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Abstract
This paper introduces and analyzes an equilibrated a posteriori error estimator formixed finite
element approximations to the diffusion problem in two dimensions. The estimator, which
is a generalization of those in Braess and Schöberl (Math Comput 77:651–672, 2008) and
Cai and Zhang (SIAM J Numer Anal 50(1):151–170, 2012), is based on the Prager–Synge
identity and on a local recovery of a gradient in the curl free subspace of the H(curl)-
confirming finite element spaces. The resulting estimator admits guaranteed reliability, and
its robust local efficiency is proved under the quasi-monotonicity condition of the diffusion
coefficient. Numerical experiments are given to confirm the theoretical results.

1 Introduction

Let Ω be a bounded, polygonal domain in �2. Consider the following diffusion equation

− ∇ · (A∇u) = f in Ω (1.1)

with boundary conditions

− A∇u · n = gN on ΓN and u = gD on ΓD, (1.2)
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where ΓD and ΓN are Dirichlet and Neumann boundaries, respectively. We assume that ΓD

is connected and non-empty, Γ D ∪ Γ N = ∂Ω and ΓD ∩ ΓN = ∅. Let n = (n1, n2)t be the
unit outward vector normal to the boundary, and denote by t = (n2,−n1)t its corresponding
unit tangential vector. We shall use the standard notations and definitions for the Sobolev
spaces. Let

H1
g,D(Ω) = {v ∈ H1(Ω) : v = gD on ΓD} and H1

D(Ω) = H1
0,D(Ω).

Then the corresponding variational problem of (1.1)–(1.2) is to find u ∈ H1
g,D(Ω) such that

a(u, v) ≡ (A∇u,∇v) = ( f , v) − (gN , v)ΓN ∀ v ∈ H1
D(Ω), (1.3)

where (·, ·)ω is the L2 inner product on the set ω. The subscript ω is omitted when ω = Ω .
Introducing the flux variable

σ = −A∇u, (1.4)

it is easy to see that the flux satisfies the following equilibrium equation and boundary
condition

∇ · σ = f in Ω and σ · n = gN in ΓN .

Let

Hg,N (div;Ω) = {τ ∈ H(div;Ω) : τ · n = gN on ΓN } and HN (div;Ω) = H0,N (div;Ω),

where H(div;Ω) is the space of all square-integrable vector fields whose divergence is
also square-integrable. Then the mixed weak formulation for problem (1.1)–(1.2) is to find
(σ , u) ∈ Hg,N (div;Ω) × L2(Ω) such that

{
(A−1σ , τ ) − (∇ · τ , u) = −(τ · n, gD)ΓD ∀ τ ∈ HN (div;Ω),

(∇ · σ , v) = ( f , v) ∀ v ∈ L2(Ω).
(1.5)

For simplicity of presentation, we consider only triangular elements. Let T = {K } be a
finite element partition of the domain Ω that is regular, and denote by hK the diameter of the
element K . Let Pk(K ) be the space of polynomials of degree less than or equal to k ≥ 0 on
element K . Assume that f |K ∈ Pk(K ) for every K ∈ T , and that A is a symmetric, positive
definite piecewise constant matrix.

Denote the H(div)-conforming Raviart-Thomas (RT) and Brezzi-Douglas-Marini (BDM)
finite element spaces by

RTT = {τ ∈ H(div;Ω) : τ |K ∈ Pk(K )2 + xPk(K ), ∀ K ∈ T },
and BDMT = {τ ∈ H(div;Ω) : τ |K ∈ Pk+1(K )2, ∀ K ∈ T }.

Let

ΣT = RTT or BDMT , and VT = {v ∈ L2(Ω) : v|K ∈ Pk(K ), ∀ K ∈ T }.
And for simplicity, we assume gN is piece-wisely defined polynomials such that it lies in
the normal trace space of ΣT . Then the mixed finite element method is to find (σT , uT ) ∈(
ΣT ∩ Hg,N (div;Ω)

) × VT such that
{

(A−1σT , τ ) − (∇ · τ , uT ) = −(τ · n, gD)ΓD ∀ τ ∈ ΣT ∩ HN (div;Ω),

(∇ · σT , v) = ( f , v) ∀ v ∈ VT .
(1.6)
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1.1 Equilibrated Error Estimator

For the H1-conforming finite element approximation, various equilibrated a posteriori esti-
mators have been studied recently by many researchers (see [6,8,9,17,18,21,24,27–30]). In
[15], we presented a systematic study of the equilibrated a posteriori error estimator based
on the Prager–Synge identity for the diffusion problem in (1.1)–(1.2) with an emphasis on
the interface problem (A = α(x) I and α(x) being piecewise constants).

Let u ∈ H1
g,D(Ω) be the solution of (1.1)–(1.2), and denote the equilibrated subset of

Hg,N (div;Ω) by

ΣN ( f , g;Ω) = {τ ∈ Hg,N (div;Ω) : ∇ · τ = f in Ω}. (1.7)

Then the well-known Prager–Synge identity [6,8,15,26]

‖A1/2∇(u − v)‖20 + ‖A1/2∇u + A−1/2τ‖20 = ‖A1/2∇v + A−1/2τ‖20 (1.8)

holds for all v ∈ H1
g,D(Ω) and all τ ∈ ΣN ( f , g;Ω). (1.8) follows easily from the orthog-

onality of quantities A1/2∇(u − v) and A1/2∇u + A−1/2τ with respect to the L2 inner
product.

Remark 1.1 For simplicity of presentation, we assume that all data, f , gD , and gN , are piece-
wise polynomials of proper degrees so that Prager–Synge identity (1.8) may be used and that
data oscillations do not appear in the error estimator. For non-polynomial data, Prager–
Synge identity (1.8) may be modified for constructing estimator with data oscillation terms.
For example, when only f is not a polynomial, Prager–Synge identity becomes

‖A1/2∇(u − v)‖20 + ‖A1/2∇u + A−1/2τ‖20 = ‖A1/2∇v + A−1/2τ‖20 + 2(v − u, f − Qk f )

for all τ ∈ ΣT ∩ ΣN (Qk f , g;Ω), where Qk is the local L2 projection onto piecewise Pk .

For the conforming finite element approximation ucT ∈ H1
g,D(Ω), (1.8) with v = ucT

implies

‖A−1/2∇(u − ucT )‖0 ≤ ξ(τ ) := ‖A1/2∇ucT + A−1/2τ‖0, ∀ τ ∈ ΣN ( f , g;Ω). (1.9)

This indicates that for any τ ∈ ΣN ( f , g;Ω), ξ(τ ) is a reliable estimator with the reliability
constant being one. Estimators with such guaranteed reliability may be used for error control
on pre-asymptotic meshes, that is difficult, but important for reliability of computer simula-
tions of computationally challenging problems. To recover a flux σ̂T in a finite-dimensional
subset of ΣN ( f , g;Ω) from the numerical flux −A∇ucT , we localized the problem through
a partition of unity as in [8] and then solve local minimization problems over vertex patches.
Local minimization introduced in [15] is necessary to ensure the robustness of the error esti-
mator with respect to the coefficients of the underlying problem. Efficiency of the resulting
local indicator is proved by using the stability bound of the saddle point formulation of the
local minimization problem and the efficiency bound of the explicit residual error estimator.

For the mixed finite element approximation σT ∈ ΣN ( f , g;Ω), (1.4) and (1.8) with
τ = σT imply

‖A−1/2(σ − σT )‖0 ≤ ‖A1/2∇v + A−1/2σT ‖0, ∀ v ∈ H1
g,D(Ω). (1.10)

This indicates that for a recovered numerical solution ûT in a finite-dimensional subset of
H1
g,D(Ω), ‖A1/2∇ûT + A−1/2σT ‖0 is a guaranteed reliable error estimator. Such an idea

will be explored in a forthcoming paper. In this paper, we study an error estimator based on
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a recovery of the gradient in a proper finite element space. To this end, define the curl of a
two-dimensional vector field τ = (τ 1, τ 2)

t by

∇ × τ = ∂xτ 2 − ∂yτ 1,

and denote by ∇⊥ the formal adjoint of the curl: ∇⊥v = (∂yv,−∂xv)t .
Let

Hg,D(curl;Ω) := {τ ∈ H(curl;Ω) : τ · t = ∇gD · t on ΓD},
where H(curl;Ω) is the space of all square-integrable vector fields whose curl is also square-
integrable. Note that if ΓD is connected, then {∇v : v ∈ H1

g,D(Ω)} is equal to the curl free
subset of Hg,D(curl;Ω):

H̊g,D(curl;Ω) := {τ ∈ Hg,D(curl;Ω) : ∇ × τ = 0},
which, together with (1.10), yields

‖A−1/2(σ − σT )‖ ≤ ‖A1/2ρ + A−1/2σT ‖, ∀ ρ ∈ H̊g,D(curl;Ω). (1.11)

For the rotation matrix χ =
(

0 1
−1 0

)
, it is easily to see that

∇ × ρ = ∇ · (χ ρ) and ρ · t = (χ ρ) · n,

which, together with (1.11), implies

‖A−1/2(σ − σT )‖ ≤ ‖A1/2χ t τ + A−1/2σT ‖, ∀ τ ∈ ΣD(0, h;Ω) (1.12)

with h = ∇gD · t, where ΣD(0, h;Ω) is defined similarly in (1.7), i.e.,

ΣD(0, h;Ω) := {τ ∈ H(div;Ω) : ∇ · τ = 0 in Ω, τ · n = ∇gD · t on ΓD}.
(1.12) is identical to (1.9) with different data. Hence, the local flux recovery procedure
developed in [15]may be applied directly, and robust efficiency of the resulting local indicator
may be established in a similar fashion. However, the local flux recovery procedure needs
to solve minimization problems over vertex patches with two constraints: the equilibrium
equation and the jump condition across interior edges. This is due to the fact that local error
flux is computed in [15] which also makes the robust efficiency analysis quite complicated.
In this paper, we will simplify the efficiency analysis as well as the local recovery procedure
by directly computing the flux instead of the error flux as in [8,15]. Note that the H(curl)-
conforming Nédélec finite element spaces are basically rotations of the H(div)-conforming
RT or BDM finite element spaces in two dimensions. In this paper, the numerical scheme is
presented based on (1.11) by recovering the gradient in the Nédélec finite element spaces.
Moreover, under the suitable assumption on the distribution of the diffusion coefficients, the
robust efficiency bound is proved by analyzing the stability of the saddle point problem of
the local error gradient.

For the conforming finite element approximation to the interface problem, robust error
estimators have been studied by Bernardi and Verfürth [4] and Petzoldt [25] for the residual-
based estimator, Luce and Wohlmuth [21] for an equilibrated estimator on a dual mesh, and
by us [13] for the recovery-based error estimator. Ainsworth in [1,2] studied robust error
estimators for nonconforming and mixed methods, respectively. Robust error estimators for
locally conserved methods were studied by Kim [20]. We also studied robust recovery-based
estimators for lowest order nonconforming, mixed, and discontinuous Galerkin methods (see
[12,14]) via the L2 recovery. In [11], we proved the robustness of residual a posteriori error
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estimators for nonconforming and discontinuous Galerkin methods without the assumption
on the distribution of coefficients. Equilibrated a posteriori error estimator for the interior
penalty discontinuous Galerkin method is studied in [7].

For the Poisson equation, polynomial-degree-robust analysis for the mixed discretizations
is discussed in [19]. The two-dimensional case is purely viewed as a rotation of of H(div) case
there. The analysis in [19] is also focused on the robustness with respect to the polynomial
degree while the robustness thus some explicit construction is used in the proof, while our
analysis is more focused on the robustness with respect to the coefficients where explicit
construction is non-robust.

In this paper, only two dimensional case is analyzed. The equilibrated construction in the
three dimensional case, the conforming mixed problem (2.11) can be constructed identically.
The analysis through the broken version will be more complicated, since the trace spaces of
the Néélec finite element spaces are nontrivial, see [16]. One possible way of the analysis is
given in the Remark 4.11. The three dimensional case is the topic of our on-going research.

The paper is organized as follows. Section 2 describes a localization of the gradient
via a partition of unity. The a posteriori error estimator is presented in Sect. 3. Section 4
establishes the local efficiency bound and Sect. 5 provides numerical results for a benchmark
test problem.

2 Local Gradient Recovery

The identity in (1.11) suggests that one should recover an approximated gradient in a finite-
dimensional subset of H̊g,D(curl;Ω) that also minimize the quantity ‖A1/2τ + A−1/2σT ‖.
This requires solving aglobalminimizationproblem. Instead,weadopt the ideaof localization
through a partition of the unity using the conforming linear finite element basis functions as in
[8,15]. Differing from that of [8,15], local gradients are computed through local minimization
problems with only curl constraint.

To this end, denote the set of vertices of the triangulation T by

N := NI ∪ ND ∪ NN ,

where NI is the set of interior vertices, ND and NN are the sets of boundary vertices on ΓD

and Γ N , respectively. Note that z ∈ Γ N ∩ Γ D is in NN but not ND . Denote by φz(x) the
standard linear Lagrange basis function associated with the vertex z ∈ N , then {φz(x)}z∈N
forms a partition of the unity in Ω . Hence, the true gradient, ρ = ∇u, has the following
decomposition

ρ =
∑
z∈N

(φzρ) =
∑
z∈N

ρz with ρz = φzρ. (2.1)

For any vertex z ∈ N , denote byωz the interior of supp (φz(x)), which is the vertex patch,
and byTz = {K ∈ T : ωz∩K �= ∅} its triangulation. For any K ∈ Tz ,∇×ρz = −∇⊥φz ·∇u,
replacing ∇u by its numerical approximation −A−1σT , we have

∇ × ρz is approximately ∇⊥φz · (A−1σT ) on K .

Value of the tangential component of ρz on a boundary edge F of the vertex patch ωz is
determined by either the fact that φz vanishes on F or the Dirichlet boundary condition of
the solution u when F ⊂ ΓD and φz |F �= 0. To precisely describe boundary conditions of
ρz , we first introduce edge notations. To this end, denote the set of edges of the triangulation
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T by

E := EI ∪ ED ∪ EN ,

where EI is the set of interior element edges, ED and EN are the sets of boundary edges on
ΓD and ΓN , respectively. Denote by Ẽz the set of all edges having z ∈ N as the common
vertex. Denote the set of all edges of Tz by

Ez = {F ∈ E : F ∩ ωz �= ∅} = EI ,z ∪ Eb,z,

where EI ,z and Eb,z are the sets of the respective interior and boundary edges of Tz . Let

E0,z =
{
Eb,z if z ∈ NI ,

{F ∈ Eb,z : F /∈ ∂Ω} if z ∈ ND ∪ NN .

It is then easy to see that ρz ·t = 0 on F ∈ E0,z . For z ∈ ND∪NN , we have ρz ·t = φz∇gD ·tF
on ED,z = Eb,z ∩ Ẽz ∩ ED .

Thus, on the vertex patch ωz , we wish to find a ρ̂T ,z in a finite dimensional subspace of
H(curl;ωz) satisfying the curl constraint on each K ∈ Tz

∇ × ρ̂T ,z = ∇⊥φz · (A−1σT )

and the following boundary conditions

ρ̂T ,z · t = φz∇gD · t on F ∈ ED,z if z ∈ ND ∪ NN and ρ̂T ,z · t = 0 on F ∈ E0,z .
(2.2)

Since for σT |K ∈ Pk+1(K ), ∇⊥φz · (A−1σT )|K ∈ Pk+1(K ), the local finite element
space we used is the Nédélec finite element space of the first type (ND) [22,23]. The ND
element on an element K is defined as NDk(K ) = Pk(K )2 + (x2,−x1)t Pk(K ). For an F , an
edge of K , the trace space is {τ · tF : τ ∈ NDk(K )} = Pk(F), and ∇ × (NDk(K )) = Pk(K ),
for a K ∈ T . Thus at least NDk+1 is a necessary to handle the ∇⊥φz · (A−1σT ) term.

For simplicity, we assume gD|F ∈ Pk+2(F) for all F ∈ ED . to ensure that ∇gD · t lies in
the tangential trace space of the global space of NDk+1. Let Π

k+1
F be the L2 projection on to

Pk+1(F), define

ND0,z =

⎧⎪⎪⎨
⎪⎪⎩

τ ∈ H(curl;ωz) :
τ |K ∈ NDk+1(K ) ∀ K ∈ Tz
τ · t|F = 0 ∀ F ∈ E0,z,
τ · t|F = Πk+1

F (φz∇gD · tF ) on
F ∈ ED,z, if z ∈ ND ∪ NN

⎫⎪⎪⎬
⎪⎪⎭

,

and Yz =
{
τ ∈ ND0,z : ∇ × τ = (∇⊥φz) · (A−1σT )

}
.

Here, we also need to check the compatibility condition of Yz to see if it is well defined:∫
ωz

∇ × τdx =
∫

∂ωz

τ · tds ∀ z ∈ NI ∪ ND .

This is true since

(A−1σT ,∇⊥φz)ωz = −(∇u,∇⊥φz)ωz = (∇u · t, φz)0,ωz =
∑

F∈ED,z

(∇gD · t, φz)F .

(2.3)

For z ∈ NN , since there will always be some part of the ωz without specified boundary
condition, the compatibility condition is not a problem.
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Since σT ∈ ΣT , so φz A−1σT |K ∈ Pk+2(K )2, it seems natural to choose the following
minimization:

ρT ,z = arg min
τ∈Yk+2

z

‖A1/2(τ + A−1σT φz)‖0,ωz z ∈ N and ρT =
∑
z∈N

ρT ,z,

where the space Yk+2
z is the space replacing NDk+1 to NDk+2 in the definition of Yz and

removing the projection on the Dirichlet boundary. It is big enough to contain A−1σT φz .
But as discussed in [8,15] and later in this paper, it is possible to use spaces with one degree
lower Yz to recover the local and global gradient.

Let the element interpolation Πnd
K be the Nédélec interpolation to NDk+1(K ). For τ ∈

{τ ∈ Lt (K )2 : ∇ × τ ∈ Lt (K )} for some t > 2, define

((τ − Πnd
K τ ) · t, p)F = 0, ∀ p ∈ Pk+1(F),∀F ∈ ∂K , k ≥ 0, (2.4)

(τ − Πnd
K τ ,∇⊥q)K = 0, ∀ q ∈ Pk+1(K ), k ≥ 1, (2.5)

Define the interpolation on a patch on the whole Ω element-wisely by Πndτ |K := Πnd
K τ .

The corresponding economical minimization problem is:
Local H(curl) conforming minimization problem Find ρT ,z ∈ Yz ,

ρT ,z = arg min
τ∈Yz

‖A1/2(τ + Πnd(A−1σT φz))‖0,ωz z ∈ N . (2.6)

Let

N̂D0,z :=
⎧⎨
⎩τ ∈ H(curl;ωz) :

τ |K ∈ NDk+1(K ) ∀ K ∈ Tz
τ · t|F = 0 ∀ F ∈ E0,z
τ · t|F = 0 on F ∈ ED,z, if z ∈ ND ∪ NN

⎫⎬
⎭ , (2.7)

Pz := {v ∈ L2(ωz) : v|K ∈ Pk(K ) ∀ K ∈ Tz}, (2.8)

Pz := {v ∈ L2(ωz) : v|K ∈ Pk(K ) ∀ K ∈ Tz, (1, v)0,ωz = 0}. (2.9)

Let

Qz =
{
Pz z ∈ NI ,

Pz z ∈ ND ∪ NN .
(2.10)

The constraint minimization problem (2.6) is equivalent to the following saddle point for-
mulation:
Local H(curl) conforming saddle point problem Find (ρT ,z, wz) ∈ ND0,z × Qz such that

{
(AρT ,z, τ )ω,z + (∇ × τ , wz)ωz = −(AΠnd(A−1σT φz), τ )ωz ∀ τ ∈ N̂D0,z,

(∇ × ρT ,z, v)ωz = (∇⊥φz · (A−1σT ), v)ωz ∀ v ∈ Qz .
(2.11)

The existence and uniqueness of the above problem can be proved by the standard mixed
finite element theory or can be shown by the analysis of its equivalent local broken H(curl)
saddle point problem in Sect. 4. Note that for an interior node, it is corresponding to a pure
Neumann problem, thus the zero average condition is needed for the space Qz to guarantee
the uniqueness.
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3 A Posteriori Error Estimator

With the local gradient ρT ,z ∈ Yz computed in the previous section. Let

ρT ,K =
∑
z∈NK

ρT ,z and ρT =
∑
z∈N

ρT ,z,

Lemma 3.1 The recovered gradient ρT is in H̊g,D(curl;Ω).

Proof On each K ∈ T , by the facts that
∑

z∈NK
φz(x) = 1,

we have

∇ × ρT |K =
∑
z∈NK

(∇ × ρT ,z

) =
∑
z∈NK

∇⊥φz · (A−1σT ) = ∇⊥1 · (A−1σT ) = 0.

For an interior edge F ∈ EI , since all ρT ,z is in H(curl;ωz) with continuous tangential
components, then

[[ρT · t]]F =
∑
z∈NF

[[ρT ,z · t]]F = 0, ∀F ∈ EI .

For a Dirichlet edge F ∈ ED ,

ρT · t|F =
∑
z∈NF

ρT ,z · t|F =
∑
z∈NF

Πk+1
F (φz(∇gD · t|F ))

= Πk+1
F (∇gD · t|F ) = ∇gD · t|F ,∀F ∈ ED .

The lemma is proved. ��
Define the local indicators and the error estimator by

ηz = ‖A1/2(ρT ,z + Πnd(A−1σT φz))‖0,ωz , ∀z ∈ N (3.1)

ηK = ‖A1/2(ρT ,K + A−1σT )‖0,K , ∀K ∈ T , (3.2)

and η = ‖A1/2(ρT + A−1σT )‖0,Ω, (3.3)

respectively.

Remark 3.2 From (3.1), it is clear that the interpolation Πnd is necessary, otherwise, even in
the ideal case that the numerical solution σT is exact: σT = σ and ∇u|K = −A−1σT |K ∈
Pk+1(K )2, ηz without the interpolation will not be zero since ρT ,z |K ∈ NDk+1(K ) is not
big enough to contain all A−1σT φz |K ∈ Pk+2(K )2. To remove this interpolation, one can
choose Nédélec finite element spaces with higher order at the cost of solving a slightly larger
problem locally.

Theorem 3.3 (Reliability) The error estimator η is reliable with the reliability constant being
one; i.e.,

‖A1/2∇u + A−1/2σT ‖0,Ω ≤ η. (3.4)

Proof The conclusion is obvious from (1.10), (1.11) and Lemma 3.1. ��

123



Journal of Scientific Computing (2020) 83 :22 Page 9 of 22 22

4 Robust Efficiency for the Case A = ˛I

In this section, we establish robust efficiency bounds for the local indicators ηK and ηz for
the interface problem A = α(x)I with α being a given scalar, piecewise positive constant
function with respect to the triangulation T . For the full tensor case, if we assume that the
ratio of the largest and the smallest eigenvalues on each element K is boundedwith a constant
independent of location x , the generalization is easy.

Similar to the analysis we did in [15], the robust efficiency is analyzed though a stability
estimate of the mixed finite element problem of the error gradient in (4.14) which relates the
local indicator to the local discrete dual norm of local representation of the error. Then the
dual norm is connected with the classical residual type of error indicator whose efficiency is
well known.

In order to prove the robustness of the indicators, we show that the stability estimate of
(4.14) is independent of jumps of the coefficients α. This is done by employing the abstract
framework of the saddle-point problem (see, e.g., [5]) and by choosing proper mesh- and
α-dependent norms. Earlier analysis on the mixed methods using mesh-dependent norms can
be found in Babuška, Osborn, and Pitkäranta [3] and Braess and Verfürth [10].

This section is organized as follows:wefirst introduce local edgenotations including jumps
and weighted averages in Sect. 4.1. In Sect. 4.2, local element residual and jumps and an
identity which plays important role in the efficiency proof are introduced.We reformulate the
minimization problem (2.6) and its corresponding saddle point problem (2.11) as a problemof
the local error gradient in broken-H(curl;ωz) space for easier efficiency analysis in Sect. 4.3.
The robust stability of themixd formulation of the local error gradient is analyzed in Sect. 4.4.
Finally in Sect. 4.5 the robust local efficiency is proved by comparison with known residual-
type of error estimator.

4.1 Local Edge Notations

In order to define the equivalent brokenmixed formulation,we need introducemore notations.
Let

EN ,z = Eb,z ∩ Ẽz ∩ EN .

Note that when z ∈ ND , ED,z is meaningful. For z ∈ NN and z is an interior point of ΓN ,
only EN ,z is meaningful. While if z ∈ NN and z is an intersection point of ΓN and ΓD , both
ED,z and EN ,z appear. In other cases, ED,z or EN ,z is empty.

Define the edge sets for non-zero jump terms (used for error gradient defined later) and
zero tangential component terms as follow, respectively:

E j,z =
⎧⎨
⎩

EI ,z if z ∈ NI ,

EI ,z ∪ ED,z if z ∈ ND,

EI ,z ∪ ED,z if z ∈ NN and z ∈ Γ D ∩ Γ N ,

Note that for z ∈ NN , Neumann edges belong to neither sets.
For each F ∈ E , denote by hF the length of the edge F and by nF a unit vector normal to

F . Let K−
F and K+

F be the two elements sharing the common edge/face F such that the unit
outward normal vector of K−

F coincides with nF . When F ∈ ED ∪EN , nF is the unit outward
vector normal to ∂Ω and denote by K−

F the element having the edge F . For a function v

defined on K−
F ∪ K+

F , denote its traces on F by v|−F and v|+F , respectively. The jump over the
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edge F is denoted by

[[v]]F :=
{

v|−F − v|+F F ∈ EI ,
v|−F F ∈ ED ∪ EN .

We will follow the above definition of the jump on a general domain ω with a mesh T on
it. When there is no ambiguity, the subscript or superscript F in the designation of the jump
will be dropped.

For A = α(x)I with α being a given scalar, piecewise positive constant function with
respect to the triangulation T . For F = ∂K+

F ∩ ∂K−
F ∈ EI , denote by α+

F and α−
F the

restriction of α on the respective K+
F and K−

F .
Define the following weighted averages

{v(x)}Fw =
{

w−
F v−

F + w+
F v+

F F ∈ EI ,
0 F ∈ ED ∪ EN

(4.1)

and

{v(x)}wF =
{

w+
F v−

F + w−
F v+

F F ∈ EI ,
v−
F F ∈ ED ∪ EN ,

(4.2)

where w−
F = 1 − w+

F and w+
F is defined by

w+
F =

⎧⎨
⎩

α−
F

α−
F + α+

F

= 1/α+
F

1/α−
F + 1/α+

F

F ∈ EI ,

1 F ∈ ED ∪ EN .

(When there is no ambiguity, the subscript or superscript F in the designation of the weighted
average will be dropped.) A simple calculation leads to the following identity:

[[uv]]F = {v}wF [[u]]F + {u}Fw [[v]]F . (4.3)

For F ∈ E and for 0 ≤ c ≤ 1, denote a weighted average of α by

αF =
{
cαK− + (1 − c)αK+ F ∈ EI ,
αK− F ∈ ED ∪ EN .

Obviously, min{αK− , αK+} ≤ αF ≤ max{αK− , αK+} for F ∈ EI . Denote the arithmetic and
the harmonic averages of α on F ∈ E by

αF,A =
⎧⎨
⎩

α+
F + α−

F

2
F ∈ EI ,

α−
F F ∈ ED ∪ EN

and

aF,H =
⎧⎨
⎩

2α+
Fα−

F

α+
F + α−

F

, F ∈ EI ,

α−
F F ∈ ED ∪ EN ,

respectively, which are equivalent to the maximum and the minimum of α:

1

2
max{α+

F , α−
F } ≤ αF,A ≤ max{α+

F , α−
F } and 1

2
min{α+

F , α−
F } ≤ aF,H ≤ min{α+

F , α−
F }.
(4.4)
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4.2 Local Element Residuals and Edge Jumps

In this subsection, we introduce some notations on local element residuals and edge jumps
and their relations.

Define the element residual

rK = ∇ × (A−1σT )|K .

and the gradient edge jump

jF =
{ [[A−1σT · t]]F F ∈ EI ,

(A−1σT + ∇gD) · tF F ∈ ED .

Lemma 4.1 For all z ∈ NI ∪ ND, the following identity is true on the local patch ωz:∑
K∈Tz

(rK , φz)K −
∑

F∈E j,z

( jF , φz)F = 0. (4.5)

Proof For mixed methods, the following error equation holds:

(A−1σT + ∇u, τ ) = (A−1σT − A−1σ , τ ) = (∇ · τ , uT − u), ∀τ ∈ ΣT .

For all z ∈ NI ∪ND , we have φz ∈ H1
N (Ω) and∇⊥φz ∈ RT0∪H(div;Ω). Since∇⊥φz ·n =

∇φz · t, so ∇⊥φz · n = 0 on ΓN if z ∈ NI ∪ ND (note that ND only contains the interior
nodes of Dirichlet boundary). Thus∇⊥φz ∈ RT0 ∪HN (div;Ω) ⊂ ΣN ,k , and∇ ·∇⊥φz = 0,
thus

(A−1σT + ∇u,∇⊥φz) = (∇ · ∇⊥φz, uT − u) = 0. (4.6)

Combined this with the interrogation by parts,

0 = (A−1σT + ∇u,∇⊥φz)

=
∑
K∈Tz

(∇ × (A−1σT ), φz) −
∑
K∈Tz

((A−1σT + ∇u) · tK , φz)∂K

=
∑
K∈Tz

(∇ × (A−1σT ), φz) −
∑

F∈EI ,z

([[(A−1σT ) · t]], φz)F

−
∑

F∈ED,z

((A−1σT + ∇gD) · t, φz)F

=
∑
K∈Tz

(rK , φz)K −
∑

F∈E j,z

( jF , φz)F .

This proves the lemma. ��

4.3 Local Broken-H(curl;!z) Reformulation

In this subsection, we will rewrite the minimization problem (2.6) and its corresponding
saddle point problem (2.11) as a problem in broken-H(curl;ωz) space for easier efficiency
analysis.

First define the broken H(curl) finite element space

ND−1,z =
{
τ ∈ L2(ωz) : τ |K ∈ NDk+1(K ) ∀ K ∈ Tz

τ · t|F = 0 ∀ F ∈ E0,z .

}
.
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Replace εT ,z := ρT ,z + Πnd(A−1σT φz) in (2.11), we have εT ,z ∈ ND−1,z and

∇ × ρT ,z = ∇ × εT ,z − ∇ × Πnd(A−1σT φz) on K ∈ Tz .

By the community property of the Nédélec interpolation operator: ∇ × Πnd
K = Πk

K∇×, for
any K ∈ Tz , with Πk

K be the L2 projection on Pk(K ) space, then for all K ∈ Tz ,

∇ × Πnd
K (A−1σT φz) = Πk

K∇ × (A−1σT φz) = Πk
K (∇ × (A−1σT φz) − ∇⊥φz · A−1σT ).

On the other hand,

[[εT ,z · t]] = [[ρT ,z · t]] + [[Πnd(A−1σT φz) · t]]

=
{

Πk+1
F ([[A−1σT · t]]φz) ∀ F ∈ EI ,z,

Πk+1
F ((A−1σT + ∇gD) · t)φz) ∀ F ∈ ED,z

Thus

[[εT ,z · t]] = Πk+1
F ( jFφz), ∀F ∈ E j,z .

On the other hand,

∇ × εT ,z = ∇ × ρT ,z + Πk
K (rKφz) − ∇⊥φz · A−1σT = Πk

K (rKφz), ∀K ∈ Tz .

So the corresponding local minimization problem for εT ,z is:
Local broken H(curl) minimization problem Find εT ,z ∈ Wz ,

εT ,z = arg min
τ∈Wz

‖A1/2τ‖0,ωz z ∈ N , (4.7)

with

Wz =
{
τ ∈ ND−1,z : ∇ × τ = Πk

K (rKφz), ∀K ∈ Tz;
[[τ · t]] = Πk+1

F ( jFφz), ∀F ∈ E j,z .

}

From our derivation, we see that the problems (4.7) and (2.6) are equivalent: εT ,z = ρT ,z +
Πnd(A−1σT φz), ∀K ∈ Tz .

The solvability of the minimization problem (4.7) can be derived from the equivalence of
(4.7) and (2.6) and the solvability of (2.6). On the other hand, it can also be derived directly
by using the result of the identity (4.5) (in Lemma 4.1 ) as did in [8]. Since essentially the
conditions (2.3) and (4.5) are two different forms of the same identity.

Since the rest analysis is only valid for A = α I , we only use the notation α. In the sprit
of [15], the weak formulation of the local broken H(curl) minimization problem can also be
written as:
Local broken H(curl) saddle point problem Find (εT ,z, wz, λz) ∈ ND−1,z × Qz × Mz , such
that ⎧⎨

⎩
az(εT ,z, τ ) + cz(τ , wz) − dz(τ , λz) = 0 ∀ τ ∈ ND−1,z,

cz(εT ,z, v) = ∑
K∈Tz

(rKφz, v)K ∀ v ∈ Qz,

dz(εT ,z, μ) = ∑
F∈E j,z

( jFφz, μ)F ∀ μ ∈ Mz,

(4.8)

where

az(τ ,χ) =
∑
K∈TZ

(ατ ,χ)K , ∀ τ ,χ ∈ ND−1,z, (4.9)

cz(τ , v) =
∑
K∈Tz

(∇ × τ , v)K , (τ , v) ∈ ND−1,z × Qz, (4.10)
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dz(τ , μ) =
∑

F∈E j,z

([[τ · t]], μ)F , (τ , μ) ∈ ND−1,z × Mz, (4.11)

and the space is Mz = {μ ∈ L2(E j,z) : v|F ∈ Pk+1(F) ∀ F ∈ E j,z}.
Define

bz(τ , (v, μ)) := cz(τ , v) − dz(τ , μ) ∀ (τ , v, μ) ∈ ND−1,z × Qz × Mz .

Lemma 4.2 The bilinear form bz has the following representation:

bz(τ , (v, μ)) =
∑
K∈Tz

(τ ,∇⊥v)K +
∑

F∈EI ,z

({τ · t}w, [[v]])F +
∑

F∈EI ,z

([[τ · t]], {v}w − μ)F

+
∑

F∈ED,z

(τ · t, v − μ)F +
∑

F∈EN ,z

(τ · t, v)F

=
∑
K∈Tz

(τ ,∇⊥v)K +
∑

F∈EI ,z

({τ · t}w, [[v]])F +
∑

F∈E j,z

([[τ · t]], {v}w − μ)F

+
∑

F∈EN ,z

(τ · t, v)F ∀ (τ , v, μ) ∈ ND−1,z × Qz × Mz . (4.12)

Proof By integrations by parts and the jump identity (4.3), we have :

bz(τ , (v, μ)) =
∑
K∈Tz

(∇ × τ , v)K −
∑

F∈E j,z

([[τ · t]], μ)F

=
∑
K∈Tz

(τ ,∇⊥v)K +
∑

F∈EI ,z

([[τ · t]], {v}w)F +
∑

F∈EI ,z

({τ · t}w, [[v]])F

+
∑

F∈Eb,z\E0,z
(τ · t, v)F −

∑
F∈EI ,z

([[τ · t]], μ)F −
∑

F∈ED,z

(τ · t, μ)F

=
∑
K∈Tz

(τ ,∇⊥v)K +
∑

F∈EI ,z

({τ · t}w, [[v]])F +
∑

F∈EI ,z

([[τ · t]], {v}w − μ)F

+
∑

F∈ED,z

(τ · t, v − μ)F +
∑

F∈EN ,z

(τ · t, v)F ,

∀ (τ , v, μ) ∈ ND−1,z × Qz × Mz .

��
Let

Rz(v, μ) =
∑
K∈Tz

(rKφz, v)K −
∑

F∈E j,z

( jFφz, μ)F , ∀ (v, μ) ∈ Qz × Mz . (4.13)

Thus (4.8) can be rewritten as: find (εT ,z, wz, λz) ∈ ND−1,z × Qz × Mz , such that{
az(εT ,z, τ ) + cz(τ , wz) − dz(τ , λz) = 0 ∀ τ ∈ ND−1,z,

bz(εT ,z, (v, μ)) = Rz(v, μ) ∀ (v, μ) ∈ Qz × Mz .
(4.14)

From our derivation, we see that the problems (2.11) and (4.14) are equivalent, thus all
four problems (4.7), (2.6), (2.11) and (4.14) are equivalent with:

εT ,z = ρT ,z + Πnd(α−1σT φz) ∀K ∈ Tz . (4.15)
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Thus, we have the equivalence of the local indicators:

ηz = ‖α1/2(ρT ,z + Πnd(α−1σT φz))‖0,ωz = ‖α1/2εT ,z‖0,ωz , ∀z ∈ N . (4.16)

Remark 4.3 We have four equivalent version of local recoveries discussed. Two ((2.6) (4.7))
are in the forms of minimization problems, while the other two are in the form of saddle
point problems. Two ((2.6) and (2.11)) are for the H(curl)-conforming recoveries, and two
((4.7) and (4.14)) are for the broken H(curl) recoveries. The form (2.11) is recommended
for implementations. The broken mixed problem (4.14) is convenient for analysis, we will
use this to analyze the robust efficiency of our error estimator.

Remark 4.4 An explicit construction similar to that discussed in [15] can also be done. For
the broken H(curl) minimization problem (4.7), one can first construct a τ ∈ Wz explicitly
like that been done in [6,15,30], then a correction can be added in the local H(curl;ωz)-
conforming and curl-free space like we did in [15].

4.4 Stability Estimate of the Local Broken H(curl) Saddle Point Problem

For τ ∈ ND−1,z and (v, μ) ∈ Qz × Mz , define (α, h)-dependent norms on ωz by

‖τ‖2α,h,z := ‖α1/2τ‖20,ωz
+

∑
F∈E j,z

hFαF,A‖τ · t‖20,F +
∑

F∈EN ,z

hFαF‖τ · t‖20,F ,

|||(v, μ)|||2α,h,z := ‖α−1/2∇⊥
h v‖20,ωz

+
∑

F∈EI ,z

1

hFαF,A
‖[[v]]‖20,F

+
∑

F∈EI ,z

1

hFαF,H
‖{v}w − μ‖20,F +

∑
F∈ED,z

1

hFαF
‖v − μ‖20,F

+
∑

F∈EN ,z

1

hFαF
‖v‖20,F .

Remark 4.5 Here,‖τ‖α,h,z is aweightedh-dependent L2-normand and |||v|||α,h,z is aweighted
h-dependent discrete H1-norm.

Lemma 4.6 For all τ ∈ NDk+1(K ) and all v ∈ Pk(K ), there exists a positive constant C
such that∑

F∈EK

hF‖τ · t‖20,F ≤ C‖τ‖20,K and
∑
F∈EK

1

hF
‖v‖20,F ≤ C h−1

K ‖v‖20,K ,

where the constant C depends only on the polynomial degree k and shape parameters of Tz .

Proof The lemma is a simple consequence of the standard scaling argument and the fact that
both NDk+1(K ) and Pk(K ) are finite dimensional spaces. ��

Let K ∗
F be the element of ωF with a larger αK , Lemma 4.6 implies that

hFαF,A‖τ · t‖20,F ≤ ‖α1/2
K ∗ τ‖20,K ∗

F
.

Thus we have the following norm-equivalence:

‖α1/2τ‖0,ωz ≤ ‖τ‖α,h,z ≤ C‖α1/2τ‖0,ωz ∀ τ ∈ ND−1,z . (4.17)
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Lemma 4.7 The bilinear form az(·, ·) is continuous and coercive with respect to the norm
‖ · ‖α,h,z in τ ∈ ND−1,z; i.e., there exists a positive constant ac independent of α and the
mesh size such that for all χ , τ ∈ ND−1,z

ac‖τ‖2α,h,z ≤ az(τ , τ ) and az(χ , τ ) ≤ ‖χ‖α,h,z‖τ‖α,h,z .

Proof The lemma is a direct consequence of (4.17) and the Cauchy-Schwarz inequality. ��
Lemma 4.8 The bilinear form bz(·, ·) is continuous in ND−1,z × (Qz × Mz); i.e., there exists
a positive constant C independent of the mesh size such that

bz(τ , (v, μ)) ≤ C‖τ‖α,h,z |||(v, μ)|||α,h,z . (4.18)

Proof It follows from (4.12) and the Cauchy-Schwarz inequality that

bz(τ , (v, μ)) ≤ ‖α1/2τ‖0.ωz‖α1/2∇⊥
h v‖0,ωz

+
∑

F∈EI ,z

√
hFαF,A‖{τ · t}w‖0,F 1√

hFαF,A
‖[[v]]‖0,F

+
∑

F∈EI ,z

√
hFαF,H‖[[τ · t]]‖0,F 1√

hFαF,H
‖{v}w − μ‖0,F

+
∑

F∈ED,z

√
hFαF‖τ · t‖0,F 1√

hFαF
‖v − μ‖0,F

+
∑

F∈EN ,z

√
hFαF‖τ · t‖0,F 1√

hFαF
‖v‖0,F .

Denote by τ±
t = τ |K±

F
· tF , then by (4.17) and the definitions of weights, αF,A, and αF,H ,

we have

hFαF,A‖{τ · t}w‖20,F ≤ ChF
α+
F + α−

F

2

(
(α−

F )2

(α−
F + α+

F )2
‖τ−

t ‖20,F + (α+
F )2

(α−
F + α+

F )2
‖τ+

t ‖20,F
)

≤ ChF
(
α−
F ‖τ−

t ‖20,F + α+
F ‖τ+

t ‖20,F
) ≤ C‖α1/2τ‖20,ωz

,

and

hFαF,H‖[[τ · t]]‖20,F ≤ ChFαF,H
(‖τ−

t ‖20,F + ‖τ+
t ‖20,F

)
≤ ChF

(
α−
F ‖τ−

t ‖20,F + α+
F ‖τ+

t ‖20,F
) ≤ C‖α1/2τ‖20,ωz

.

This proves the lemma. ��
Lemma 4.9 (inf-sup condition) The following inf-sup condition holds with constant β > 0
independent of α and h:

sup
τ∈ND−1,z

bz(τ , (v, μ))

‖τ‖α,h,z
≥ β|||(v, μ)|||α,h,z ∀ (v, μ) ∈ Qz × Mz . (4.19)

Proof Choose a τ̃ ∈ ND−1,z such that∫
K
(ατ̃ − ∇⊥v) · ∇⊥qdx = 0 ∀ q ∈ Pk+1(K ) ∀ K ∈ Tz
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and that

τ̃ · tK |F =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sgn(K , F)
1

hFαF,A
[[v]] + 1

2hFαK
({v} − μ) F ∈ EK ∩ EI ,z,

1

αK hF
(v − μ) F ∈ EK ∩ ED,z,

1

αK hF
v F ∈ EK ∩ EN ,z,

0 F ∈ EK ∩ E0,z,

(4.20)

where sgn(K , F) = nK · nF . Obviously, (4.20) implies

{τ̃ · tF }w = 1

hFαF,A
[[v]] and [[τ̃ · tF ]] = 1

hFαF,H
({v}w − μ) ∀ F ∈ EI ,z,

which, together with (4.12) and (4.17), gives

b(τ̃ , v) = |||(v, μ)|||2α,h,z . (4.21)

For every K ∈ Tz , by the standard scaling argument and (4.4), there exists a constant C > 0
independent of α and the mesh size such that

C‖α1/2
K τ̃‖20,K ≤ ‖α−1/2∇⊥v‖20,K

+
∑

F∈EK∩EI ,z

1

hFαF,A
‖[[v]]‖20,F + 1

hFαF,H
‖{v}w − μ‖20,F

+
∑

F∈EK∩ED,z

1

hFαF
‖v − μ‖20,F +

∑
F∈EK∩EN ,z

1

hFαF
‖v‖20,F .

Hence, there exists a constant C̃ > 0 independent of α and h such that

‖τ‖α,h,z ≤ C̃ |||(v, μ)|||α,h,z .

which, together with (4.21), leads to (4.19) with β = 1/C̃ . This completes the proof of the
lemma. ��
Theorem 4.10 The unique solution (εT ,z, wz, λz) ∈ ND−1,z × Qz × Mz of problem (4.14)
satisfies the following bound:

ηz = ‖α1/2εT ,z‖0,ωz ≤ ‖εT ,z‖α,h,z ≤ ‖εT ,z‖α,h,z + |||(wz, λz)|||α,h,z

≤ C(ac, β) sup
(v,μ)∈Qz×Mz

Rz(v, μ)

|||(v, μ)|||α,h,z
,

where the constant C(ac, β) > 0 is independent of the mesh size and jumps.

Proof The theorem follows from the abstract theory of saddle point problem (see, e.g., [5,6])
and Lemmas 4.7, and 4.9 . ��
Remark 4.11 Another possible way to establish the stability of broken mixed problem (4.14)
is that we establish the stability of its equivalent version, the conforming version (2.11)
first, which might be easier, then the stability of (4.14) is proved by the equivalence of
two problems. This approach is less direct, but might be useful for the three dimensional
case, where the trace space of Nédélec finite element space (see e.g. [16]) is much more
complicated.
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4.5 Robust Local Efficiency Bound

For any z ∈ N , let

ω̂z = {K ∈ ωz : βK = max
K ′∈ωz

βK ′ }.

Assume that the distribution of the coefficients αK for all K ∈ T is locally quasi-monotone
[25] which is slightly weaker than Hypothesis 2.7 in [4]. For convenience of readers, we
restate it here.

Definition 4.12 Given a vertex z ∈ N , the distribution of the coefficients βK , K ∈ ωz , is
said to be quasi-monotone with respect to the vertex z if there exists a subset ω̃K ,z,qm of ωz

such that the union of elements in ω̃K ,z,qm is a Lipschitz domain and that

– if z ∈ N\ND , then {K } ∪ ω̂z ⊂ ω̃K ,z,qm and βK ≤ βK ′ ∀K ′ ∈ ω̃K ,z,qm ;
– if z ∈ ND , then K ∈ ω̃K ,z,qm , ∂ω̃K ,z,qm ∩ ΓD �= ∅, and βK ≤ βK ′ ∀K ′ ∈ ω̃K ,z,qm .

The distribution of the coefficients βK , K ∈ T , is said to be locally quasi-monotone if it is
quasi-monotone with respect to every vertex z ∈ N .

In this paper, we assume the distribution of 1/αK is locally quasi-monotone.
Denote the vertex-based local residual error indicator by

η̂2z =
∑
K∈Tz

h2KαK ‖rK ‖20,K +
∑

F∈E j,z

hFαF,A‖ jF‖20,F . (4.22)

Its robust local efficiency for the lowest mixed method is proved in [14], whose extensions
to higher order mixed methods is trivial. There exists a constant C > 0 which is independent
of α and the mesh size such that

η̂z ≤ C‖α1/2∇u + α−1/2σT ‖0,ω̃z , (4.23)

where ω̃z = ωz ∪ {K and ∂ωz shares an edge}.
Define the following piecewise H1 function spaces

Vz =
{ {v ∈ L2(ωz) : v|K ∈ H1(K ),

∫
ωz

vdx = 0}, z ∈ NI ,

{v ∈ L2(ωz) : v|K ∈ H1(K )}, z ∈ ND ∪ NN .

Obviously, Qz ⊂ Vz . Let K ′ be the element with the smallest αK in ωz , define v̄z =∫
K ′ vdx/|K ′|.

Theorem 4.13 Under the assumptions that 1/αK is locally quasi-monotone in Tz , for any
v ∈ Vz, there exists a constant C independent of the mesh size and α such that

∑
K∈Tz

h−2
K ‖α−1/2(v − v̄z)‖20,K ≤ C

⎛
⎝ ∑

K∈Tz

‖α−1/2∇⊥v‖20,K +
∑

F∈E j,z

1

hF αF,A
‖[[v]]‖20,F

⎞
⎠ ,

(4.24)
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when z ∈ NI ∪ ND and

∑
K∈Tz

h−2
K ‖α−1/2v‖20,K ≤ C

⎛
⎝ ∑

K∈Tz

‖α−1/2∇⊥v‖20,K

+
∑

F∈E j,z

1

hFαF,A
‖[[v]]‖20,F +

∑
F∈EN ,z

1

hFαF
‖v‖20,F

⎞
⎠ ,

(4.25)

when z ∈ NN .

Proof The theorem is can be proved in a similar fashion as Corollary 5.10 of [15]. ��
Theorem 4.14 (Efficiency) Under the assumptions that 1/αK is locally quasi-monotone in
Tz , the local indicators ηz and ηK are efficient; i.e., there exists a constant C > 0 independent
of α and the mesh size such that

ηz ≤ C‖α1/2∇u + α−1/2σT ‖0,ω̃z and ηK ≤ C
∑
z∈Nk

‖α1/2∇u + α−1/2σT ‖0,ω̃z .(4.26)

Proof Squaring both sides of the first inequality in (4.26) and summing up over all z ∈ NK

imply the second inequality in (4.26). To prove the validity of the first inequality in (4.26),
by Theorem 5.1 and (4.23), it suffices to show that

sup
(v,μ)∈Qz×Mz

Rz(v, μ)

|||(v, μ)|||α,h,z
≤ C η̂z

or, equivalently,

Rz(v, μ) ≤ C η̂z |||(v, μ)|||α,h,z ∀ (v, μ) ∈ Qz × Mz . (4.27)

We prove the case z ∈ NI ∪ ND first. By (4.5), for an arbitrary constant c

Rz(c, c) = 0, ∀ z ∈ NI ∪ ND,

which implies

Rz(v, μ) = Rz(v − c, μ − c), ∀ z ∈ NI ∪ ND, ∀ (v, μ) ∈ Qz × Mz . (4.28)

Choose c = v̄z be the average of v on ωz . In fact, for z ∈ NI , vz = 0. It follows from the
triangle inequality, the facts that ‖rKφz‖0,K ≤ ‖rK ‖0,K and ‖ jFφz‖0,F ≤ ‖ jF‖0,F , and the
Cauchy-Schwarz inequality that

Rz(v, μ) = Rz(v − v̄z, μ − v̄z) =
∑
K∈Tz

(rKφz, v − v̄z)K −
∑

F∈E j,z

( jFφz, μ − v̄z)F

=
∑
K∈Tz

(rKφz, v − v̄z)K

−
∑

F∈E j,z

( jFφz, {v − v̄z}w)F +
∑

F∈E j,z

( jFφz, {v}w − μ)F

≤
∑
K∈Tz

‖rKφz‖0,K ‖v − v̄z‖0,K
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+
∑

F∈E j,z

‖ jFφz‖0,F (‖{v − v̄z}w‖0,F + ‖{v}w − μ‖0,F )

≤ η̂z

⎛
⎝ ∑

K∈Tz

1

h2KαK
‖v − v̄z‖20,K

+
∑

F∈E j,z

1

hFaF,A
(‖{v − v̄z}w‖20,F + ‖{v}w − μ‖20,F )

⎞
⎠

1/2

.

Note that 1/αF,A ≤ 1/αF,H and 1/αF,A ≤ min{1/αF,−, 1/αF,+}, thus
1

hFaF,A
‖{v − v̄z}w‖20,F ≤

∑
K∈{K−

F ,K+
F }

1

h2KαK
‖v − v̄z‖20,K

and
1

hFaF,A
‖{v}w − μ‖20,F ≤ 1

hFaF,H
‖{v}w − μ‖20,F .

Then, by (4.24), we have

Rz(v, μ) ≤ C η̂z

⎛
⎝‖α−1/2∇⊥

h v‖20,ωz
+

∑
F∈E j,z

1

hFαF,A
‖[[v]]‖20,F

+
∑

F∈E j,z

1

hFαF,H
‖{v}w − μ‖20,F

⎞
⎠

1/2

= C η̂z |||(v, μ)|||α,h,z .

This proves the validity of (4.27) and, hence, the theorem for z ∈ NI ∪ ND .
For z ∈ NN , it follows from the triangle inequality, the facts that ‖rKφz‖0,K ≤ ‖rK ‖0,K

and ‖ jFφz‖0,F ≤ ‖ jF‖0,F , the Cauchy-Schwarz inequality, and (4.25) that

Rz(v, μ) =
∑
K∈Tz

(rKφz, v)K −
∑

F∈E j,z

( jFφz, {v}w)F +
∑

F∈E j,z

( jFφz, {v}w − μ)F

≤
∑
K∈Tz

‖rKφz‖0,K ‖v‖0,K +
∑

F∈E j,z

‖ jFφz‖0,F (‖{v}w‖0,F + ‖{v}w − μ‖0,F )

≤ η̂z

⎛
⎝ ∑

K∈Tz

1

h2KαK
‖v‖20,K +

∑
F∈E j,z

1

hFaF,A
(‖{v}w‖20,F + ‖{v}w − μ‖20,F )

⎞
⎠

1/2

≤ C η̂z

⎛
⎝‖α−1/2∇⊥

h v‖20,ωz
+

∑
F∈E j,z

1

hFαF,A
‖[[v]]‖20,F

+
∑

F∈E j,z

1

hFαF,H
‖{v}w − μ‖20,F +

∑
F∈EN ,z

1

hFαF
‖v‖20,F

⎞
⎠

1/2

= C η̂z |||(v, μ)|||α,h,z .

This proves the theorem for z ∈ NN . ��
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5 Numerical Experiments

In this section, we report some numerical results for an interface problem with intersecting
interfaces used by many authors, e.g., [13,14,20], which is considered as a benchmark test
problem. For simplicity, we only test the RTT case with k = 0. Other cases behave similarly.

Let Ω = (−1, 1)2 and

u(r , θ) = rγ μ(θ)

in the polar coordinates at the origin with μ(θ) being a smooth function of θ [13]. The
function u(r , θ) satisfies the interface equation with A = α I , ΓN = ∅, f = 0, and

α(x) =
{
R in (0, 1)2 ∪ (−1, 0)2,
1 in Ω \ ([0, 1]2 ∪ [−1, 0]2).

The γ depends on the size of the jump. In our test problem, γ = 0.1 is chosen and is corre-
sponding to R ≈ 161.4476387975881. Note that the solution u(r , θ) is only in H1+γ−ε(Ω)

Fig. 1 Mesh generated by η
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10-1

Energy Error and Error Estimator

||A-1/2
h+A1/2  u||0

eta
N-0.5

Fig. 2 Error and estimator η
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for any ε > 0 and, hence, it is very singular for small γ at the origin. This suggests that
refinement is centered around the origin.

Mesh generated by η is shown in Fig. 1. The refinement is centered at origin. Similar
meshes for this test problem generated by other error estimators can be found in [13,14].
The comparison of the error and the η is shown in Fig. 2. The error estimator is a guaranteed
bound of the energy error. The effectivity index is close to 1. Moreover, the slope of the
log(dof)- log(relative error) for η is −1/2, which indicates the optimal decay of the error
with respect to the number of unknowns.
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