matrix A, the coefficient matrix of the discretization for
P in (4.6) is still complicated. Instead, let us approximate the integrals (cξ j , ξ i)T by a
quadrature, (

cξ
j

T , ξ
i
T

)
T

≈ QT
(
cξ
j

T · ξ iT
)
,

and employ exact integration for the remaining integrals. We obtain equations of the
form 

ÃŨ + BP̃ + Cλ̃ = 0,
BTŨ = F,
CTŨ = 0,

(4.7)

where Ã = (ÃT )N2×N2 with ÃT = (QT (cξ
j

T · ξ iT ))N1×N1 . Then, elimination as above
leads to the perturbed equations{

BTÃ−1C
(
CTÃ−1C

)−1
CTÃ−1B − BTÃ−1B

}
P̃ = F. (4.8)

The object is to choose a quadrature rule so that the matrix Ã is diagonal, instead
of block diagonal, and such that the numerical integration does not decrease the order of
convergence of the original mixed finite element method. Equation (4.8) will be defined
as the finite volume method to be considered in this paper. While in some cases it can
be derived in other ways, the point of this derivation is that the same procedure can be
applied to different finite element spaces to obtain a variety of finite volume procedures.
In each case, the choice of the quadrature procedure will be critical.

5. The standard finite volume method

For T ∈ Th, let its four edges (left, right, bottom, and top) be denoted by

α ∈ ET = {$, r, b, t},
respectively. Let nT be the unit outward vector normal to ∂T , so that

nT |$ = � = (−1, 0)T, nT |r = r = (1, 0)T,
nT |b = b = (0,−1)T, nT |t = t = (0, 1)T.
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For the RT0 space, the natural degrees of freedom are vT,α = (vT · nT )|α, α ∈ ET , the
(constant) normal components of the flux on the edges α, for Ṽh; qT , the value of q on T
forWh and interpreted as its cell-center value; andmT,α, the midpoint values ofm on the
edges α with the restriction that, for any two adjacent elements T and T ′, mT ′,β = mT,α
if they represent the Lagrange multiplier on the common edge of T and T ′. The nodal
basis functions ξαT on T = (xi−1, xi)× (yj−1, yj ) are given by

ξ $T = xi − x
h

�, ξ rT = x − xi−1

h
r, ξ bT = yj − y

h
b, and ξ tT = y − yj−1

h
t.

The basis functions for Wh and  h are (with χB the characteristic function for B)

ηT (x, y) = χT (x, y) and ζe(x, y) = χe(x, y),
respectively.

Let T ∈ Th, and let e = ∂T ∩ ∂T ′. The choice µ = ζe in the third equation of (3.6)
implies that

uh,T ,e + uh,T ′e = 0, (5.9)

where uh,T ,e and uh,T ′,e are the normal components of uh,T and uh,T ′ on the edge e,
respectively.

Recall that we have assumed the coefficient K(x) to the constant KT on each ele-
ment T ∈ Th, so that c|T = cT on T . Now, take v = ξ eT and then ξ eT ′ in the first equation
of (3.6). Since div ξ eT = div ξ eT ′ = h−1 and ξ eT · nT = ξ eT ′ · n′

T = 1,

cT
(
uh,T , ξ

e
T

)
T

− h2ph,T div ξ eT + hλe = 0,

cT ′
(
uh,T ′, ξ eT ′

)
T ′ − h2ph,T ′div ξ eT ′ + hλe = 0,

so that

cT
(
uh,T , ξ

e
T

)
T

− cT ′
(
uh,T ′, ξ eT ′

)
T ′ = h(ph,T − ph,T ′). (5.10)

Each integral in (5.10) involves normal components of uh,T on the edge e and its
opposite edge, but with only the two equations (5.9) and (5.10) we cannot solve for the
flux on e, thereby motivating the introduction of a quadrature rule for these integrals so
that they can be approximated by the normal component of uh,T on the edge e alone.
Given the vector functions in the RT0 space, it suffices to employ the trapezoidal rule:

(cwT , vT )T ≈ cTQT (wT · vT ) = cT h
2

2

∑
α∈ET

wT,αvT ,α. (5.11)

With the above numerical integration, (5.10) is replaced by

cT
h2

2
ũh,T ,e − cT ′

h2

2
ũh,T ′,e = h(p̃h,T − p̃h,T ′),
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where we denote approximations after application of the quadrature rule by ũh and p̃h.
By (5.9), we then have

hũh,T ,e = 2

cT + cT ′
(p̃h,T − p̃h,T ′) = 2KTKT ′

KT +KT ′
(p̃h,T − p̃h,T ′). (5.12)

Every element T ∈ Th has four adjacent elements, which we denote by Tα , α ∈ ET ;
then, denote the restrictions of K and p̃h to these elements by

KT = K|T , Kα = K|Tα , p̃T = p̃h|T , and p̃α = p̃h|Tα .
By taking q = ηT in the second equation of (3.6) and using the divergence theorem
and (5.12), we see that

(f, ηT )T = (div ũh,T , ηT )T =
∫
∂T

ũh,T · nT ds

=
∑
α∈ET

hũh,T ,α =
∑
α∈ET

2KTKα
KT +Kα (p̃T − p̃α).

Thus, we obtain the desired finite volume scheme:∑
α∈ET

dT ,α(p̃T − p̃α) = (f, ηT )T , (5.13)

where dT,α denotes the harmonic average of KT and Kα:

dT,α = 2KαKT
Kα +KT .

This equation is the classical finite volume method (or cell-centered finite difference
equation) with harmonically averaged diffusion coefficients. See [21] for a slightly dif-
ferent derivation of (5.13) and an error analysis. In section 8, we shall derive a finite
volume procedure corresponding to the rectangular RTNk mixed finite element space for
all k, thereby finding finite volume methods for all orders of accuracy.

6. A higher order finite volume method based on BDFM2

6.1. Derivation

Let us consider an analogous derivation based on the BDFM2 space. For each ele-
ment T = (xi−1, xi)× (yj−1, yj ) ∈ Th, denote its center and vertices by

aT = (xi−1/2, yj−1/2) =
(
xi − h

2
, yj − h

2

)
,

aT ,1 = (xi−1, yj−1), aT ,2 = (xi−1, yj ), aT ,3 = (xi, yj−1), aT ,4 = (xi, yj ),
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and the end points of the edges in ET = {$, r, b, t} by

b$,1 = bb,1 = aT ,1, b$,2 = bt,1 = aT ,2,

br,1 = bb,2 = aT ,3, br,2 = bt,2 = aT ,4.

For the BDFM2 space,

Vh(T )= Span
{
ξ iT , i = 1, 2; ξα,iT , α = r, $, b, t, i = 1, 2

}
,

Wh(T )=P1(T ) = Span{1, x − xi−1/2, y − yj−1/2} = Span
{
η0
T , η

x
T , η

y

T

}
,

 h(∂T )=
{
m ∈ L2(∂T ): m|α ∈ P1(α), α ∈ ET

};
the degrees of freedom for Vh(T ) are vT (aT ), the value at the center of T and vT,α,i =
(vT · nT )|α(bα,i), the value of the normal component on the edge α ∈ ET = {$, r, b, t}
at its two end points bα,1 and bα,2. Let

θi = 2(x − xi−1/2)

h
, ψj = 2(y − yj−1/2)

h
.

The two nodal basis functions ξ
j

T (j = 1, 2) associated with the center of T satisfy

ξ 1
T (aT ) =

(
1
0

)
, ξ 2

T (aT ) =
(

0
1

)
, and

(
ξ
j

T · nT
)∣∣
α

= 0 for α ∈ ET ; (6.14)

thus,

ξ 1
T (x, y) =

(
1 − θ2

i

0

)
, ξ 2

T (x, y) =
(

0
1 − ψ2

j

)
, (x, y) ∈ T . (6.15)

The nodal basis functions ξα,iT associated with the edge α ∈ ET and its end points bα,i
(i = 1, 2) satisfy

ξ $,iT (b$,i)= −ξ r,iT (br,i) = −
(

1
0

)
, ξb,iT (bb,i) = −ξ t,iT (bt,i) = −

(
0
1

)
,

ξα,iT (aT )= 0, ξα,iT (bβ,j) = 0, β �= α, j �= i.

(6.16)

For example,

ξ r,1T =
( 1

4
(θi − ψj)(1 + θi)

0

)
, ξ r,2T =

( 1

4
(θi + ψj)(1 + θi)

0

)
. (6.17)

Then,

uh,T =
2∑
j=1

u
j

h,T ξ
j

T +
∑
α∈ET

2∑
i=1

uih,T ,αξ
α,i
T ,

ph,T = p0
h,T η

0
T + pxh,T ηxT + pyh,T ηyT ,
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with ujh,T and uih,T ,α being the values of the j th component at the center and the values
of the normal component on the edge α at its end point bα,i , respectively, and p0

h,T and
(pxh,T , p

y

h,T )
T the value and gradient of ph,T at the center of T , respectively. The nodal

basis function ζ iα for  h(∂T ) associated with the edge α ∈ ET and its end point bα,i is
the linear function on the edge such that

ζ iα(bα,j ) = δij for j = 1, 2.

Let T ∈ Th and choose the test function in the first equation of (3.6) to be ξ kT ; then,
we see that

cT
(
uh,T , ξ

k
T

)
T

= (∇ · ξ kT , ph,T
)
T
. (6.18)

Next, let T ′ be adjacent to T and share an edge e = ∂T ∩ ∂T ′ with end points be,i
(i = 1, 2) with T . Taking first v = ξ e,kT and then ξ e,kT ′ (k = 1, 2) in the first equation
of (3.6) gives the relations

cT
(
uh,T , ξ

e,k
T

)
T

= (∇ · ξ e,kT , ph,T
)
T

− 〈
ξ e,kT · nT , λh

〉
e
,

cT ′
(
uh,T ′, ξ e,kT ′

)
T ′ =

(∇ · ξ e,kT ′ , ph,T ′
)
T ′ − 〈

ξ e,kT ′ · nT ′, λh
〉
e
.

(6.19)

Since ξ e,kT · nT = ξ e,kT ′ · nT ′ on e, differencing of the two equations in (6.19) gives

cT
(
uh,T , ξ

e,k
T

)
T

− cT ′
(
uh,T ′, ξ e,k

T ′
)
T ′ = (∇ · ξ e,kT , ph,T

)
T

− (∇ · ξ e,k
T ′ , ph,T ′

)
T ′, k = 1, 2.

(6.20)
The finite volume method will be derived from (6.18) and (6.20). Note that the Lagrange
multipliers have been eliminated; in fact, it was not necessary to introduce them [21].
The third equation in (3.6) implies the flux consistency conditions

u1
h,T ,e + u1

h,T ′,e = 0 and u2
h,T ,e + u2

h,T ′,e = 0. (6.21)

Next, we shall introduce a quadrature rule to diagonalize the left-hand sides
of (6.18) and (6.20). Clearly, it is appropriate to choose a five-point rule using the center
and four vertices of each element, and the optimum choice is given by∫

T

g(x, y) dx dy ≈ QT (g) = h2

12

(
8g(aT )+

4∑
i=1

g(aT ,i)

)
, T ∈ Th, (6.22)

since this is the only rule associated with these nodes that is exact for P2(T ); in fact, it
is exact on P3(T ) and will lead to retaining the accuracy of the BDFM2 mixed method.
With this numerical integration, (6.18) and (6.20) are replaced by

2h2

3
cT ũ

k
h,T = (∇ · ξ kT , p̃h,T

)
T

and (6.23)

h2

12

(
cT ũ

k
h,T ,e − cT ′ ũkh,T ′,e

)= (∇ · ξ e,kT , p̃h,T
)
T

− (∇ · ξ e,kT ′ , p̃h,T ′
)
T ′ (6.24)

for k = 1, 2, where we denote the approximate solution after quadrature by ũh and p̃h.
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It follows easily from (6.15) and (6.23) that

ũkh,T =
{−KT p̃xh,T , k = 1,

−KT p̃yh,T , k = 2.
(6.25)

Next, it follows from (6.24) and the analogue of the flux consistency condition (6.21)
that

ũkh,T ,e = dT,T ′
6

h2

((∇ · ξ e,kT , p̃h,T
)
T

− (∇ · ξ e,k
T ′ , p̃h,T ′

)
T ′
)
, (6.26)

where

dT,T ′ = dT,e = 2KTKT ′

KT +K ′
T

is the harmonically averaged diffusion coefficient on e = ∂T ∩ ∂T ′.
A straightforward calculation based on (6.16) (or (6.17)) shows that(∇ · ξ r,1T , p̃h,T

)
T

= h

2
p̃0
h,T + h2

6
p̃xh,T − h2

12
p̃
y

h,T ; (6.27)

the other integrals of this form can be evaluated similarly. It follows that

ũ1
h,T ,r = dT,r

(
3
p̃0
h,T − p̃0

h,Tr

h
+ (
p̃xh,T + p̃xh,Tr

)− 1

2

(
p̃
y

h,T − p̃yh,Tr
))
, (6.28a)

ũ2
h,T ,r = dT,r

(
3
p̃0
h,T − p̃0

h,Tr

h
+ (
p̃xh,T + p̃xh,Tr

)+ 1

2

(
p̃
y

h,T − p̃yh,Tr
))
, (6.28b)

so that∫
r

ũh · nT ds = h

2

2∑
j=1

ũ
j

h,T ,r = dT,r
(
3
(
p̃0
h,T − p̃0

h,Tr

)+ h(p̃xh,T + p̃xh,Tr
))
. (6.29)

See section 6.3 for a complete set of the ten flux coefficients in terms of the scalar
coefficients. Equation (6.28a) has the following interpretation. Let z denote the midpoint
of the right edge of T . Then, to higher order in h,

3
p̃0
h,T − p̃0

h,Tr

h
+ (
p̃xh,T + p̃xh,Tr

) ≈ −∂p
∂x
(z)

and

−1

2

(
p̃
y

h,T − p̃yh,Tr
) ≈ h

2

∂2p

∂x∂y
(z),

so that the right-hand side of (6.28a) approximates

−∂p
∂x
(z)+ h

2

∂2p

∂x∂y
(z) ≈ −∂p

∂x
(aT ,3),

and (6.28a) is then a proper approximation of the flux at aT ,3.
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The second equation of (3.6) implies that(
f, η0

T

)
T

= (f, 1)T = (∇ · ũh,T , 1)T

=
∫
∂T

ũh,T · nT ds = h

2

∑
α∈ET

2∑
j=1

ũ
j

h,T ,α.
(6.30)

Also from the same equation,(
f, ηxT

)
T

= (
div ũh,T , ηxT

)
T

= −(ũh,T ,∇ηxT )T +
∫
∂T

(ũh,T · nT )(x − xi−1/2) ds. (6.31)

A trivial, but tedious, calculation leads to the equation

h−2(f, x − xi−1/2)T = −2

3
ũ1
h,T + 1

6

2∑
i=1

(
ũih,T ,r − ũih,T ,$

)
+ 1

12

(
ũ2
h,T ,t − ũ1

h,T ,t − ũ1
h,T ,b + ũ2

h,T ,b

)
. (6.32)

The last term above represents an approximation to the second mixed partial derivative
of the y-component of the flux at the center of T . Similarly,

h−2(f, y − yj−1/2)T = −2

3
ũ2
h,T + 1

6

2∑
i=1

(
ũih,T ,t − ũih,T ,b

)
+ 1

12

(
ũ2
h,T ,r + ũ2

h,T ,$ − ũ1
h,T ,$ − ũ1

h,T ,r

)
. (6.33)

6.2. The BDFM2 finite volume equations

It follows from (6.30), (6.32), (6.33), and the ten equations given by (6.35) that

(f, 1)T = 3
∑
α

dT ,α
(
p̃0
h,T − p̃0

h,Tα

)+ h[dT,r(p̃xh,T + p̃xh,Tr
)

− dT,$
(
p̃xh,T + p̃xh,T$

)]+ h[dT,t(p̃yh,T + p̃yh,Tt
)

− dT,b
(
p̃
y

h,T + p̃yT ,b
)]
, (6.34a)

h−2(f, x − xi−1/2)T = 2

3
KT p̃

x
h,T + dT,r

p̃0
h,T − p̃0

h,Tr

h
− dT,$

p̃0
h,T − p̃0

h,T$

h

+ 1

3

∑
α=$,r

dT ,α
(
p̃xh,T + p̃xh,Tα

)+ 1

12

∑
α=b,t

dT ,α
(
p̃xh,T − p̃xh,Tα

)
,

(6.34b)
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h−2(f, y − yj−1/2)T = 2

3
KT p̃

y

h,T + dT,t
p̃0
h,T − p̃0

h,Tt

h
− dT,b

p̃0
h,T − p̃0

h,Tb

h

+ 1

3

∑
α=b,t

dT ,α
(
p̃
y

h,T + p̃yh,Tα
)+ 1

12

∑
α=$,r

dT ,α
(
p̃
y

h,T − p̃yh,Tα
)
.

(6.34c)

The system (6.34) is the finite volume method that associate with the BDFM2 mixed
finite element method.

These equations can be interpretated as follows. Let the elliptic equation be

−8p = f ;
then dividing (6.34a) by h2 and letting h → 0 leads back to −8p = f . The second
equation, (6.34b), has as limiting form the equation

−8∂p
∂x

= ∂f

∂x
;

analogously, (6.34c) tends to

−8∂p
∂y

= ∂f

∂y
.

Note that we can easily obtain the approximate flux coefficients ũih,T ,α on each
edge of the blocks T ∈ Th from (6.28) and their corresponding relations on the other
edges. The coefficients for the two internal flux components are given by (6.25). These
coefficients are collected below.

6.3. The flux coefficients for BDFM2

The full set of equations relating the flux variables to the scalar variables are as
follows:

ũ1
h,T = −KT p̃xh,T , (6.35a)

ũ2
h,T = −KT p̃yh,T , (6.35b)

ũ1
h,T ,r = dT,r

(
3
p̃0
h,T − p̃0

h,Tr

h
+ (
p̃xh,T + p̃xh,Tr

)− 1

2

(
p̃
y

h,T − p̃yh,Tr
))
, (6.35c)

ũ2
h,T ,r = dT,r

(
3
p̃0
h,T − p̃0

h,Tr

h
+ (
p̃xh,T + p̃xh,Tr

)+ 1

2

(
p̃
y

h,T − p̃yh,Tr
))
, (6.35d)

ũ1
h,T ,$ = dT,$

(
3
p̃0
h,T − p̃0

h,T$

h
− (
p̃xh,T + p̃xh,T$

)− 1

2

(
p̃
y

h,T − p̃yh,T$
))
, (6.35e)

ũ2
h,T ,$ = dT,$

(
3
p̃0
h,T − p̃0

h,T$

h
− (
p̃xh,T + p̃xh,T$

)+ 1

2

(
p̃
y

h,T − p̃yh,T$
))
, (6.35f)
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ũ1
h,T ,t = dT,t

(
3
p̃0
h,T − p̃0

h,Tt

h
+ (
p̃
y

h,T + p̃yh,Tt
)− 1

2

(
p̃xh,T − p̃xh,Tt

))
, (6.35g)

ũ2
h,T ,t = dT,t

(
3
p̃0
h,T − p̃0

h,Tt

h
+ (
p̃
y

h,T + p̃yh,Tt
)+ 1

2

(
p̃xh,T − p̃xh,Tt

))
, (6.35h)

ũ1
h,T ,b = dT,b

(
3
p̃0
h,T − p̃0

h,Tb

h
− (
p̃
y

h,T + p̃yh,Tb
)− 1

2

(
p̃xh,T − p̃xh,Tb

))
, (6.35i)

ũ2
h,T ,b = dT,b

(
3
p̃0
h,T − p̃0

h,Tb

h
− (
p̃
y

h,T + p̃yh,Tb
)+ 1

2

(
p̃xh,T − p̃xh,Tb

))
. (6.35j)

7. Error estimates for finite volume methods related to mixed finite element
methods

7.1. A general convergence analysis

We shall deduce error estimates from classical results for mixed finite element
methods for finite volume methods derived from mixed finite element methods by apply-
ing an appropriate quadrature rule to the (cu, v)-term. Then, we shall employ these esti-
mates to analyze the BDFM2-based FVM. (The RT0 case has been satisfactorily treated
in [21]; the analysis below, however, does apply to it.)

Now, let Vh = Vh × Wh be an admissible mixed finite element space, and let
(uh, ph) ∈ Vh be the solution of the discrete mixed problem (3.1). Let (u, p) ∈ V be the
solution of (2.4). For BDFM2, we know that [8]

‖u − uh‖0,2,�Chk
(∑
T ∈Th

‖p‖2
k+1,2,T

)1/2

, k = 1, 2, (7.1a)

‖p − ph‖0,2,�Ch2

(∑
T ∈Th

‖p‖2
2,2,T

)1/2

; (7.1b)

analogous error estimates are known for all mixed finite element methods considered
below.

Since the fluxes evaluated by (6.35a) from (6.34) satisfy the flux consistency rela-
tions, we can drop the Lagrange multipliers in the analysis of the convergence of (6.34).
It will be the case that the flux consistency conditions will be applied explicitly or im-
plicitly in all other examples considered below. Consequently, we can consider (6.34) to
be a special case of the perturbed mixed finite element method of finding (ũh, p̃h) ∈ Vh
such that

Qh(cũh · v)− (∇ · v, p̃h) = 0, v ∈ Vh, (7.2a)

(∇ · ũh, q) = (f, q), q ∈ Wh, (7.2b)
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where

Qh(g) =
∑
T ∈Th

QT (g) (7.3)

is the quadrature rule associated with derivation of the FVM related to Vh. We shall
assume that the quadrature points for QT coincide with nodal points for a basis for
Vh(T ) and that QT reduces the matrix AT (see (4.1)) to diagonal form; this constraint
seems not to be possible for a number of efficient mixed finite element spaces if the
additional constraint that it cause no reduction in the optimal order of convergence of
the resulting FVM, but we shall indicate several interesting examples where such a QT
is easily constructed.

Let (uh, ph) denote the solution of (3.1) and set

ehũ = uh − ũh, ehp̃ = ph − p̃h.
By differencing (7.2) and (3.1), we see that

(cuh, v)− Qh(cũh · v)− (∇ · v, ehp̃
)= 0, v ∈ Vh, (7.4a)(∇ · ehũ, q
)= 0, q ∈ Wh. (7.4b)

The convergence argument below makes serious use of the commuting diagram
constructed in [8,14] (and implicitly in [16]) and for many other families of mixed finite
element spaces; thus, we assume that there exists a map9h :H 1()2 → Vh, along with
the L2()-projection Ph :L2()→ Wh, such that

div9h = Ph div :H 1()2 −→ Wh (7.5)

and such that

‖v −9hv‖0 �M‖v‖shs, 0 � s � r + 1, (7.6a)

‖q − Phq‖ �M‖q‖shs, 0 � s � r∗, (7.6b)

where r∗ = r in some cases [7,9,15] and r∗ = r + 1 in others [8,19,20]. We also require
the “inverse” property

|v|s,T � Ch−(s−s ′)‖v‖s ′,T , 0 � s′ � s � t, v ∈ Vh, (7.7)

where C is independent of h and Vh(T ) ⊂ Pt(T )
d , with d being the dimension of 

and t being independent of T ; (7.7) holds for quasi-regular partitions, so that it holds
for the uniform partition Th in particular. It should be noted that 9h is usually defined
element-by-element in terms of boundary and interior moments, so that it is defined
when u ∈ H 1()d , or, equivalently, p ∈ H 2(). Consequently, the norms on the right-
hand sides in (7.6) can be broken norms over the partition. The two inequalities in (7.6)
imply that

Pr(T )
d ⊂ Vh(T ), Pr∗−1(T ) ⊂ Wh(T ), ∀T ∈ Th.
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Begin the analysis by taking q = ∇ · eh,Tũ ∈ Wh in (7.4b) to see that∥∥∇ · ehũ
∥∥2 = 0,

so that ∇ · ehũ ≡ 0.
Next, let v ∈ Ṽh = {v: v ∈ Vh(T ), T ∈ Th}, and assume that

vT =
m∑
j=1

v
j

h,T ξ
j

T ,

where {ξ jT , j = 1, . . . , m} is a nodal basis for Vh(T ) over the nodes aj,T , j = 1, . . . , m,
with the nodes being similarly placed in T as in the reference element [−1, 1]d ; i.e.,

ξ
j

T (ak,T ) = δj,k, j, k = 1, . . . , m.

Also, assume that

QT (g) = hd
m∑
j=1

ωjg(aj,T ).

Then, there exist positive constants γ1 and γ2, independent of h, such that

γ 2
1 ‖vT ‖2

0,T � QT
(|vT |2) = hd

m∑
j=1

ωj
(
v
j

h,T

)2 � γ 2
2 ‖vT ‖2

0,T ,

since Vh(T ) is a finite-dimensional subset of Pt(T )d . Thus,

γ1‖v‖ �
(
Qh
(|v|2))1/2 � γ2‖v‖, v ∈ Ṽh, (7.8)

so that the perturbed L2()-like norm based on
√
Qh is equivalent to the ordinary L2()

norm. Also, assume that QT is exact on Pn(T ):

QT (q) =
∫
T

q(x) dx, q ∈ Pn(T );
actually, we need a slight generalization of this relation. If q corresponds to cu · v, let
qi = cuivi , i = 1, . . . , d. Then, let∫

T

q dx =
d∑
i=1

∫
T

qi dx ≈
d∑
i=1

Qi,T (qi), (7.9)

and assume that

Qi,T (qi) =
∫
T

q dx, qi ∈ Pn(T ), i = 1, . . . , d. (7.10)

It is not necessary that c be constant on each T in the analysis below, but it will be
assumed that c(x) is sufficiently smooth on each T , uniformly in T , and that it is bounded
away from zero and infinity on .
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Rewrite the error equation (7.4a) in the form

Qh
(
cehũ · v

) − (∇ · v, ehp̃
) = Qh(cuh · v)− (cuh, v), v ∈ Vh. (7.11)

Let v = ehũ and recall that ∇ · ehũ = 0, so that

cminγ
2
1

∥∥ehũ
∥∥2 � Qh

(
c
∣∣ehũ∣∣2) =

∑
T ∈Th

(
QT

(
cuh · ehũ

)− (
cuh, ehũ

)
T

)
. (7.12)

Let

|g|2τ,T =
∑
k+$=τ

∫
T

(
∂τg

∂xk∂y$

)2

dx dy.

Then, the Bramble–Hilbert lemma [13] implies that there exists a constant M, indepen-
dent of h, such that∣∣QT (cuh · ehũ

)− (
cuh, ehũ

)
T

∣∣ � M
∣∣cuh · ehũ

∣∣
n+1,T h

n+1, (7.13)

since the quadrature rule is exact on Pn(T ). (The quadrature rule is exact on Pm(T )
for m < n, as well; the argument below applies with n replaced by m < n and is of
considerable interest for m = n− 1 in the analysis of ehp .)

We must break the proof into two cases. If

2t � n+ 1,

then since each of the factors uh and ehũ is a polynomial in Pt(T ) and c has sufficiently
many uniformly bounded derivatives on T ,∣∣QT (cuh · ehũ

)− (
cuh, ehũ

)
T

∣∣ � M‖uh‖t,T
∥∥ehũ

∥∥
t,T
hn+1;

hence, it follows that∣∣Qh(cuh · ehũ
)− (

cuh, ehũ
)∣∣ � M

(∑
T ∈Th

‖uh‖2
t,T

)1/2(∑
T ∈Th

∥∥ehũ
∥∥2
t,T

)1/2

hn+1. (7.14)

Here, we need error estimates analogous to (7.1) for the underlying mixed finite
element method; i.e., assume that

‖u − uh‖0, �M‖u‖s, hs, 0 � s � r + 1, (7.15a)

‖p − ph‖0, �M‖p‖τ, hτ , 0 � τ � r∗. (7.15b)

Moreover, in all practical cases of mixed finite element spaces,

t = r or t = r + 1.

By (7.15a), the inverse property (7.7) and a simple approximation property, we
shall see that the first term on the right-hand side of (7.14) is bounded. Given the parti-
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tion Th, it is a standard polynomial approximation property that there exists a piecewise-
polynomial χ with χ |T = χT ∈ Pt(T )d such that

‖u − χT ‖s,T � M‖u‖t,T ht−s, 0 � s � t,

withM independent of T , since Th is (quasi-)regular. Then,(∑
T ∈Th

‖uh‖2
t,T

)1/2

�
(∑
T ∈Th

‖uh − χT ‖2
t,T

)1/2

+
(∑
T ∈Th

‖χT − u‖2
t,T

)1/2

+
(∑
T ∈Th

‖u‖2
t,T

)1/2

�M
(‖uh − χ‖0, h

−t + ‖u‖t,
)

�M
((‖u − uh‖0, + ‖u − χ‖0,

)
h−t + ‖u‖t,

)
�M‖u‖t,, (7.16)

as claimed. The inequality above is valid with t replaced by s, 0 � s < t and will be
used for such s below.

By the inverse property (7.7), the second term satisfies the inequality(∑
T ∈Th

∥∥ehũ
∥∥2
t,T

)1/2

� M ′∥∥ehũ
∥∥

0, h
−t ,

whereM ′ is also independent of h. Thus, it follows that∥∥ehũ
∥∥

0, � C‖u‖t, hn+1−t , (7.17)

which implies that (assuming t � r + 1)

‖u − ũh‖0, � C‖u‖r+1, h
min(r+1,n+1−t ). (7.18)

Next, assume that

t � n+ 1 < 2t.

Then, only n+ 1 derivatives, rather than 2t , can be applied to uh · ehũ. Consequently,

∣∣cuh · ehũ
∣∣
n+1,T �

t∑
j=n+1−t

‖uh‖j,T
∥∥ehũ

∥∥
n+1−j,T , (7.19)

and applying the inequality (7.16) with j in place of t and the inverse property (7.7)
leads to the bound ∥∥ehũ

∥∥
0, � M

t∑
j=n+1−t

‖u‖j, hj . (7.20)

We have proved the following theorem.
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Theorem 7.1. Let ehũ = uh − ũh denote the perturbation in the flux caused by the intro-
duction of the quadrature rule QT . Then,

∇ · ehũ = 0, (7.21a)

∥∥ehũ
∥∥

0,�


C‖u‖t, hn+1−t , if n+ 1 � 2t,

C

t∑
j=n+1−t

‖u‖j, hj , if t � n+ 1 < 2t,
(7.21b)

‖u − ũh‖0, �C‖u‖r+1, h
r+1, if (t, n) =

{
(r + 1, 2r + 1),
(r, 2r).

(7.21c)

If (t, n) equals either (r + 1, 2r + 1) or (r, 2r), we can obtain a collection of other
estimates for ehũ.

Corollary 7.1. If (t, n) = (r, 2r) or (r + 1, 2r + 1), then∥∥ehũ
∥∥

0, � C‖u‖s, hs+1, 0 � s � r. (7.22)

Proof. We shall treat the (r, 2r)-case first. From (7.12), (7.14), the inverse prop-
erty (7.7), and (7.16) for t replaced by s ∈ [0, t],

∥∥ehũ
∥∥2

0,�M
(∑

T

‖uh‖2
r,T

)1/2(∑
T

∥∥ehũ
∥∥2
r,T

)1/2

h2r+1

�M
(∑

T

‖uh‖2
s,T

)1/2

hs−r ·
(∑

T

∥∥ehũ
∥∥2

0,T

)1/2

h−rh2r+1

�M‖u‖s,
∥∥ehũ

∥∥
0, h

s+1, (7.23)

which completes the proof for this case.
When (t, n) = (r + 1, 2r + 1),

∥∥ehũ
∥∥2

0,�M
[(∑

T

‖uh‖2
r,T

)1/2(∑
T

∥∥ehũ
∥∥2
r+1,T

)1/2

+
(∑

T

‖uh‖2
r+1,T

)1/2(∑
T

∥∥ehũ
∥∥2
r,T

)1/2]
h2r+2

�M
(∑

T

‖uh‖2
s,T

)1/2(∑
T

∥∥ehũ
∥∥2

0,T

)1/2

h−(2r−s+1)h2r+2

�M‖u‖s,
∥∥ehũ

∥∥
0, h

s+1, (7.24)

and the corollary has been established. �
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It is worth noting that, if (t, n) = (r, 2r), (7.23) indicates that the the two approx-
imate solutions, uh and ũh, are closer together under a slightly less restrictive regularity
than either can be globally to u for that regularity.

Global error estimates for p− p̃h can be derived using a modification of the duality
argument given in [14]; here, the heavy use of the projections 9h and Ph and the bounds
given by (7.6) is involved. Since all of our examples are related to (t, n) = (r, 2r) or
(t, n) = (r + 1, 2r + 1), we shall restrict our attention to these two cases.

Write the error equations in the form(
cehũ, v

) − (∇ · v, ehp̃
)= f (v), v ∈ Vh, (7.25a)(∇ · ehũ, w
)= 0, w ∈ Wh, (7.25b)

where

f (v) = Qh(cũh · v)− (cũh, v), (7.26)

and recall that ∇ · ehũ = 0. Let ϕ ∈ H 2() ∩H 1
0 () satisfy the (self-adjoint) equation

−∇ · (a∇ϕ) = ehp̃. (7.27)

Then, by (7.25a) and (7.5),∥∥ehp̃∥∥2
0,= (

ehp̃,−∇ · (a∇ϕ))
= (
ehp̃,−∇ · (9h(a∇ϕ)))+ (

ehp̃,∇ · (9h(a∇ϕ)− a∇ϕ))
= f (9h(a∇ϕ))− (

cehũ,9h(a∇ϕ)
)+ (

ehp̃, Phe
h
p̃ − ehp̃

)
= f (9h(a∇ϕ))− (

cehũ,9h(a∇ϕ)
)

= f (9h(a∇ϕ))+ (
cehũ, a∇ϕ −9h(a∇ϕ)

)− (
cehũ, a∇ϕ

)
= f (9h(a∇ϕ))+ (

cehũ, a∇ϕ −9h(a∇ϕ)
)+ (∇ · ehũ, ϕ

)
= f (9h(a∇ϕ))+ (

cehũ, a∇ϕ −9h(a∇ϕ)
)
.

Now,

f
(
9h(a∇ϕ)

)=Qh
(
cũh ·9h(a∇ϕ)

)− (
cũh,9h(a∇ϕ)

)
=
∑
T ∈Th

(
QT

(
cũh ·9h(∇ϕ)

)− (
cũh,9h(∇ϕ)

)
T

)
,

so that, if (t, n) = (r, 2r) and 0 � s � r,∣∣f (9h(a∇ϕ))∣∣�M1

∑
T

∣∣ũh ·9h(∇ϕ)
∣∣
2r+1,T h

2r+1

�M2

(∑
t

‖ũh‖2
r,T

)1/2(∑
T

∥∥9h(∇ϕ)∥∥2
r,T

)1/2

h2r+1
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�M3

(∑
t

‖ũh‖2
s,T

)1/2(∑
T

∥∥9h(∇ϕ)∥∥2
1,T

)1/2

hs+2

�M4‖u‖s,
∥∥ehp̃∥∥0, h

s+2,

where the same justifications have been used here as in the analyses of the error in the
flux, plus the fact that(∑

T

∥∥9h(∇ϕ)∥∥2
1,T

)1/2

� C1‖ϕ‖2 � C2

∥∥ehp̃∥∥0.

The same result holds for the case that (t, n) = (r + 1, 2r + 1); see the proof of corol-
lary 7.1.

By (7.6a),∣∣(cehũ, a∇ϕ −9h(a∇ϕ)
)∣∣ � M5

∥∥ehũ
∥∥

0 |ϕ|2 h � M6

∥∥ehũ
∥∥

0

∥∥ehp̃∥∥0 h.

Thus, we have shown that

‖ph − p̃h‖0, = ∥∥eh
p̃

∥∥
0, �M

(‖u‖s, hs+2 + ∥∥ehũ
∥∥

0, h
)
, 0 � s � r,

�M‖u‖s, hs+2

�M‖p‖k, hk+1, 1 � k � r + 1.

(7.28)

Again, we have shown that the approximations ph and p̃h are closer together than they
are to p; here, the estimate of their difference is better with respect both to regularity
and to the maximum exponent on h.

We can summarize the error estimates for p̃h in the following theorem.

Theorem 7.2. Assume that (t, n) = (r, 2r) or (r + 1, 2r + 1). Then,

‖ph − p̃h‖0, = ∥∥ehp̃∥∥0,�M‖p‖k, hk+1, 1 � k � r + 1, (7.29a)

‖p − p̃h‖0, �M‖p‖k, hk, 0 � k � r∗. (7.29b)

The bound (7.29b) is the optimal global rate of convergence for p̃h and requires
the minimal regularity for this rate.

A slightly more careful argument would have allowed ‖p‖k, to be replaced by the
broken norm (∑

T ∈Th
‖p‖2

k,T

)1/2

;

the same remark applies to the bounds for u − ũh.
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7.2. Error estimates for the BDFM2-based FVM

Error bounds for (ũh, p̃h), where p̃h is the solution of the BDFM2-based FVM
equations (6.34) can be obtained directly from corollary 7.1 and theorem 7.2. For this
method,

r = 1, t = 2, n = 3, (t, n) = (r + 1, 2r + 1), r∗ = 2. (7.30)

Thus,

‖p − p̃h‖0, �C‖p‖s, hs, 1 � s � 2, (7.31a)

‖u − ũh‖0, �C‖u‖s, hs, 0 � s � 2. (7.31b)

These are optimal estimates for the errors in both variables.

8. Finite volume methods based on RTN-rectangular elements

The Raviart–Thomas–Nedelec rectangular mixed finite elements of index k have
as local bases the tensor product spaces RTNk = Vk ×Wk, where

Vk(T )=
{
Pk+1,k(T )× Pk,k+1(T ), dim() = 2,
Pk+1,k,k(T )× Pk,k+1,k(T )× Pk,k,k+1(T ), dim() = 3,

(8.1a)

Wk(T )=
{
Pk,k(T ), dim() = 2,
Pk,k,k(T ), dim() = 3.

(8.1b)

Note that, in hybridizing the mixed finite element equations, the space  k would
consist of a copy of Pk for d = 2 and Pk,k for d = 3 on each interface between elements;
thus, the Fraeijs de Veubeke reduction to a positive-definite system in the Lagrange
multipliers would lead to a block system with the unknowns on an interface seeing those
on the other six faces of the two elements generating the interface if d = 2. If d = 3,
then each block of interface unknowns would see those for the other ten faces of the
adjacent elements. Also, note that there are two (k + 1)-blocks for d = 2 or three
(k + 1)2-blocks for d = 3 associated with each element for the Fraeijs de Veubeke
reduced equations, while there would be a single (k+1)2- or (k+1)3-block per element
in a FVM reduction, if feasible. The FVM-block equations would have the same 5-point
or 7-point structures as are associated with the simplest finite difference equations for
the elliptic equation (2.1) in two or three space variables. We shall show that it is easy to
construct a convenient nodal basis for RTNk and an associated quadrature relation that
maintains the global accuracy of the underlying mixed method, so that we can achieve
its FVM.

Is it desirable to have the FVM corresponding to RTNk? Look first at the three-
dimensional problem. For k = 0, the finite volume method associates one parameter for
the scalar function to each element, while there are three Lagrange multipliers associated
with an element; moreover, the graph structure is simpler for the finite volume method.
Clearly, the finite volume route is superior for k = 0. For k = 1, there are 12 Lagrange
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multipliers per element versus eight scalar parameters, plus a simpler graph structure, so
that the finite volume approach is again superior. For k = 2, there are 27 parameters per
element either way; here there is a slight advantage to the finite volume technique. For
k > 2, the number of scalar parameters exceeds that for Lagrange multipliers, and it is
doubtful that the finite volume approach is very helpful.

In the two-dimensional case, there are 2(k + 1) Lagrange parameters per element
versus (k+1)2 scalar parameters. It appears that the finite volume reduction is better than
the Lagrange multiplier procedure for RT0 and RT1, but not for k > 1. For k = 1, the
resulting FVM has four scalar parameters per element (i.e., a bilinear function), while
the competing BDFM2 finite volume method has three (a linear function). Since both
lead to the same error estimates, it would appear that the FVM based on BDFM2 is
somewhat more efficient than the RT1-based one.

As a consequence of these remarks, we shall treat the three-dimensional case; the
two-dimensional case is an obvious specialization of it. Though the higher order finite
volume methods based on RTNk may be of lesser practical interest, the analysis is effec-
tively independent of k and will be given for arbitrary k. Consider the x-component v(x)
of a vector v ∈ Vh. Then, v ∈ Pk+1,k,k. Thus, there are (k+ 2)(k + 1)(k + 1) degrees of
freedom for v, with (k+1)2 necessarily associated with each face of the form x = const.
Consider first the reference element Tref = [−1, 1]3. Denote the (one-dimensional) Lo-
batto quadrature rule with k + 2 nodes by Lk+2, where

Lk+2(g) =
k+1∑
i=0

g(ηi)ωi, −1 = η0 < η1 < · · · < ηk+1 = 1,

and the k + 1 node Gauss rule by Gk+1, where

Gk+1(g) =
k+1∑
j=1

g(ζj )wj , −1 < ζ1 < · · · < ζk+1 < 1.

It is well known that

Lk+2(q) = Gk+1(q) =
∫ 1

−1
q(x) dx, q ∈ P2k+1

([−1, 1]);
thus,

Qx,Tref(g)=Lk+2 × Gk+1 × Gk+1(g) =
k+1∑
i=0

k+1∑
j=1

k+1∑
$=1

g(ηi, ζj , ζ$)ωiwjw$

=
∫
Tref

g(x) dx, g ∈ Pk+1,k,k. (8.2)

Now, let Qx,T be defined in the obvious way by mapping the nodes (ηi, ζj , ζ$) to T
affinely and multiplying its weight by h3, and define Qy,T and Qz,T analogously. Then,
if u = (u1, u2, u3) and v = (v1, v2, v3), let



Z. Cai et al. / Higher order finite volume methods for elliptic equations 29

QT (cu · v) = Qx,T (cu1v1)+Qy,T (cu2v2)+Qz,T (cu3v3). (8.3)

Take {ηi} × {ζj } × {ζ$} as nodes for the x-component v1 ∈ Pk+1,k,k of v on the
reference element, and define the (i, j, $)-basis element for this component by requiring
that

ξ xi,j,$(ηi′, ζj ′, ζ$′) =
{

1,
(
i′, j ′, $′

) = (i, j, $),
0,

(
i′, j ′, $′

) �= (i, j, $). (8.4)

Similarly, take {ζi} × {ηj } × {ζ$} and {ζi} × {ζj } × {η$} as nodes for the y- and
z-components, with corresponding basis elements.

Clearly, the quadrature rule

Qh(cuh · vh) =
∑
T ∈Th

QT (cuh · vh)

diagonalizes each matrix Ah,T , thereby generating a FVM in our sense to be associated
with RTNk(Th).

Let us consider error estimates for the resulting FVM. Employ the same notation
as in section 7. First, QT is exact on P2k+1,2k+1,2k+1(T ). Thus,

r = k, t = k + 1, n = 2k + 1, (t, n) = (r + 1, 2r + 1), r∗ = k + 1.

So, corollary 7.1 and theorem 7.2 imply the following optimal error bounds:

‖p − p̃h‖0, �C‖p‖s, hs, 1 � s � k + 1, (8.5a)

‖u − ũh‖0, �C‖u‖s, hs+1, 0 � s � k + 1. (8.5b)

The estimates (8.5) hold in the two-dimensional case, as well.

9. The three-dimensional BDFM2-based finite volume method

Here, we derive a higher order finite volume scheme based on the three-
dimensional BDFM2 space using an appropriate quadrature formula. The error analysis
below is applicable for c = c(x, y, z) being variable, but the quadrature rule (9.1), which
differs in type from those applied to the other mixed finite element spaces discussed in
this paper, can be gauranteed to diagonalize the (cu, v)-matrix only if c is constant on
each element.

Let Th be the partition of  into cubes with the length h = N−1 of each edge:

 =
N⋃

i,j,k=1

T ijk,

where

T = T ijk = [
(i − 1)h, ih

]× [
(j − 1)h, jh

]× [
(k − 1)h, kh

]
= [xi−1, xi] × [yj−1, yj ] × [zk−1, zk].
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Let Pk(θ) for θ = x, y or z be the set of all polynomials in the single variable θ of the
degree not greater than k. Set

θ ′
i = (θ1, . . . , θi−1, θi+1, . . . , θ3)

and denote by Pj (hom, T , i) the homogeneous polynomials of degree j in the vari-
ables θ ′

i .
For each element T ∈ Th, BDFM2 is given by

Vh(T )=
[
P2(T )\P2(hom, T , 1)

]× [
P2(T )\P2(hom, T , 2)

] × [
P2(T )\P2(hom, T , 3)

]
,

Wh(T )=P1(T ),

 h(e)=
{
m ∈ L2(e): m ∈ P1(e), e ∈ ET

}
,

where ET = {rr, f, $, r, b, t} for rear, front, left, right, bottom, and top faces.
Assume the coefficient c to be constant on each T ; for convenience, take c = cT

= 1 on T . It suffices to discuss one component in the inner product, say, the x-compo-
nent. So, consider the reference element T̂ = [−1, 1]3 and let

V = Vx = Vx
(
T̂
) = Span

{
1, x, y, z, x2, xy, xz

} = Span{ξ j , j = 1, . . . , 7},
where

ξ 1 = 1 − x2, ξ 2 = −1

2
x(1 − x), ξ 3 = 1

2
x(1 + x),

ξ 4 = 1

2
y(1 − x), ξ 5 = 1

2
z(1 − x),

ξ 6 = 1

2
y(1 + x), ξ 7 = 1

2
z(1 + x).

These basis functions correspond to the following degrees of freedom: the values at
(0, 0, 0) and (±1, 0, 0) and y and z components of the gradient at (±1, 0, 0). Basis
functions for Wh(T̂ ) can be specified simply as

η0
T̂
(x, y, z)= 1, ηx

T̂
(x, y, z) = x − xi−1/2,

η
y

T̂
(x, y, z)= y − yj−1/2, ηz

T̂
(x, y, z) = z − zk−1/2,

so that

ph,T̂ (x, y) = p0
h,T̂
η0
T̂

+ px
h,T̂
ηx
T̂

+ py
h,T̂
η
y

T̂
+ pz

h,T̂
ηz
T̂
.

Now, what is needed is a rule assigning approximations for integrals over V ⊗ V
(i.e., for products ξ j ξ k) which diagonalizes the matrix ai,j = (ξj , ξi). For the other
mixed finite element spaces, the quadrature rule was based on the degrees of freedom
for the space; unfortunately, there does not exist a quadrature rule based on the seven
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degrees of freedom for Vx that is exact on P3(T̂ ). Thus, we are led to a rule involving
second derivatives of normal components at facial midpoints, given by

QT̂ (u · v) = Qx
T̂
(g1)+QyT̂ (g2)+QzT̂ (g3), if u · v =

3∑
k=1

ukvk =
3∑
k=1

gk,

where

Qx
T̂
(g) = 2

3

(
8g(0, 0, 0) + 2

∑
x∈{(±1,0,0)}

g(x)+
∑

x∈{(±1,0,0)}

(
∂2g

∂y2
(x)+ ∂2g

∂z2
(x)
))
, (9.1)

andQy
T̂

andQz
T̂

are defined analogously; Qx
T̂

is exact on P3(T̂ ) and vanishes for g = ξj ξi
for i �= j , as desired. When scaled for a cube of side length h,Qx

T̂
is replaced by

QxT (g) = h3

12

(
8g(aT )+ 2

∑
x=af ,arr

g(x)+ h2

4

∑
x=af ,arr

(
∂2g

∂y2
(x)+ ∂2g

∂z2
(x)
))
.

The authors are unaware of any previous appearance of the quadrature formula (9.1).
Now, it is clear that there exist positive α1 and α2 such that

α1(u,u)T � QT
(|u|2) � α2(u,u)T , u ∈ V(T ),

so that QT generates a norm on V ⊗ V that is equivalent to the ordinary L2-norm. In
order to make use of the general convergence argument, it is necessary to show that∣∣QT (uv)− (u, v)T

∣∣ � M‖u‖2,T ‖v‖2,T h
4; (9.2)

however, this follows trivially from the exactness of the quadrature rule on P3(T ). Thus,
the same error estimates hold for the BDFM2-based three-dimensional procedure as
for the two-dimensional one; that is, the errors in the scalar and flux approximations
are O(h2).

10. A finite volume method based on BDFM3

The BDFMk = Vkh × Wk
h mixed finite element space over rectangles is defined

locally by

Vkh(T ) = [
Pk(T ) \

{
yk
}]× [

Pk(T ) \
{
xk
}]
, Wk

h (T ) = Pk−1(T ).

Thus,

r = k − 1, t = k, r∗ = k;
in order that the approximation ũkh to u be of optimal order, it is necessary that the
quadrature rule QkT be exact on polynomials of degree

n = 2k − 1,
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since t = r + 1, so that 2r + 1 = 2k − 1. We shall consider the cases k = 3 and k = 4,
for which we need quadrature rules exact on P5(T ) and P7(T ), respectively.

For k = 3, recall [8] that the projection9h for BDFM3 is determined by the degrees
of freedom 〈

(ϕ −9hϕ) · ν, q
〉
e
= 0, q ∈ P2(e), ∀e ∈ ∂T ,

(ϕ −9hϕ, χ)T = 0, χ ∈ P1(T )
2.

So, for the x-component v1 of v ∈ V3
h(T ), it would be natural to take the following

degrees of freedom (with � and r denoting the left and right edges of T , respectively)

v1(xi), i = 0, . . . , 6, (10.1a)
∂v1

∂x
(x0),

∂v1

∂y
(x0), (10.1b)

where x0 is the center of T , xi , i = 1, . . . , 4, is a vertex of T , and x5 and x6 are the
midpoints of � and r, respectively. It is easy to show that this set of degrees of freedom
determine the first component of v ∈ V3

h(T ).
To these degrees of freedom, we should like to associate a quadrature rule of the

form (on the reference element [−1, 1]2)

QT̂ (g) =
6∑
i=0

g(xi )wi + ωx,xgx(x0)+ ωx,ygy(x0). (10.2)

Unfortunately, the best quadrature rule for these degrees of freedom is the same rule as
we applied for BDFM2. It is exact on P3(T ), but it obviously fails for q(x) = x2(1−x2).
Clearly, this quadrature rule kills four of the basis functions for each component of
v ∈ Vkh(T ). Thus, it is a bit surprising that any convergence result can occur with this
rule, but let us show a suboptimal result.

WithQT defined by (6.22), n = 3 and, following the general argument of section 7,
we see that∣∣cuh · ehũ

∣∣
4,T � M

3∑
j=0

‖uh‖j,T
∥∥ehũ

∥∥
3−j,T h

4 � M‖uh‖0,T

∥∥ehũ
∥∥

0,T h, (10.3)

from which it follows that ∥∥ehũ
∥∥

0, �M‖u‖0, h. (10.4)

All that follows from (10.4) is that

‖u − ũh‖0, � M‖u‖1, h, (10.5)

a distinctly suboptimal result.
The authors have so far not found a set of degrees of freedom for V3

h(T ) and a
corresponding quadrature rule to improve on this O(h) error estimate for ũh. Currently,
BDFM3 serves as an example of a mixed finite element space for which our procedure
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for deriving a satisfactory finite volume procedure fails. In a sense, the difficulty lies in
the basic efficiency of the BDFM3 mixed method; the dimension of V3

h(T ) is too small to
support a quadrature rule that is exact for P5(T ), whereas the less efficient RTN2 method
does. On the other hand, this finite volume method could be used to find an initial guess
for an Uzawa (or other) iteration for the solution of the original mixed method.
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