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Highlights

• A new a posteriori error estimator for H(curl) interface problem is analyzed.
• First Clement-type Nédélec quasi-interpolation is built with a robust estimate.
• Zienkiewicz–Zhu-type averaging is robust if the recovery space is chosen correctly.

Abstract

This paper introduces a new recovery-based a posteriori error estimator for the lowest order Nédélec finite element approx-
imation to the H(curl) interface problem. The error estimator is analyzed by establishing both the reliability and the efficiency
bounds and is supported by numerical results. Under certain assumptions, it is proved that the reliability and efficiency constants
are independent of the jumps of the coefficients.
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1. Introduction

Let Ω ⊂ R3 be a bounded polyhedral domain with Lipschitz boundary. Let P = {Ω j }
m
j=1 be a partition of the

domain Ω with each subdomain Ω j being polyhedron. The collection of interfaces
m

j=1 ∂Ω j

\∂Ω is denoted by

I. Assume that µ and β are piecewise, positive constants with respect to the partition P . We consider the following
H(curl) interface problem:

∇×(µ−1
∇×u)+ βu = f , in Ω ,

u×n = g, on ∂Ω ,
(1.1)
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where n is the unit outward vector normal to the boundary of Ω . This model problem originates from a stable marching
scheme of the second-order hyperbolic partial differential equation on the electric field intensity u that is resulted from
the Maxwell equations (e.g. see [1,2]). The µ is the magnetic permeability, and the β ∼

ϵ

∆t2 +
σ
∆t is related to the

dielectric constant ϵ and conductivity σ scaled by the time-marching step size ∆t . The boundary data g is “admissible”
in a sense that we will elaborate when introducing the finite element approximation (2.15). Throughout this article,
boldface letters stand for vector fields and spaces of vector fields, non-boldface letters stand for scalar functions and
spaces of scalar functions.

The variational formulation of problem (1.1) involves the Hilbert space H(curl), which is the collection of all
square integrable vector fields whose curl are also square integrable:

H(curl;Ω) := {v ∈ L2(Ω) : ∇×v ∈ L2(Ω)}. (1.2)

The right hand side data f depends on the original source current and on the electric field intensity at previous time
steps in the time-marching scheme. In almost all relevant literatures, f is assumed to be divergence free. In this paper,
we assume that f ∈ H(div), where H(div) is the analog of the H(curl) space for the divergence operator:

H(div;Ω) := {v ∈ L2(Ω) : ∇ ·v ∈ L2(Ω)}. (1.3)

For the finite element approximation to (1.1), Nédélec introduced the H(curl)-conforming edge elements in [3],
which preserves the continuity of the tangential components, and certain a priori error estimates can be established
(e.g. see [4]). However, the electromagnetic fields have limited regularities at reentrant corners and material interfaces
(see [5,6]). Hence the assumptions for a priori error estimates fail, and this is where adaptive mesh refinement
is introduced to perform local mesh refining process within the regions that have relatively large approximation
errors.

The a posteriori error estimation for the H(curl) problem in (1.1) with constant or continuous coefficients has
been studied recently by several researchers. Several types of a posteriori error estimators have been introduced and
analyzed. These include residual-based estimators and the corresponding convergence analysis (explicit [7–13], and
implicit [14]), equilibrated estimators [15], and recovery-based estimators [16]. It is interesting to note that there
are four types of errors in the explicit residual-based estimator (see [7]). Two of them are standard, i.e., the element
residual and the face jump associated with the original equation in (1.1). The other two are also the element residual
and the face jump, but associated with the divergence of the original equation: ∇·(βu) = ∇·f .

The first known recovery-based estimator for H(curl) problem studied in [16] may be viewed as an extension
of the popular Zienkiewicz–Zhu (ZZ) error estimator [17] for the Poisson equation to the H(curl) problem with
constant coefficients. More specifically, two quantities related to the solution u and ∇ ×u are recovered based on
the current approximation of the solution in a richer recovery space. The recovery space in [16] is the continuous
piecewise polynomial space, and the recovery procedure is done through averaging on vertex patches. The resulting
ZZ estimator consisting of two terms is shown to be equivalent to the face jumps across the element faces.

The purpose of this paper is to develop and analyze an efficient, reliable, and robust recovery-based a posteriori
error estimator for the finite element approximation to the H(curl) interface problem, i.e., problem (1.1) with
piecewise constant coefficients. Theoretically, the efficiency refers that the local error indicator is bounded above
by the local error, the reliability refers that the global error is bounded above by the global estimator. The
robustness refers that constants in the efficiency and the reliability bounds are independent of the jumps of the
coefficients.

The recovered-based estimator introduced in this paper may be viewed as an extension of our previous work
in [18,19] on the diffusion interface problem to the H(curl) interface problem, which partially resolve the non-
robustness of ZZ error estimator for interface problems. Specifically, we recover two quantities related to µ−1

∇×u
and βu in the respective H(curl)- and H(div)-conforming finite element spaces (the lowest order Nédélec and
Brezzi–Douglas–Marini elements respectively). For discussions on which quantities to be recovered and in what
finite element spaces, see [18,19]. The resulting estimator measures the face jumps of the tangential components and
the normal component of the numerical approximations to µ−1

∇ ×u and βu, respectively. Our study indicates that
the element residual is no longer higher order than the rest terms in the estimator, the contrary of which is proved to
be the case in the diffusion problem [20]. As a result, the element residual using recovered quantities is part of our
proposed error estimator as well.
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Theoretically proving a robust reliability bound for the H(curl) interface problem is much harder than that for
the diffusion interface problem. This is because one needs to estimate the dual norm of the residual functional
over the H(curl) space. To overcome this difficulty, one needs to use a Helmholtz decomposition of the error
(e.g. see [7]). For the H(curl) interface problem, additional difficulty is that the decomposition has to be stable
under a coefficient weighted norm. To obtain such a decomposition is a non-trivial matter, for the discrete level, a
discrete weighted Helmholtz decomposition is studied together with its application and analysis for non-overlapping
domain decomposition method in [21]. Here for the continuous version, under certain assumptions, we are able to
accomplish this task through establishing a weighted identity relating gradient, curl, and divergence of a piecewisely
smooth vector field (see Lemma A.4), which is an extension to the technique used in [22]. The final decomposition
result in our paper is similar to the one in [23], with a slightly more general tool of the piecewise regularity result
from [6] being used to prove.

Another necessary tool for proving a robust reliability bound is a tweaked version of the Clément-type interpolation.
We are able to extend naturally from the idea in [24,25] for the vertex-based continuous Lagrange element to the
edge-based Nédélec element in three dimensions. Moreover, our quasi-monotone assumption on the distribution of
the coefficients is based on edges which is similar to that of [25] based on vertices in 2D, and our proof borrows the
idea from [24]. This is the first Nédélec interpolation known to achieve such a robust bound.

Moving onto the efficiency bound estimate, we prove the every part of the local recovery-based error estimator
can be bounded by the robustly weighted residual-based error estimator. For the local error indicator measuring the
irrotational part (gradient part) of the error, using the weighted averaging technique, the constant in the bounds is
independent of the coefficient jumps across the interface. For the local estimator measuring the jump of the numerical
approximation to µ−1

∇×u (weak solenoidal or curl part of the error), the degrees of freedom of the corresponding
recovered quantity sits on the edge (lowest order Nédélec elements). Consequently, the averaging is performed on an
edge patch in 3D, and this resembles the averaging of Zienkiewicz–Zhu (ZZ) error estimator on vertex patch in 2D. It is
known that, if the averaging is done in vertex patches that span across the interface, ZZ error estimator (even correctly
weighted) is not robust with respect to the ratio of the max/min of the coefficients on diffusion interface problem
(e.g. see [18]). Here for the H(curl) interface problem, under the assumption of the quasi-monotone distribution of
the coefficients again, we are able to prove that the ZZ type averaging, if carefully weighted, results a robust estimator
with respect to the coefficient jump. This is a first known result as well.

Numerically, we are able to show that the recovery-based estimator studied in this paper is more accurate than the
residual-based estimator in [7] for several test problems.

This paper is organized as follows. The variational formulation and the H(curl)-conforming finite element
approximation are introduced in Section 2. The explicit recovery procedures and the resulting a posteriori error
estimators are discussed in Section 3. In Section 4, the reliability and efficiency bounds are proved along with the
technical tools for analysis. The proofs of the bounds for the weighted Helmholtz decomposition is presented in
the appendix if certain conditions are met. Finally, some numerical results for the benchmark testing problems are
presented in Section 5.

2. Preliminaries

2.1. Notations

Hereby we list some formal definitions concerning problem (1.1). The function space for the variational problem
is:

Hg(curl;Ω) := {u ∈ H(curl;Ω) : u×n = g on ∂Ω}, (2.1)

equipped with the H(curl) norm

∥u∥H(curl) =


∥u∥

2
L2(Ω) + ∥∇×u∥

2
L2(Ω)

1/2
. (2.2)

The bilinear form of the variational problem to (1.1) is:

A(u, v) :=


Ω
(µ−1

∇×u · ∇×v + β u · v)dx, (2.3)
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and the coefficient-weighted norm related to this problem is:

|||u|||
2

:= A(u,u). (2.4)

If a subscript is added for the weighted norm, it means the local weighted norm defined on an open subset O ⊂ Ω :

|||u|||
2
O :=


O
(µ−1

∇×u · ∇×u + β u · u)dx. (2.5)

In addition to the standard H(div) space (1.3), we need the weighted version as well:

H(divα;Ω) = {v ∈ L2(Ω) : ∇ ·(αv) ∈ L2(Ω) in Ω}. (2.6)

Let Th = ∪{K } be a triangulation of Ω using tetrahedra elements. The sets of all the vertices, edges, and faces of
this triangulation are denoted by Nh , Eh , and Fh , respectively. Denote the vertices, edges, and faces being subsets or
elements of a geometric object M by Nh(M), Eh(M), and Fh(M), where M can be an element from the objects in
the simplicial complex of the triangulation like a specified element K , or the whole boundary ∂Ω , etc. For any vertex
z ∈ Nh , let λz be the nodal basis function of continuous piecewise linear element associated with the vertex z.

A fixed unit normal vector nF is assigned to each face F , and a fixed unit tangential vector te to each edge e. For
any scalar- or vector-valued function v, define [[v]]F = v−

− v+ on an interior face F ∈ Fh with a fixed unit normal
vector nF , where v±

= limϵ→0± v(x + ϵnF ). Define {v}F = (v+
+ v−)/2 as the average on this face F . If F is a

boundary face, the function v is extended by zero outside the domain to compute [[v]]F and {v}F .
The following algebraic identity is handy later in proving identities involving interfaces for any scalar- or vector-

valued quantities a and b:

[[ab]]F = {a}F [[b]]F + [[a]]F {b}F . (2.7)

Denote the diameter of an element K ∈ Th by hK and the diameter of a face F ∈ Fh by hF . We assume that
the triangulation Th is shape regular (see [26]), and this assumption holds for any tetrahedron during the local mesh
refining process.

The following notations serve as the languages to describe the local element or face patches. They will be used
later in local weighted recovery procedure (Section 3), and in the proof of estimates for the weighted Clément-type
interpolation (Section 4).

For a face F ∈ Fh , let ωF be the patch of the tetrahedra sharing this face F . Let ωK ,F be the patch of the tetrahedra
sharing a face with K .

For an edge e ∈ Eh , denote by

ωe =


{K∈Th : e∈Eh(K )}
K

the collection of all elements having e as a common edge, where Eh(K ) is the collection of edges of the element
K . For the edge patch ωe, we define two µ-weighted edge patches associated with an edge e ∈ Eh , which can be
understood as the collection of the elements with the biggest/smallest µ−1 on an edge patch, are referred to

ωe =


K∈Ie

K , where Ie = {K ⊂ ωe : µ−1
K = max

K ′⊂ωe

µ−1
K ′ },

and ωe =


K∈Ie

K , where Ie = {K ⊂ ωe : µ−1
K = min

K ′⊂ωe
µ−1

K ′ }.
(2.8)

Denote the union of the interior faces within an edge patch as follows:

ωe,F =


F∈Fh(ωe)

F\ ∂ωe. (2.9)

Using Fig. 1 as an illustration, ωe,F = ∪
4
i=1 Fi . Define the µ-weighted patch of interior faces as follows:

ωe,F =


F∈Ie

F, where Ie = {F ∈ Fh(ωe) : F ⊂ ωe,F }. (2.10)

Taking Fig. 1 as an example again, if ωe = K1 ∪ K2, then ωe,F = F1 ∪ F2 ∪ F4.
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(a) For edge e with the unit tangential vector
te , ωe = ∪

4
i=1 Ki , ωe,F = ∪

4
i=1 Fi .

(b) ωF = K+ ∪ K− with the
unit normal vector nF .

Fig. 1. A dissection view of the local edge patch ωe , ωe,F , and face patch ωF .

For an element K ∈ Th , denote the patch of all elements sharing an edge with K by

ωK ,e =


K∈IK ,e

K , where IK ,e = {K ∈ Th : K ⊂ ωe with e ∈ Eh(K )}. (2.11)

Similarly, for a vertex z ∈ Nh , denote by

ωz =


{K∈Th : z∈Nh(K )}
K

the collection of all elements having z as a common vertex. For the vertex patch ωz, the β-weighted edge patch
associated with an vertex z ∈ Nh is referred to

ωz =


K∈Iz

K , where Iz = {K ⊂ ωz : βK = max
K⊂ωz

βK }. (2.12)

For an element K ∈ Th , denote the patch of all elements sharing a vertex with K by

ωK ,z =


K∈IK ,z

K , where IK ,z = {K ∈ Th : K ⊂ ωz with z ∈ Nh(K )}. (2.13)

2.2. Finite element approximation

The corresponding variational formulation of (1.1) is
Find u ∈ Hg(curl;Ω) such that:
A(u, v) = (f , v), ∀ v ∈ H0(curl;Ω), (2.14)

where (·, ·) is the standard L2(Ω)-inner product. Because of µ and β being uniformly positive on the domain, the
coefficient-weighted norm (2.4) is equivalent to the graph norm (2.2) for H(curl;Ω). Moreover the bilinear form
(2.3) is intrinsically coercive with respect to this norm. By the Lax–Milgram lemma, there exists a unique solution in
Hg(curl;Ω) to problem (2.14) when the boundary data is “admissible”.

The solution u of (2.14) is approximated in a H(curl;Ω)-conforming finite element space: the lowest order
Nédélec finite element space ND0 (see [3]). On each element K , define

ND0(K ) = {p(x) ∈ P1(K ) : p = a + b×x, a, b ∈ R3
}.
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The global finite element space ND0 is glued together through the continuity condition of H(curl;Ω):

ND0 = {p ∈ H(curl;Ω) : p(x)

K ∈ ND0(K ) ∀K ∈ Th}.

For simplicity, we assume that the Dirichlet boundary data can be represented as the tangential trace of an ND0 vector
field, i.e., g = p×n on the boundary, where p ∈ ND0. The finite element approximation is

Find uh ∈ ND0 ∩ Hg(curl;Ω) such that:
A(uh, vh) = (f , vh), ∀ vh ∈ ND0 ∩ H0(curl;Ω). (2.15)

The problem in (2.15) is well-posed in its own right.
Before building the error estimator, we need an H(div;Ω)-conforming finite element space BDM1, which is the

linear order Brezzi–Douglas–Marini face element (see [27]). On each element K , define, in a way that leads to the
local basis construction,

BDM1(K ) = {p(x) ∈ P1(K ) : p = a + c x + ∇×(bs), a, s ∈ R3, c ∈ R1, b ∈ B(K )},

where B(K ) the space of quadratic edge bubble functions in K . Similarly the global BDM1 inherits the continuity
condition from H(div;Ω):

BDM1 = {p ∈ H(div;Ω) : p(x)

K ∈ BDM1(K ) ∀K ∈ Th}.

Let K ∈ Th be an arbitrary tetrahedral element with vertices zi , z j , zk , and zl , and let ni be the outer unit vector
normal to the face Fi = conv(z j zkzl), opposite to the vertex zi . Let ti j be the unit vector of the edge ei j orienting in
the direction of z j − zi . The ND0 nodal basis function for the edge ei j can be written as (e.g. see [28,29]) :

ϕei j
=

λi n j

ti j · n j
−

λ j ni

ti j · ni
, (2.16)

where λn for n = i, j, k, l are the barycentric coordinates associated with the vertex zn satisfying λi+λ j+λk+λl = 1.
The degree of freedom of ND0 can be then associated with each edge e ∈ Eh , in that ϕe satisfies

ϕe · te′


e′ =

1
|e′|


e′

ϕe · te′ ds = ±δee′ , ∀e′
∈ Eh(K ),

where δee′ is the Kronecker delta. The plus sign is taken when locally te’s direction coincides with the globally fixed
te′ ’s.

Similarly, we cook up a customized version of the BDM1 nodal basis function associated with the vertex z j on
face Fi as follows:

ψ Fi ,z j
= 9

λ j ti j

ni · ti j
− 3

λk tik

ni · tik
− 3

λl til
ni · til

. (2.17)

Now the degrees of freedom of BDM1 can be defined using the first moment on Fi because ψ Fi ,z j
satisfies:

1
|Fi |


Fi

(ψ Fi ,z j
· nFi )λzm d S = ±δ jm, for m ∈ { j, k, l},

and ψ Fi ,z j
· nF ′ = 0 for any face F ′

∈ Fh(K ) other than Fi . Similarly, the plus sign is taken when locally the exterior
unit normal ni to face Fi is in the same direction with the globally fixed unit normal nFi .

3. The recovery-type error estimator

There are two important physical quantities of interest: the magnetic field intensity and displacement current
density which are related to the electric field intensity u. The magnetic field intensity at current time step is denoted
by σ , and displacement current density diluted by the time step size is denoted by τ . For H(curl) problem (1.1) that
is time-independent, they can be represented by the following

σ = µ−1
∇×u and τ = βu, (3.1)
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then the partial differential equation in (1.1) can be rewritten as

∇×σ + τ = f . (3.2)

By the assumption of the data f ∈ H(div;Ω), it is straightforward to verify that the u, σ , and τ lie in the following
spaces

u ∈ H(curl;Ω), τ ∈ H(div;Ω),
and σ ∈ H(curl;Ω) ∩ H(divµ;Ω),

(3.3)

where the weighted space H(divµ;Ω) is defined in (2.6).
The relation (3.3) indicates the continuity conditions u, σ , and τ must fulfill in the continuous level in (3.1) and

(3.2). These continuity requirements not just come from the operator theory in Hilbert spaces, but also translate from
the original Maxwell equations. For an arbitrary interface S within the domain, if there is no surface charge on S, it is
well known from physics (e.g., see [4]) that

[[u×n]]S = 0, [[σ×n]]S = 0, [[µσ · n]]S = 0, and [[τ · n]]S = 0. (3.4)

These zero-jump conditions are consistent with the continuity conditions for H(curl) and H(div), respectively.
However, during rendering the continuous problem into the finite element approximation, numerical magnetic field
intensity and numerical displacement current density,

σ h := µ−1
∇×uh and τ h := βuh,

violate the second and the last continuity conditions from (3.4), respectively. Therefore, two quantities are recovered
in the respective H(curl)-conforming and H(div)-conforming finite element spaces using an explicit local weighted
averaging technique. Note that the normal component of τ h is a piecewise polynomial of degree one on each face.
Consequently, we need to use either BDM1 or RT 1 for recovering displacement current density, instead of RT 0.

3.1. Local recovery procedure

We recover two quantities, σ ∗

h and τ ∗

h , based on σ h and τ h through weighted averaging locally on edge and face
patches, respectively. To this end, for a fixed interior face F ⊂ Fh , denote by K± the neighboring tetrahedra sharing
this F as a common face. Recall that nF is the fixed unit vector normal to the face F , let K+ be the tetrahedron with
nF as its inward normal, and K− with nF as its outward normal (see Fig. 1). Let

γ−

F =
µ

−1/2
K+

µ
−1/2
K−

+ µ
−1/2
K+

and κ−

F =
β

1/2
K+

β
1/2
K−

+ β
1/2
K+

, (3.5)

and γ+

F = 1 − γ−

F , κ+

F = 1 − κ−

F . If F is a boundary face with its neighboring tetrahedron K−, we set γ+

F = κ+

F = 1
and γ−

F = κ−

F = 0.
The local averages σ h,F and τ h,F on face F are chosen using the weights above:

σ h,F = γ−

F σ h,K−
+ γ+

F σ h,K+
and τ h,F = κ−

F τ h,F−
+ κ+

F τ h,F+
(3.6)

respectively, where σ h,K±
= σ h


K±

, and τ h,F±
(x) = limϵ→0± τ h(x + ϵnF ) on face F . The notation discrepancy in

above construction is due to the fact, which is mentioned earlier in previous subsection, that τ h’s normal component
on each face is a linear polynomial, yet σ h is a constant vector on a fixed K .

Now we construct the recovered quantities σ ∗

h and τ ∗

h from the above local averages of σ h and τ h as follows:

σ ∗

h(x) =


e∈Eh

 
F⊂ωe,F


1

|ωe,F |


F
(σ h,F · te) d S

 ϕe(x)

and τ ∗

h(x) =


F∈Fh


z∈Nh(F)


1

|F |


F
(τ h,F · nF )λz d S


ψ F,z(x),

(3.7)
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where ϕe ∈ ND0 and ψ F,z ∈ BDM1 are the nodal basis functions associated with the respective edge e and vertex
z on face F (see (2.16) and (2.17)).

By the construction of the basis functions in (2.16) and (2.17), we can see σ ∗

h ∈ H(curl;Ω) and τ ∗

h ∈ H(div;Ω),
respectively. The degrees of freedom of τ ∗

h are the weighted averages of τ h := βuh on a face patch. The degrees of
freedom of σ ∗

h is the weighted averages of σ h := µ−1
∇×uh on selected interior faces in an edge patch.

Now we may define the local error indicator η2
K = η2

K ,⊥ + η2
K ,0 + η2

K ,R based on these averages plus the recovery-
type element residual:

ηK ,⊥ =

µ1/2σ ∗

h − µ−1/2
∇×uh


L2(K )

, η2
⊥

=


K∈Th

η2
K ,⊥,

ηK ,0 =

β−1/2τ ∗

h − β1/2uh


L2(K )

, η2
0 =


K∈Th

η2
K ,0,

ηK ,R = µ
1/2
K hK

f − βuh − ∇×σ ∗

h


L2(K ) , and η2

R =


K∈Th

η2
K ,R .

(3.8)

The global error estimator is defined by η2
= η2

⊥
+ η2

0 + η2
R .

4. Reliability and efficiency bounds

This section studies the reliability and efficiency of the estimators defined in the previous section. The efficiency
bound of the local indicator is established in Section 4.4. To prove the reliability bound of the global estimator, we need
two tools: (1) a Helmholtz decomposition with weighted norm estimate Section 4.1, for detailed proof under certain
assumption please see Appendix) that splits the error into two parts, and (2) a modified Clément-type interpolation
(Section 4.2). Under the assumption of a robust weighted Helmholtz decomposition exists, two quasi-monotonicity
assumptions on the distribution of the coefficients, the reliability bound is obtained in Section 4.3, and it is uniform
with respect to the jumps of the coefficients.

4.1. Helmholtz decomposition

For any vector in H0(curl;Ω), there exists an orthogonal decomposition with respect to the bilinear form A(·, ·)
(see [6,30]). This weighted splitting was used in [7] for continuously differentiable µ and β to prove the reliability
bound of a residual-based a posteriori error estimator. Here we first present the robust weighted splitting result as an
assumption (Assumption 4.1), then in the Appendix we show the proof of a bound independent of the coefficient jump
ratio, under certain assumptions about the geometries and the relations between coefficients.

Define the X(Ω , β) as the space of curl-integrable functions intersecting weighted div-integrable vector fields, and
PHs(Ω ,P) as the space of piecewisely continuous vector fields on each subdomain:

X(Ω , β) = H(divβ;Ω) ∩ H0(curl;Ω),
and PHs(Ω ,P) = {v ∈ L2(Ω) : v


Ω j

∈ Hs(Ω j ), j = 1, . . . ,m}.
(4.1)

Assumption 4.1 (Weighted Helmholtz Decomposition). We assume that for any v ∈ H0(curl;Ω), there exist
ψ ∈ H1

0 (Ω) and w ∈ PH1(Ω ,P) ∩ X(Ω , β) such that the following decomposition holds

v = w + ∇ψ. (4.2)

Moreover, the following estimate holds:

m
j=1

µ−1/2
∇w


L2(Ω j )

+

β1/2w


L2(Ω)
+

β1/2
∇ψ


L2(Ω)

≤ C |||v|||. (4.3)

4.2. Clément-type Nédélec interpolation

Weighted Clément-type interpolation operators for nodal Lagrange elements are studied in [24,25]. Stability and
approximation properties of this type of operators are often used in proving a robust reliability bound for a posteriori
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error estimators. For Nédélec elements, the standard unweighted quasi-interpolations for Nédélec elements are studied
in [7,9,10]. In [7], the author defines the edge degrees of freedom by averaging on a certain face where that edge lies,
which is similar to the construction of the Scott–Zhang interpolation operators. In [9], the averaging is performing
on the edge patch consisting of two triangles in 2D. Following the idea of averaging on the weighted vertex patch
in [24,25], and extending the averaging technique on edge patch in [9] to the three dimensional case, we construct a
weighted Clément-type Nédélec interpolation operator from H0(curl;Ω) to ND0. If the vector field to be interpolated
has PH1(Ω ,P) regularity, then the approximation and stability properties of the interpolant are proved to be robust
under the weighted norm, with the assumption that the coefficient is quasi-monotone in Assumption 4.4.

First we define the standard Nédélec interpolation in any K ∈ Th . To make this interpolant well-defined and
bounded, we need to restrict that the vector field to be interpolated on each element K lies in the space H1/2+δ(K ) for
some δ > 0, with its curl in Lp(K ) for some p > 2 (see [4] Lemma 5.38).

Definition 4.2 (Nédélec Interpolation). For any v

K ∈ H1/2+δ(K ) with ∇ ×v


K ∈ Lp(K ), define the interpolation

operator


h : H1/2+δ(K ) → ND0 on each element K ∈ Th as follows:
h

v

K =


e∈Eh(K )

αe(v)ϕe, with αe(v) =
1
|e|


e

v · te ds.

Definition 4.3 (Weighted Clément-type Nédélec Interpolation). For any v ∈ H0(curl;Ω), such that v

ωK ,e

∈

H(curl;ωK ,e) ∩ PH1(ωK ,e,P), define the weighted quasi-interpolation operator h : L2(Ω) → ND0 on each
element K ∈ Th as follows:


h

v

K =


e∈Eh(K )

αe(v)ϕe, with αe(v) =


1

|ωe|


ωe

v dx


· te

if e is an interior edge, i.e., the 1-dimensional Lebesgue measure meas1(e ∩ ∂Ω) = 0. If e ∈ Eh(∂Ω), thenαe(v) = 0.

To establish the stability and approximation bounds for this interpolation uniform with respect to µ−1, a quasi-
monotonicity assumption is needed on the distribution of the coefficients associated with each edge patch ωe in
three dimensions, which is similar to those of [24,25] associated with each vertex patch in two dimensions. The
quasi-monotonicity, in layman’s terms, can be phrased as “for every element in an edge patch, there exists a simply-
connected element path leading to the element where the coefficient achieves the maximum (or minimum) on this
patch”. The following assumption is stated in a mathematically rigorous way to convey above idea.

Assumption 4.4 (Quasi-monotonicity of the µ−1 in an Edge Patch). For each edge e ∈ Eh , if e is an interior edge, for
every K ⊂ ωe, and every K ′

⊂ ωe, (i) assume that there exist a collection of elements ω′
e =


i=1

l(K ,e)Ki ⊂ ωe with
Kl(K ,e) ⊂ ωe, such that Ki shares a face with Ki−1, and that µ−1

Ki−1
≤ µ−1

Ki
for all i = 1, . . . , l(K , e), where K0 = K .

If e is a boundary edge, for every K ⊂ ωe\ωe, and every K ′
⊂ ωe, (ii) assume that (i) holds, and the 2-dimensional

Lebesgue measure meas2(∂ωe ∩ ∂Ω) > 0.

The assumption is phrase usingωe, the assumption remains the same if we switchωe toωe, and reverse the direction
of the inequalities.

If Assumption 4.4 is satisfied, the extended µ-weighted patch for an element K is denoted as

ωK ,e = K


e∈Eh(K )
ω′

e


e∈Eh(K )
ωe. (4.4)

Remark 4.5. Assumption 4.4(i) is weaker than the extension of the quasi-monotonicity assumption in [24], and is
the equivalent to the extension of the quasi-monotonicity assumption in [25] from the vertex patch in two dimensions
to the edge patch in three dimensions. Notice if Assumption 4.4 is met, then ωe is a simply connected Lipschitz
polyhedron for any interior edge e.
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(a) Quasi-monotone in the
senses of the extension of
[24], the extension of [25],
and Assumption 4.4.

(b) Quasi-monotone in the
senses of the extension of
[25] and Assumption 4.4, not
in the extension of [24].

(c) Not quasi-monotone in
any sense.

Fig. 2. Different scenarios of the coefficient distribution for µ−1 for an interior edge patch ωe , where the edge e is marked as red dotted vertical
edge in each figure. The tetrahedra whose bases are marked using blue color in (a) and (b) consist the ωe for this edge patch. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

The illustrations in Fig. 2 show the difference and similarity between Assumption 4.4 and the extension to those
in [24,25]. In Fig. 2a, for any two tetrahedra in the edge patch ωe, there always exists a monotone path connecting these
made of tetrahedra, along which one tetrahedron shares one face with the next tetrahedron in this path. In Fig. 2b,
along the path from any tetrahedron in this patch to the one with the biggest coefficients µ−1, the coefficients are
monotone. In Fig. 2c, the coefficient distribution of the checkerboard type is not quasi-monotone in any sense, and a
Clément-type interpolation cannot achieve a robust bound (see [25,31]), if the edge of interest is an interior edge of
the triangulation.

Theorem 4.6 (Approximation and Stability Properties). Under Assumption 4.4, the interpolation operator 
h

in Definition 4.3, satisfies the following estimates:µ−1/2(v −

h

v)


L2(K )

≤ C hK

µ−1/2
∇v


L2(ωK ,e)
,

and

µ−1/2
∇×(v −


h

v)


L2(K )

≤ C
µ−1/2

∇v


L2(ωK ,e)

(4.5)

for all v ∈ H0(curl;Ω) such that v

ωK ,e

∈ H(curl;ωK ,e) ∩ PH1(ωK ,e,P), where the Jacobian ∇v is defined

piecewisely by ∇v

K := ∇(v


K ).

Proof. To establish the inequalities in (4.5), let v̄K and v̄ωe be the averages of v over K and ωe respectively,
i.e., v̄K = |K |

−1


K v dx, and v̄ωe = |ωe|
−1
ωe

v dx for an interior edge e. Let v̄ωe = 0 if e is a boundary
edge.

If e is an interior edge, we have the following standard approximation property (also known as Poincaré inequality)
thanks to the shape regularity of the triangulation Th , simply-connectedness of ωe for an interior edge e from
Assumption 4.4, and v ∈ PH1(ωK ,e,P):

∥v − v̄K ∥L2(K ) ≤ ChK ∥∇v∥L2(K ) , and
v − v̄ωe


L2(ωe)

≤ Che ∥∇v∥L2(ωe)
. (4.6)

If e is a boundary edge, the first inequality in (4.6) still holds. To get an equality similar to the second one, the fact
that v ∈ H0(curl;Ω) and v


ωK ,e

∈ PH1(ωK ,e,P) implies v · te
ωe

∈ H1(ωe), and v · te

∂ωe∩∂Ω

= 0. The following
Friedrichs inequality holds (even if ωe is not simply-connected as in the case of Fig. 3b)

∥v · te∥L2(ωe)
≤ Che ∥∇(v · te)∥L2(ωe)

≤ Che ∥∇v∥L2(ωe)
. (4.7)
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(a) Quasi-monotone in the
sense of Assumption 4.4,
the extension of [25], and
the extension of [24].

(b) Quasi-monotone in the
sense of Assumption 4.4
and the extension of [25],
not in the sense of the
extension of [24].

(c) Quasi-monotone for the
edge patch in the sense of
Assumption 4.4, not
quasi-monotone for vertex
patch for the black dotted
vertex.

(d) Not quasi-monotone in
any sense.

Fig. 3. Different scenarios of the coefficient distribution for µ−1 for a boundary edge patch ωe , where e is marked red, the boundary faces are
marked yellow, and the coefficient in each tetrahedron is marked on its front faces towards the viewer. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

The starting point of the proof is to split the error we want to bound into parts. On any K ∈ Th , it follows from the
triangle inequality thatv −


h

v


L2(K )

≤ ∥v − v̄K ∥L2(K ) +

v̄K −

h

v


L2(K )

.

The first term can be estimated using (4.6) first inequality. For the second term, since h v̄K = v̄K (with slightly abuse
of notation we can extend v̄K to whole edge patch by letting it be its value on K ), we have the following partition on
the element K

v̄K −

h

v =

h

(v̄K − v) =


e∈Eh(K )

(v̄K − v̄ωe ) · te ϕe.

Now applying the triangle inequality, and using the fact that
ϕe


L2(K ) ≤ C |K |

1/2 (see the construction of ϕe
in (2.16)) yieldv̄K −


h

v


L2(K )

≤


e∈Eh(K )

(v̄K − v̄ωe ) · te ϕe


L2(K )

=


e∈Eh(K )

(v̄K − v̄ωe ) · te
 · ϕe


L2(K ) ≤ C |K |

1/2


e∈Eh(K )

(v̄K − v̄ωe ) · te
 . (4.8)

To establish the estimate for
(v̄K − v̄ωe ) · te

 for each edge, we consider three cases. The first case is that when
K ⊂ ωe, using the triangle inequality, the estimates in (4.6) and (4.7) gives

|K |
1/2
(v̄K − v̄ωe ) · te

 =
(v̄K − v̄ωe ) · te


L2(K )

≤ ∥(v̄K − v) · te∥L2(K ) +
(v − v̄ωe ) · te


L2(K )

≤ ∥v̄K − v∥L2(K ) +
(v − v̄ωe ) · te


L2(ωe)

≤ C
hK

µ
−1/2
K

µ−1/2
∇v


L2(ωe)
.

Here the term in front of the last inequality is treated as
(v − v̄ωe ) · te


L2(ωe)

≤
v − v̄ωe


L2(ωe)

for an interior edge,

and
(v − v̄ωe ) · te


L2(ωe)

= ∥v · te∥L2(ωe)
for a boundary edge.

The second case is that when K ⊄ ωe, yet K is adjacent toωe, and we denote the face they share as ∂K ∩∂ωe = F .
The fact that the tangential component of v along the edge e is continuous across the face F , and v ∈ PH1(ωK ,e,P)

implies that v · te ∈ H1(K ∪ ωe ∪ F) (e.g. see [4] Lemma 5.3). To establish the estimate, we need a standard trace
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inequality for p ∈ H1(K ∪ωe ∪ F) (e.g. see [32] Lemma 3.2):

∥p∥L2(F) ≤ C


h−1/2
F ∥p∥L2(K ′) + h1/2

F ∥∇ p∥L2(K ′)


, (4.9)

where K ′ can be either the element of interest K , or the element K as a subset of ωe which is adjacent to K .
Now it follows from the triangle inequality and shape regularity of the triangulation that

|K |
1/2
(v̄K − v̄ωe ) · te

 =
|K |

1/2

|F |1/2

(v̄K − v̄ωe ) · te


L2(F)

≤ Ch1/2
K ∥(v̄K − v) · te∥L2(F) + Ch1/2

K

(v − v̄ωe ) · te


L2(F) . (4.10)

The first term in (4.10) can be estimated using (4.9) and then (4.6)

h1/2
K ∥(v̄K − v) · te∥L2(F)

≤ Ch1/2
K


h−1/2

F ∥(v̄K − v) · te∥L2(K ) + h1/2
F ∥∇(v · te)∥L2(K )


≤ C


∥v̄K − v∥L2(K ) + hK ∥∇v∥L2(K )


≤ ChK ∥∇v∥L2(K ) .

For the second term h1/2
K

(v − v̄ωe ) · te


L2(F) in (4.10), using the same argument yields a similar estimate, except

passing the trace inequality from the face F to the element K ⊂ ωe this time:

h1/2
K

(v − v̄ωe ) · te


L2(F) ≤ ChK ∥∇v∥L2(ωe)
.

Combining the two inequalities obtained above gives the following estimate for any e ∈ Eh(K ) thanks to µ−1
K ≤ µ−1ωe

:

|K |
1/2
(v̄K − v̄ωe ) · te

 ≤ C
hK

µ
−1/2
K

µ−1/2
∇v


L2(ωe)
. (4.11)

The third case is that when K ⊄ ωe, nor does K share a face with ωe. By Assumption 4.4 there is a simply
connected patch consisting of K1, . . . , Kl(K ,e)−1 along which the µ−1 is monotone. Separating the term of interest by
triangle inequality:(v̄K − v̄ωe ) · te

 ≤
(v̄K − v̄K1) · te

+ · · · +
(v̄Kl(K ,e)−1 − v̄ωe ) · te

 ,
then each of the above terms can be proved yielding the same form of estimate in (4.11) by the same argument. This

result, together with the representation of
v̄K − 

hv


L2(K )
in (4.8), implies the first estimate in (4.5).

For the second estimate in (4.5), using the inverse inequality, the triangle inequality, and h v̄K = v̄K again, we
have that∇×


h

v


L2(K )

=

∇×

h

(v − v̄K )


L2(K )

≤ C h−1
K


h

(v − v̄K )


L2(K )

≤ C h−1
K


h

v − v


L2(K )

+ C h−1
K ∥v − v̄K ∥L2(K ) ,

which, together with the first estimate in (4.5) and (4.6), implies the second estimate. This completes the proof of the
theorem. �

Assumption 4.7 (Quasi-monotonicity of the β in a Vertex Patch). For any vertex z ∈ Nh , assume that the β satisfies
the vertex patch quasi-monotonicity condition in [25]: if z is an interior vertex, for any K ⊂ ωz, and K ′

⊂ ωz, (i) there
exist a collection of elements ω′

z =


i=1
l(K ,z)Ki ⊂ ωz with Kl(K ,z) ⊂ ωz, such that Ki shares a face with Ki−1 and

that βKi−1 ≤ βKi for all i = 1, . . . , l(K , z), where K0 = K . If z is a vertex on the boundary, for every K ⊂ ωz\ωz,
and every K ′

⊂ ωz, (ii) assume that (i) holds, and the 2-dimensional Lebesgue measure meas2(∂ωz ∩ ∂Ω) > 0.



Z. Cai, S. Cao / Comput. Methods Appl. Mech. Engrg. 296 (2015) 169–195 181

(a) Quasi-monotone in the
sense of Assumption 4.4,
not in Assumption 4.7.

(b) Not quasi-monotone in
any sense.

Fig. 4. Different scenarios of the coefficient distribution for β for an interior vertex patch ωz. (a) β = 100 in the tetrahedra whose faces are marked
blue, β = 1 in the rest tetrahedra in this patch. The coefficient distribution is quasi-monotone for all interior edges within this patch. (b) β = 100
in the four tetrahedra sharing the blue faces, β = 1 in the rest tetrahedra in this patch. The quasi-monotonicity is violated for the red edges. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

If Assumption 4.7 is satisfied, the extended β-weighted patch for an element K is denoted asωK ,z = K


z∈Nh(K )
ω′

z


z∈Nh(K )
ωz,

For the β which satisfies the vertex patch quasi-monotonicity in Assumption 4.7, the robust Clément-type
interpolation for the linear Lagrange elements results are already established in [24,25]. In the three dimensional
setting, one reason to study the Clément-type interpolation is that the standard linear Lagrange nodal interpolant may
not be bounded. Unless extra regularity is assumed (e.g. the function to be interpolated is in H3/2+ϵ(Ω), see [4]), the
degrees of freedom for the Lagrange nodal interpolant may not be well-defined because H1(Ω) is not continuously
embedded into the continuous function space.

For any ψ ∈ H1
0 (Ω), let ψh be the weighted Clément-type interpolant of ψ defined in [25] associated with the

coefficient β. Under Assumption 4.7, the ψh has the following properties:β1/2(ψ − ψh(z))λz


L2(K )

≤ c1 hK

β1/2
∇ψ


L2(ωK ,z)

,

and
β1/2

∇(ψ − ψh)


L2(K )

≤ c2

β1/2
∇ψ


L2(ωK ,z)

,
(4.12)

for any vertex z ∈ Nh(K ).

Remark 4.8. Assumption 4.4 does not exclude the case when Ω = Ω1
Ω2, and Ω1 is a Lipschitz polyhedron

touching the boundary at one vertex V1 only, with µ−1

Ω1

= 100, and µ−1

Ω2

= 1. Assumption 4.7 prohibits the
existence of this scenario. In this scenario, a robust Clément-type interpolation cannot be achieved for nodal Lagrange
elements. However, Assumption 4.4 allows this kind of domain, in which all the edges on the ∂Ω1 connecting the
vertex V1 is an interior edge of the triangulation. A robust Clément-type interpolation using Nédélec elements does
exist in this scenario. Please refer to the illustration in Fig. 3c.

Remark 4.9. Assumption 4.4 which states quasi-monotonicity for the edge patch, is weaker than Assumption 4.7 for
the vertex patch. The reason is that Assumption 4.4 allows the checkerboard pattern for a vertex patch. However, this
vertex patch checkerboard pattern is excluded in Assumption 4.7. Please refer to the illustration in Fig. 4. In Fig. 4a,
the coefficient distribution satisfies Assumption 4.4 for any interior edges within this patch, yet Assumption 4.7 is not
met.

4.3. Reliability

Under the assumption on the distributions of the coefficients and the Helmholtz decomposition which is stable
under the weighted norm, we prove the global reliability for the local recovery error estimator η defined in (3.8).

For any vertex z ∈ Nh\Nh(∂Ω), denote by

Fωz :=
1

|ωz|


ωz

∇·(f − τ ∗

h)dx
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the average of ∇·(f − τ ∗

h) over the vertex patch ωz. For z ∈ Nh(∂Ω), Fωz := 0. Let

H =


K∈Th

η2
K ,d

1/2

with ηK ,d = β
−1/2
K hK

∇·(f − τ ∗

h)


L2(K )

and H =


z∈Nh


K⊂ωz

β−1
K h2

K

∇·(f − τ ∗

h)− Fωz

2
L2(K )

1/2

.

The contribution from interior nodes in H is a higher order term since ∇·(f − τ ∗

h) ∈ L2(Ω), and so is the contribution
from boundary nodes if ∇·(f − τ ∗

h) ∈ L p(Ω) for some p > 2. (see [20]).

Theorem 4.10 (Global Reliability of η). Let u and uh be the solutions of (2.14) and (2.15), respectively.
Under Assumptions 4.1, 4.4 and 4.7, there exists a constant C > 0 independent of the jumps of the coefficients
such that

|||u − uh ||| ≤ C (η + H) . (4.13)

Proof. Denote the error and the residual by

e = u − uh and R(v) = (f , v)− (µ−1
∇×uh,∇×v)− (βuh, v),

respectively. It is easy to see that

A(e, v) = R(v), ∀v ∈ H0(curl;Ω) and R(vh) = 0, ∀vh ∈ ND0 ∩ H0(curl;Ω).

By Assumption 4.1, there exists a decomposition of the error e ∈ H0(curl;Ω) into the sum of ψ ∈ H1
0 (Ω) and

w ∈ PH1(Ω ,P) ∩ X(Ω , β) such that

e = w + ∇ψ and |||e|||2 = R(e) = R(w)+ R(∇ψ).

To bound the curl-free part of the error, let ψh be the weighted Clément-type interpolant of ψ defined in [25]
associated with the coefficient β. It follows from the fact that R(∇ψh) = 0, integration by parts, the Cauchy–Schwarz
inequality, the approximation and stability of the interpolation (4.12) and (4.3) that

R(∇ψ) = R

∇(ψ − ψh)


=

f − τ ∗

h,∇(ψ − ψh)

+

τ ∗

h − βuh,∇(ψ − ψh)


= −

∇·(f − τ ∗

h), ψ − ψh

+

τ ∗

h − βuh,∇(ψ − ψh)


≤


K∈Th


ηK ,d h−1

K

β1/2(ψ − ψh)


L2(ωK ,z)

+ ηK ,0

β1/2
∇(ψ − ψh)


L2(ωK ,z)



≤ C


K∈Th


ηK ,d + ηK ,0

 β1/2
∇ψ


L2(ωK ,z)

≤ C (H + η0)

β1/2
∇ψ


L2(Ω)

≤ C (H + η0)

β1/2e


L2(Ω)
.

To bound R(w), let wh = 
hw ∈ ND0 ∩ H0(curl;Ω) with 

h defined in Definition 4.3. Using the fact that
R(wh) = 0 and integrating by parts give

R(w) = R(w − wh)

= (f − βuh,w − wh)−

σ ∗

h,∇×(w − wh)

+

σ ∗

h − µ−1
∇×uh,∇×(w − wh)


=

f − βuh − ∇×σ ∗

h,w − wh

+

σ ∗

h − µ−1
∇×uh,∇×(w − wh)


.
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Now, by the Cauchy–Schwarz inequality, the second and third inequalities in (4.5) and (4.3), we have

R(w) ≤


K∈Th


ηK ,R h−1

K

µ−1/2(w − wh)


L2(K )

+ ηK ,⊥

µ−1/2
∇×(w − wh)


L2(K )



≤ C


K∈Th


ηK ,R + ηK ,⊥

 µ−1/2
∇w


L2(ωK )

≤ C (ηR + η⊥)

µ−1/2
∇w


L2(Ω)

≤ C (ηR + η⊥)

µ−1/2
∇×e


L2(Ω)

.

Combining the above two inequalities, we have

|||e|||2 = R(e) ≤ C

η + H


|||e|||,

which implies (4.13). This completes the proof of the theorem. �

In the remainder of this section, we assume that additionally ∇·f ∈ L p(Ω) for some p > 2, then the H in (4.13)
may be replaced by H which is a higher order term.

Theorem 4.11 (Global Reliability of η). Under Assumptions A.1, 4.4 and 4.7 , there exists a constant C > 0
independent of the jumps of the coefficients such that

|||u − uh ||| ≤ C

η + H . (4.14)

Proof. In the proof of (4.13), if furthermore the following orthogonality condition is exploited on the vertex patch for
the weighted Clément-type interpolant (e.g. see [18] Section 4)

1, (ψ − ψh(z))λz

ωz

= 0, ∀ z ∈ Nh\Nh(∂Ω),

together with the fact that Fωz = 0 and ψh(z) = 0 for z ∈ Nh(∂Ω), it implies
f − τ ∗

h,∇(ψ − ψh)


= −


K∈Th


∇·(f − τ ∗

h), ψ − ψh


K

= −


z∈Nh


K⊂ωz


∇·(f − τ ∗

h)− Fωz , (ψ − ψh(z))λz


K .

Now, a similar argument as in the irrotational part proof of (4.13) gives
f − τ ∗

h,∇(ψ − ψh)


≤ C H β1/2e


L2(Ω)
.

The rest of the proof for (4.14) is identical to that of (4.13). �

4.4. Efficiency

Even though in [7], the coefficients are assumed to be continuous, the proof they used to prove the efficiency
bound (Sections 4 and 5 in [7]) carries over to piecewise constant coefficients. At the same time, their choice of
weight yields a robust bound with no dependence on the coefficients. In this subsection, we prove the efficiency of the
recovery-based estimator (3.8) by bounding the recovery-based local error estimator by the residual-based local error
estimator.

Let fh be the standard L2-projection onto BDM1. It is proved in [7] that there exists a positive constant C such
that:

ChF

µ1/2
F [[(µ−1

∇×uh)×n]]F

2

L2(F)
≤ |||u − uh |||

2
ωF

+


K⊂ωF

µK h2
K ∥f − fh∥

2
L2(K ) ,

ChF

β−1/2
F [[β uh · n]]F

2

L2(F)
≤

β1/2(u − uh)

2

L2(ωF )
+


K⊂ωF

β−1
K h2

K ∥∇·f∥2
L2(K ) ,

and C µ1/2
K hK

f − βuh − ∇×(µ−1
∇×uh)


L2(K )

≤ |||u − uh |||K ,

(4.15)
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where the coefficients µ−1
F and βF on face F are given by the arithmetic averages of µ−1 and β

µ−1
F = (µ−1

K−
+ µ−1

K+
)/2, and βF =


βK−

+ βK+


/2,

respectively. Next we move on to prove the equivalence.

Lemma 4.12 (Equivalence of ηK ,0). There exists a constant c > 0 independent of the jumps of the coefficients such
that for any K ∈ Th:

c ηK ,0 ≤


F⊂∂K

h1/2
F

β−1/2
F [[βuh · n]]F


L2(F)

. (4.16)

Proof. it suffices to show that ηK ,0 can be bounded by the summation of the residual-based estimator within the local
face patch.

For any interior element K , we first use a partition of unity to bound the estimator ηK ,0 by the fact that
ND0(K ) ⊂ BDM1(K ). The difference of the weighted average τ ∗

h and τ h is

(τ ∗

h − τ h)

K =


F⊂∂K\∂Ω


z∈Nh(F)


1

|F |


F
(τ h,F − τ h,K ) · nFλz d S


ψ F,z

=


F⊂∂K\∂Ω


z⊂Nh(F)

1 − κK
F

|F |


F

[[βuh · n]]F λz d S


ψ F,z.

Recalling from (3.5) that on each face F of element K , κK
F = β

1/2
K ′ /


β

1/2
K + β

1/2
K ′


, where K ′ is the neighboring

element sharing this fixed face F with K . Since

∥λz∥L2(F) ≤ C |F |
1
2 and

ψ F,z


L2(K ) ≤ C |K |
1
2 ,

and using the following coefficient weight relation (3.5) on each face F :

(1 − κK
F )β

−1/2
K =

1

β
1/2
K + β

1/2
K ′

≤

√
2

(βK + βK ′)1/2
=

1

β
1/2
F

,

the local error indicator ηK ,0 has the following bound:

ηK ,0 =

β−1/2τ ∗

h − β1/2uh


L2(K )

=

β−1/2(τ ∗

h − τ h)


L2(K )

≤


F⊂∂K\∂Ω


z⊂Nh(F)

1

2|F |β
1/2
F


F

[[βuh · n]]F λz d S

 ψ F,z


L2(K )

≤


F⊂∂K\∂Ω

C


|K |

|F |

1/2 β−1/2
F [[βuh · n]]F


L2(F)

.

For any element with a boundary face, thanks to the setting for problem (2.15), that the Dirichlet data can be exactly
represented by an ND0 vector field’s tangential trace, the degrees of freedom on any boundary face do not contribute
to the approximation error in that element. This completes the proof of the lemma. �

Lemma 4.13 (Equivalence of ηK ,⊥). Under Assumption 4.4, there exists a constant c > 0 independent of the jumps
of the coefficients such that for any K ∈ Th

c ηK ,⊥ ≤


e∈Eh(K )


F⊂ωe,F

h1/2
F

µ1/2
F [[(µ−1

∇×uh)×n]]F


L2(F)

. (4.17)

Proof. The proof of this lemma uses the setting in the edge patch’s illustration of Fig. 1a. The edge patch ωe consists
of 4 tetrahedra, and the following proof generalizes without essential changes to the case when there are more than 4
tetrahedra in ωe.
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Without loss of generality, the element of interest K is assumed to be K1 in Fig. 1a. First performing the partition
of unity for σ h,K = µ−1

∇×uh

K , which is a constant vector and can be represented by ND0(K ) vector fields:

ηK ,⊥ =

µ 1
2 σ ∗

h − µ−
1
2 ∇×uh


L2(K )

=

µ 1
2


e∈Eh(K )

(σ ∗

h − σ h,K ) · te ϕe


L2(K )

≤


e∈Eh(K )

µ 1
2 (σ ∗

h − σ h,K ) · te ϕe


L2(K )

≤


e∈Eh(K )

µ
1
2
K

(σ ∗

h − σ h,K ) · te
 ϕe


L2(K ) . (4.18)

By the fact that
ϕe


L2(K ) ≤ C |K |

1
2 , the rest of the proof is to establish the equivalence, for every edge e, of(σ ∗

h − σ h,K ) · te
 with the coefficient-weighted tangential jump term in the residual-based estimator.

For the rest of the proof let us assume the edge of interest is e in Fig. 1a. Before moving on to different coefficient
distribution scenarios in this edge patch, first by the local recovery (3.7) and the ND0 basis function construction
(2.16), it is straightforward to check that

σ ∗

h · te =
1

|ωe,F |


F⊂ωe,F


F
(σ h,F · te) d S.

The first case is when ωe = K = K1, then ωe,F = F1 ∪ F4. Using the geometric relation that for any
v · te = nF × (v×nF ) · te if te lies on the planar surface F , and the definition of the weighted average σ h,Fi in
(3.6), yields

(σ ∗

h − σ h,K ) · te =
1

|ωe,F |


i∈{1,4}


Fi

(σ h,Fi − σ h,K ) · te d S

=
1

|ωe,F |


i∈{1,4}


Fi

nFi ×

(σ h,Fi − σ h,K )×nFi


· te d S

=
1

|ωe,F |


i∈{1,4}


Fi

(1 − γ K
Fi
) [[(µ−1

∇×uh)×n]]Fi
·(te×nFi ) d S. (4.19)

By the coefficient weight defined in (3.5), for F1 we have

µ
1/2
K (1 − γ K

F1
) =

1

µ
−1/2
K + µ

−1/2
K2

≤

√
2

(µ−1
K + µ−1

K2
)1/2

= µ
1/2
F1
.

By Cauchy–Schwarz inequality and the triangle inequality

µ
1/2
K

(σ ∗

h − σ h,K ) · te
 ≤

1
2|ωe,F |


i∈{1,4}

|Fi |
1/2
µ1/2

Fi
[[(µ−1

∇×uh)×n]]Fi


L2(Fi )

. (4.20)

Then using the shape regularity of the mesh, i.e. |Fi |
1/2

|K |
1/2

|ωe,F |
−1

≤ C h1/2
Fi

for any Fi in this edge patch, we
have µ 1

2 (σ ∗

h − σ h,K ) · te ϕe


L2(K )

≤


F⊂ωe,F

h1/2
F

µ1/2
F [[(µ−1

∇×uh)×n]]F


L2(F)

. (4.21)

A variant of the first case is that K = K1 ( ωe,F . Assume ωe,F = K1 ∪ K2, then ωe,F = F1 ∪ F2 ∪ F4. By the
definition of ωe,F in (2.9), µ−1

K1
= µ−1

K2
= mini=1,...,4 µ

−1
Ki

. The proof of the bound (4.20) for this variant shares
almost the same argument with above, except there will be one extra term comparing to (4.19), and it can be rewritten
as follows:

1
|ωe,F |


F2

(σ h,F2 − σ h,K ) · te d S

=
1

|ωe,F |


F2


(σ h,F2 − σ h,K2)+ (σ h,K2 − σ h,K )


· te d S
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=
1

|ωe,F |


F2

(1 − γ
K2
F2
) [[(µ−1

∇×uh)×n]]F2
·(te×nF2) d S

+
1

|ωe,F |


F2

[[(µ−1
∇×uh)×n]]F1

·(te×nF1) d S. (4.22)

Using the shape regularity of the edge patch (c|F2| ≤ |F1| ≤ C |F2|), and the fact that

µ
1/2
K (1 − γ

K2
F2
) = µ

1/2
K2
(1 − γ

K2
F2
) ≤ µ

1/2
F2
, and µ

1/2
K =

2

µ
−1/2
K + µ

−1/2
K2

≤ 2µ1/2
F1
,

we reach the following estimate

µ
1/2
K

 1
|ωe,F |


F2

(σ h,F2 − σ h,K ) · te d S


≤

C

|ωe,F |


i∈{1,2}

|Fi |
1/2
µ1/2

Fi
[[(µ−1

∇×uh)×n]]Fi


L2(Fi )

. (4.23)

Thus the estimate (4.21) follows. If ωe contains more elements, the same argument with above applies, with all the
unweighted extra terms involve only the interior faces of ωe. This completes the proof for the first case.

The second case when K = K1 ⊄ ωe, yet K is adjacent to ωe. Assume K2 = ωe, i.e., ωe,F = F1 ∪ F2. A similar
split as (4.19) applies

(σ ∗

h − σ h,K ) · te =
1

|ωe,F |


i∈{1,2}


Fi

(σ h,Fi − σ h,K ) · te d S.

The F1 term can be estimated the same with (4.20). The F2 term can be rewritten as (4.22). This time we use
µ−1

K ≥ µ−1
K2

= mini=1,...,4 µ
−1
Ki

, this implies

µ
1/2
K ≤

2

µ
−1/2
K + µ

−1/2
K2

≤ 2µ1/2
F1
,

thus the estimate (4.23) follows, which, under some backtracking, confirms the validities of estimates (4.20) and
(4.21). If ωe contains more elements than K2, same argument applies as long as µ−1

K ≥ µ−1ωe
and the shape regularity

holds for the edge patch of interest. This completes the proof for the second case.
The third case is that K = K1 ⊄ ωe, nor is K neighboring to ωe. Assuming ωe = K3, then ωe,F = F2 ∪ F3. The

same split with (4.19) applies, but this time on face F2 and F3,

(σ ∗

h − σ h,K ) · te =
1

|ωe,F |


i∈{2,3}


Fi

(σ h,Fi − σ h,K ) · te d S.

In this lemma, Assumption 4.4 holds. Without loss of generality, we assume the monotone path from K = K1 to K3 is
through K2. The F2 term can be estimated exactly like previous case, because µ−1

K ≥ µ−1
K2

≥ µ−1
K3

= mini=1...,4 µ
−1
Ki

.
For the F3 term, using the same trick as (4.22) yields:

1
|ωe,F |


F3

(σ h,F3 − σ h,K ) · te d S

=
1

|ωe,F |


F3


(σ h,F3 − σ h,K3)+ (σ h,K3 − σ h,K2)+ (σ h,K2 − σ h,K )


· te d S

=
1

|ωe,F |


F3

(1 − γ
K3
F3
) [[(µ−1

∇×uh)×n]]F3
·(te×nF3) d S

+
1

|ωe,F |


i∈{1,2}


F3

[[(µ−1
∇×uh)×n]]Fi

·(te×nFi ) d S.
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By the quasi-monotonicity of the coefficient on this edge patch again, we have

µ
1/2
K (1 − γ

K3
F3
) ≤ µ

1/2
K3
(1 − γ

K3
F3
) ≤ µ

1/2
F3
, and µ

1/2
K ≤

2

µ
−1/2
K2

+ µ
−1/2
K3

≤ 2µ1/2
F2
,

therefore, the estimate for the F3 term is similar to (4.23), with one extra face included due to the fact that the inequality
is passed through an intermediate element along the monotone path

µ
1/2
K

 1
|ωe,F |


F3

(σ h,F3 − σ h,K ) · te d S


≤

C

|ωe,F |


i∈{1,2,3}

|Fi |
1/2
µ1/2

Fi
[[(µ−1

∇×uh)×n]]Fi


L2(Fi )

. (4.24)

Consequently, estimates (4.20) and (4.21) follow for the third case. If the reader walks through the proof, one will
find that more tetrahedra being contained in ωe than 1 does not change the essential part of the proof because of the
existence of the monotone path. This completes the proof of the lemma. �

Theorem 4.14 (Local Efficiency of ηK ). Under Assumption 4.4, there exists a constant c > 0 independent of the
jumps of the coefficients such that for any K ∈ Th:

c ηK ≤ |||u − uh |||ωK ,F + osc(f , µ, β;ωK ,F ), (4.25)

where osc(f , µ, β;ωK ,F ) is the oscillation of the data within ωK ,F

osc(f , µ, β;ωK ,F ) =

 
K⊂ωK ,F


β−1

K h2
K ∥∇·f∥2

L2(K ) + µK h2
K ∥f − fh∥

2
L2(K )


1/2

.

Proof. By the residual-based estimator local efficiency estimate (4.15), Lemmas 4.12 and 4.13 which show the
recovery-based ηK ,0 and ηK ,⊥ can be bounded the face jumps in the residual-based estimator, it suffices to show
that the local recovery-based residual term is locally efficient. Applying the triangle inequality for ηK ,R gives:

ηK ,R ≤ µ
1/2
K hK

f − βuh − ∇×(µ−1
∇×uh)


L2(K )

+

∇×(µ−1
∇×uh − σ ∗

h)


L2(K )


,

which, together with a standard inverse inequality and (4.15), shows that

c ηK ,R ≤ |||u − uh |||K + ηK ,⊥.

This completes the proof of the theorem. �

5. Numerical experiments

This section reports numerical results of our estimator on several three dimensional H(curl) interface test
problems.

The numerical tests are implemented under iFEM (see [33]) framework in MATLAB. Initial meshes are generated
by the MATLAB built-in DelaunayTri and distmesh (see [34]). At each iteration, let Sh be a subset of Th whose
elements satisfy

K∈Sh

η2
K ≥ θ


K∈Th

η2
K ,

where the ηK is evaluated using the recovered quantities computed by weighted L2-projections through multigrid
V (3, 2)-cycle iterations. This procedure is analyzed in [35] for diffusion problem, and is proved to be equivalent
to the local weighted averaging. The marking parameter θ is chosen to be 0.2. All elements in Sh are refined
locally by bisecting the longest edge, and some neighboring elements of Sh are refined to preserve conformity of
the triangulation.
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To measure the global reliability of the a posteriori error estimator, we show comparisons of different measures in
the each example’s table of comparison. n is the number of levels of refinement. The Nn the dimension of Eh,n in the
nth level triangulation, in our case, it is the number of degrees of freedom. The effectivity index for each estimator at
the nth level is:

eff-index :=
ηn

|||u − uh,n|||
,

where ηn is the error estimator, and uh,n is the finite element approximation at the nth level of triangulation.
The orders of convergence are computed for both η and |||u − uh |||. rη and rerr are defined as the slope for the line

of ηn and |||u − uh,n||| in the log–log scale plot, such that

ln ηn ∼ −rη ln Nn + c1, and ln |||u − uh,n||| ∼ −rerr ln Nn + c2.

In the convergence rate plot, the log of degrees of freedom is the horizontal axis, and the log of the error/estimator is
the vertical axis. The order of convergence is optimal when rη and rerr are approximately 1/3.

In first two examples with known true solutions, the adaptive mesh refinement procedure is terminated when the
true relative error

rel-error := |||u − uh |||/|||u||| ≤ Tol.

For comparison, numerical results involve some of the following error estimators other than the recovery estimator
in (3.8):

1. The residual estimator in [7]:

η2
K ,Res = µK h2

K

f − βuh − ∇×(µ−1
∇×uh)

2

L2(K )
+ β−1

K h2
K ∥∇·(βuh − f )∥2

L2(K )

+


F∈Fh(K )

hF

2


β−1

F

[[βuh · nF ]]F

2
L2(F) + µF

[[(µ−1
∇×uh)×n]]F

2

L2(F)


, (5.1)

and η2
Res =


K∈Th

η2
K ,Res , where µ−1

F and βF are the arithmetic averages of µ−1 and β, respectively, on elements
sharing the face F . Note that this estimator is weighted appropriately and may be viewed as the extension of the
residual estimator in [24,25] for the diffusion interface problem to the H(curl) interface problem.

2. The Zienkiewicz–Zhu (ZZ) based error estimator in [16] using the coefficient-weighted norm (2.4):

η2
K ,Z Z =

µ−1/2 R⊥(∇×uh)− µ−1/2
∇×uh

2

L2(K )

+

β1/2 R0(uh)− β1/2uh

2

L2(K )
, (5.2)

and η2
Z Z =


K∈Th

η2
K ,Z Z . Both recovered quantities R⊥(∇ ×uh) and R0(uh) are in the continuous piecewise

linear vector fields space P1 := {p ∈ H1(Ω) : p

K ∈ P1(K )}, and their nodal values at any vertex z ∈ Nh are:

R⊥(∇×uh)

z =

1
|ωz|


ωz

∇×uh dx and R0(uh)

z =

1
|ωz|


ωz

uh dx.

3. The Zienkiewicz–Zhu (ZZ) flux based error estimator in [16] with weight suited to the coefficient-weighted
norm (2.4):

η2
K ,Z Z , f =

µ1/2 R⊥(µ
−1

∇×uh)− µ−1/2
∇×uh

2

L2(K )

+

β−1/2 R0(βuh)− β1/2uh

2

L2(K )
(5.3)

and η2
Z Z , f =


K∈Th

η2
K ,Z Z , f . Both recovered quantities R⊥(µ

−1
∇ ×uh) and R0(βuh) are in P1 as well, and

their nodal values at any vertex z ∈ Nh are:

R⊥(µ
−1

∇×uh)

z =

1
|ωz|


ωz

µ−1
∇×uh dx and R0(βuh)


z =

1
|ωz|


ωz

βuh dx.
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Table 1
Comparison of the estimators in Example 1.

n # DoF rel-error eff-index rη rerr

ηZ Z 30 39391 0.0898 1.309 0.128 0.235
ηZ Z , f 26 44111 0.0837 1.495 0.243 0.253
ηRes 24 18832 0.0873 1.749 0.257 0.301
η 18 18649 0.0886 0.820 0.299 0.303

(a) Refined mesh based on ηZ Z ,K . (b) Refined mesh based on ηZ Z , f,K .

(c) Refined mesh based on ηK . (d) Refined mesh based on ηRes,K .

Fig. 5. Mesh result of Example 1.

Example 1. This example is adapted from a benchmark test problem (see [18,19,36]) for elliptic interface problems.
The computational domain is a narrow slit along z-direction: Ω = (−1, 1)2×(−δ, δ) with δ = 0.2. The true solution
u is given in cylindrical coordinates (r, θ, z):

u = ∇ψ = ∇

rαφ(θ)


,

where φ(θ) takes different values within four different subdomains while being glued together using continuity
conditions that is firstly invented in [36]. The µ = 1, and the β is given by

β =


R in (0, 1)2×(−δ, δ) ∪ (1, 0)2×(−δ, δ),

1 in Ω\


(0, 1)2×(−δ, δ) ∪ (1, 0)2×(−δ, δ)


.

Here we set parameters α, R to be

α = 0.5, R ≈ 5.8284271247461907.

In this example, the tolerance is set to be Tol = 0.1. The numerical results of Example 1 are in Table 1. It shows
that to achieve approximately the same level of relative error, the number of degrees of freedom needed in the mesh
refined by the local indicator ηK ,Z Z or ηK ,Z Z , f requires more than twice than the other two.

The adaptively refined mesh generated by each estimator can be found in Fig. 5. The tendency of ηZ Z or ηZ Z , f
to over-refine those four interfaces is due to the fact that recovered quantities enforce unnecessary extra continuity
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(a) Relative error distribution of refined mesh
based on ηK ,Z Z , f cut on y = 0, it can be
observed that the local errors are not evenly
distributed.

(b) Relative error distribution of refined mesh
based on ηK cut on y = 0, the local errors are
more evenly distributed than the mesh refined
based on ηK ,Z Z , f .

Fig. 6. Relative error distributions result of Example 2.

Table 2
Comparison of the estimators in Example 2.

n # DoF rel-error eff-index rη rerr

ηZ Z 18 200692 0.199 4.077 Not converging 0.118
ηZ Z , f 20 99794 0.193 2.527 0.839 0.169
ηRes 9 63405 0.186 1.761 0.273 0.236
η 8 52287 0.193 1.079 0.282 0.251

conditions of the true quantities. For example, R⊥(µ
−1

∇×uh) and R0(βuh) in (5.3) are in H1(Ω), yet for the true
solution u, µ−1

∇×u ∈ H(curl;Ω) and βu ∈ H(div;Ω) in (3.4).
Overall, the recovery-based error estimator and residual-based error estimator lead to the correctly refined mesh,

and the recovery-based one performs more convincingly showing a less oscillatory convergence, achieving the same
level of relative error in fewer iterations. More importantly, it exhibits a better effectivity index.

Example 2. This example is in the numerical experiments section of [37]. The domain is Ω = B2 = {(x, y, z) :

x2
+ y2

+ z2 < 2}, and the coefficients are given by
µ = µ1 = 1, β = 1 in B1 = {(x, y, z) : x2

+ y2
+ z2 < 1},

µ = µ2 = 106, β = 1 in Ω\B1.

The true solution u is given by µu1 in B1, and µu2 in Ω\B1. For the explicit expression please refer to [37]. The
Tol = 0.2 in this example.

In this example, the element residual term ηR in (3.8) is not a higher order term (see Fig. 7a). The red dashed
line is a reference line of a constant multiple of (#DoF)−1/3. The numerical results of Example 2 are in Table 2. The
adaptively refined mesh of each estimator can be found in Fig. 6.

The refined meshes based on ηK ,Res , and ηK respectively are visually similar, the ηK ,Z Z and ηK ,Z Z , f tend to over-
refine the region where the local coefficient-weighted error is not significant yet µ−1

∇×u is discontinuous across the
interface.

Example 3. This example is a widely-used test problem examining the performance of adaptive mesh refinement
procedure for Maxwell equations (e.g. see [2]). The true solution is unknown and not smooth. The homogeneous
Dirichlet boundary condition is enforced, together with a constant source current f = (1, 1, 1). The coefficients are
given by:

µ = 1, β = 1 in Ωc,

µ = 1, β = 100 in Ω\Ωc
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(a) Example 2: convergence of η, comparing to the
element residual term ηR .

(b) Example 3: convergence of η versus the
recovery-based only ηRec = (η2

⊥
+ η2

0)
1/2.

Fig. 7. Convergence results of Examples 2 and 3.

Table 3
Comparison of the estimators in Example 3.

n #(DoF) Estimator rη

ηRes 21 219993 0.156 0.328
η 14 61302 0.152 0.346
ηRec 8 15672 0.159 0.230

where Ωc is {(x, y, z) : |x |, |y|, |z| ≤
1
2 }. In this example, we cannot compute the true error, hence we set the stop

criterion to be η ≤ Tol with Tol = 0.16 at the nth level of triangulation.

This example illustrates two important aspects: (1) the element residual is indispensable in the error estimator in
the pre-asymptotic region; (2) the iterative refining procedure using the residual-based estimator engages much more
degrees of freedom than the one using the recovery-based estimator, when same stop criterion is used for both.

The recovery-based error estimator shows an optimal order of convergence, which is η ∼ (#DoF)−1/3, i.e., rη ≈

1/3, if the local error indicator includes the element residual ηK := (η2
K ,⊥ + η2

K ,0 + η2
K ,R)

1/2. If the element residual

is discarded, i.e., the pure recovery-based estimator ηK ,Rec := (η2
K ,⊥ + η2

K ,0)
1/2 is used as the local error indicator,

the order of convergence for ηRec :=


K∈Th

η2
K ,Rec

1/2
is not optimal (see Fig. 7b, and Table 3).

From the first two examples, we learn that the effectivity index of the recovery-based estimator is in general
two times as effective as that of the residual-based estimator. For problem with an unknown solution which is quite
common originated from some real world applications, when setting the stopping criterion using the global error
estimator, the number of degrees of freedom using the residual-based error estimator is (eff-indexRes/eff-indexRec)

3

as much as that using the recovery-based error estimator (see Table 3).
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Appendix. Weighted Helmholtz decomposition

Here we establish a weighted Helmholtz decomposition in light of [22,6] tailored for the H(curl) interface problem.
The following assumption is needed to guarantee that such a decomposition exists with the constant in estimate (4.13)
is independent of the jumps of the coefficients.
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Assumption A.1. (i) The domain Ω is assumed to be convex, simply-connected, and that no three or more subdomains
share one edge from the triangulation of Ω . (ii) The coefficientsµ and β are assumed to satisfy: Cmin ≤ µ jβ j ≤ Cmax,
where Cmin and Cmax are two constants independent of the jumps of µ j and β j , or Ω j on each subdomain Ω j .

Firstly, we define some additional function spaces, along with the X(Ω , β) in (4.1), relevant to the weighted
Helmholtz decomposition as follows: for any piecewise constant α = α j in Ω j :

◦

H0(curl;Ω) = {u ∈ H0(curl;Ω) : ∇×u = 0 in Ω},

PC∞(Ω ,P) = {v ∈ L2(Ω) : v

Ω j

∈ C∞(Ω j ), j = 1, . . . ,m},

and PH s(Ω ,P) = {v ∈ L2(Ω) : v

Ω j

∈ H s(Ω j ), j = 1, . . . ,m}.

(A.1)

It is well known (see [38]) that the kernel of curl operator,
◦

H0(curl;Ω), is characterized by the gradient field in a
simply-connected domain:

Lemma A.2. If Ω is simply-connected, for any u ∈
◦

H0(curl;Ω), there exists a unique function ψ ∈ H1
0 (Ω) such

that u = ∇ψ .

Since A(v,∇ψ) = (βv,∇ψ), the orthogonal complement of
◦

H0(curl;Ω) = ∇ H1
0 (Ω) with respect to A(·, ·) is

{v ∈ H0(curl;Ω) : (βv,∇ψ) = 0 ∀ψ ∈ H1
0 (Ω)} ⊂ X(Ω , β).

To construct a weighted Helmholtz decomposition tailored for the interface problem, an analysis of the structure of
X(Ω , β) is necessary. Before tackling this, the following lemma from [6] is needed:

Lemma A.3. X(Ω , α) ∩ PC∞(Ω ,P) is dense in X(Ω , α) ∩ PH1(Ω ,P) in the following norm:

∥v∥2
X(Ω) = ∥v∥2

L2(Ω) + ∥∇×v∥2
L2(Ω) + ∥∇·(αv)∥2

L2(Ω) .

Now we move on to prove the norm equivalence for certain piecewise H1-vector fields using the density argument
of Lemma A.3.

Lemma A.4 (Norm Equivalence for Piecewise Smooth Vector Fields). For all v ∈ X(Ω , α) ∩ PH1(Ω ,P), the
following identity holds:

m
j=1


Ω j

α|∇v|2 =


Ω


α|∇×v|2 + α−1

|∇ ·(αv)|2

. (A.2)

Proof. By Lemma A.3, it suffices to establish identity (A.2) for any φ ∈ X(Ω , α) ∩ PC∞(Ω ,P). To this end, using
a local identity −∆φ = ∇×(∇×φ)− ∇(∇·φ) and integrating by parts on each subdomain Ω j twice give:

m
j=1


Ω j

α|∇φ|
2

=

m
j=1


Ω j

α j


|∇×φ|

2
+ |∇·φ|

2


+ B

with B =

m
j=1


∂Ω j

α j


(n · ∇)φ + n×(∇×φ)− (∇·φ)n


· φ d S.

Now, it remains to prove that B = 0. On any polygonal face with normal vector n that is represented by the cartesian
coordinates in the three dimensional space, rather than the local planar coordinates, φ may be decomposed into the
normal and tangential components as follows:

φ = (φ · n)n + φ⊤ with φ⊤ = n×(φ×n), (A.3)

which, in turn, implies

(n · ∇)φ =

(n · ∇)(φ · n)


n + (n · ∇)φ⊤

and ∇·φ = ∇·

(φ · n)n


+ ∇·φ⊤ = (n · ∇)(φ · n)+ ∇·φ⊤.

(A.4)
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By using the following identity (e.g. see [39])

∇(a · b) = (a · ∇)b + (b · ∇)a + a×(∇×b)+ b×(∇×a)

and noticing that n is a constant vector on a face, we have

∇(n · φ) = (n · ∇)φ + n×(∇×φ),

which yields the following by being projected onto each polygonal face

∇⊤(n · φ) = (n · ∇)φ⊤ + n×(∇×φ), (A.5)

where ∇⊤ is defined as ∇⊤u = (∇u)⊤. It follows from (A.4), (A.5), (A.3), homogeneous boundary condition, and
identity (2.7) that:

B =

m
j=1


∂Ω j

α j


∇⊤(n · φ)− (∇·φ⊤)n


· φ d S

=

m
j=1


∂Ω j

α j


∇⊤(n · φ) · φ⊤ − (∇·φ⊤)(φ · n)


d S

=


F⊂I


F


[[∇⊤(αφ · n) · φ⊤]]F − [[(∇·φ⊤)(αφ · n)]]F


d S

=


F⊂I


F


∇⊤([[αφ · n]]F ) · φ⊤ + ∇·[[φ⊤]]F (αφ · n)

+ ∇⊤(αφ · n) · [[φ⊤]]F +∇·φ⊤ [[αφ · n]]F


d S.

Now B = 0 is a direct consequence of the continuity conditions for φ ∈ X(Ω , α) ∩ PC∞(Ω ,P):

[[φ×n]]F = 0 and [[αφ · n]]F = 0 ∀F ⊂ I.

This completes the proof of the lemma. �

Remark A.5. Lemma A.4 is an extension to the Lemma 3.8 in [38] for Lipschitz polyhedron in the case when only
homogeneous tangential boundary condition is satisfied for the vector field. It uses a similar argument to that of the
Theorem 2.3 in [22]. In [22], no piecewise constant coefficients are involved, but the technique used shed light upon
this kind of identity. The result in Lemma A.4 bears the same form with an identity valid for PH2(Ω ,P) regular
vector fields used in Lemma 2.2 in [6]. In the proof of Lemma A.4, we further exploit the density result in [6], which
implies this identity in [6] Lemma 2.2 holds for PH1(Ω ,P) regular vector fields when the jump conditions are met
on the interfaces.

Theorem A.6 (Weighted Helmholtz Decomposition). Under Assumption A.1, for any v ∈ H0(curl;Ω), there exist
ψ ∈ H1

0 (Ω) and w ∈ PH1(Ω ,P) ∩ X(Ω , β) such that the decomposition (4.2) holds, and the estimate (4.3) is true.

Proof. For any v ∈ H0(curl;Ω), let ψ ∈ H1
0 (Ω) be the solution of

β∇ψ,∇φ


=

βv,∇φ


, ∀φ ∈ H1

0 (Ω).

It is easy to check thatβ1/2
∇ψ


L2(Ω)

≤

β1/2v


L2(Ω)
≤ |||v||| (A.6)

and that w = v − ∇ψ satisfies

∇·(βw) = 0 in Ω and w×n = 0 on ∂Ω . (A.7)

The decomposition v = w + ∇ψ shares the same form of the result (4.2) we want to prove, yet the rest is to show that
w ∈ PH1(Ω ,P). To this end, we first construct an H1-lifting of the w. Using integration by parts we have

−


∂Ω

∇φ · (w×n) d S =


Ω

∇φ · ∇×w =


∂Ω
φ∇×w · n d S ∀φ ∈ H1(Ω),
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thus w×n = 0 on ∂Ω implies ∇×w · n = 0 on ∂Ω by a density argument (e.g. see [40]). Applying Theorem 3.17 in
[40] on ∇×w, there exists a w0 ∈ X(Ω , 1) such that∇×w0 = ∇×w in Ω ,

∇·w0 = 0 in Ω ,
w0×n = 0 on ∂Ω .

Taking the convexity of the Ω into account, an embedding result from Theorem 2.17 in [40] reads that X(Ω , 1) ↩→
H1(Ω). Thus w0 ∈ H1(Ω). Obviously,

∇×(w − w0) = 0 in Ω and (w − w0)×n = 0 on ∂Ω .

The simply-connectedness of Ω implies that there exists a ζ ∈ H1(Ω) (see Lemma A.2) with a constant boundary
value such that

w − w0 = ∇ζ in Ω .

By the fact that w

Ω j

is divergence free within each Ω j respectively, and [[βw · n]]F = 0 for any F ⊂ I, one can
check that the variational problem that ζ satisfies is

β∇ζ,∇φ


= −


F⊂I


F

[[βw0 · n]]F φ d S ∀φ ∈ H1
0 (Ω).

Noticing [[βw0 · n]]F = [[β]]F (w0 · n)

F ∈ H1/2(F) on any F ⊂ I, the regularity result of Theorem 4.1 in [6] shows

that ζ ∈ PH2(Ω ,P), which is the piecewisely H2 smooth, while has H1 regularity across the interfaces. This, in
turn, implies that

w = w0 + ∇ζ ∈ PH1(Ω ,P) ∩ {v ∈ X(Ω , β) : ∇ ·(βv) = 0}.

Lastly, to prove the estimate, by the triangle inequality and (A.6), we haveβ1/2w


L2(Ω)
≤

β1/2v


L2(Ω)
+

β1/2
∇ψ


L2(Ω)

≤ C |||v|||.

It follows from Assumption A.1(ii) and Lemma A.4 that
m

j=1

µ−1/2
∇w


L2(Ω j )

≤ C
m

j=1

β1/2
∇w


L2(Ω j )

= C
β1/2

∇×w


L2(Ω)
≤ C |||v|||.

These inequalities and (A.6) imply the validity of (4.3) and, hence, it completes the proof of the theorem. �

Remark A.7. The decomposition result in Theorem A.6 resembles that of Theorem 3.5 in [6]: any vector field in
X(Ω , β) can be split into a PH1(Ω ,P)-regular part, and a singular part solving a Dirichlet boundary problem
−∇ · (β∇ψ) = f ∈ L2(Ω). In the proof of Theorem A.6, we refine the results to cater the need for the pipeline
of proving the reliability of the error estimator. Namely, when certain assumption of geometry is imposed, if a vector
field v ∈ X(Ω , β) and ∇·(βv) = 0, the singular part is non-existent.
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[8] E. Creusé, S. Nicaise, A posteriori error estimation for the heterogeneous Maxwell equations on isotropic and anisotropic meshes, Calcolo 40

(4) (2003) 249–271.

http://refhub.elsevier.com/S0045-7825(15)00248-0/sbref1
http://refhub.elsevier.com/S0045-7825(15)00248-0/sbref2
http://refhub.elsevier.com/S0045-7825(15)00248-0/sbref3
http://refhub.elsevier.com/S0045-7825(15)00248-0/sbref4
http://refhub.elsevier.com/S0045-7825(15)00248-0/sbref5
http://refhub.elsevier.com/S0045-7825(15)00248-0/sbref6
http://refhub.elsevier.com/S0045-7825(15)00248-0/sbref7
http://refhub.elsevier.com/S0045-7825(15)00248-0/sbref8


Z. Cai, S. Cao / Comput. Methods Appl. Mech. Engrg. 296 (2015) 169–195 195

[9] S. Cochez-Dhondt, S. Nicaise, Robust a posteriori error estimation for the Maxwell equations, Comput. Methods Appl. Mech. Engrg. 196
(2007) 2583–2595.
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