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Abstract

In [Z. Cai, S. Kim, A finite element method using singular functions for the Poisson equation: corner singularities,
SIAM J. Numer. Anal. 39 (2001) 286–299], we proposed a new finite element method to compute singular solutions of
Poisson equations on a polygonal domain with re-entrant angles. Singularities are eliminated and only the regular part
of the solution that is in H2 is computed. The stress intensity factor and the solution can be computed as a post-pro-
cessing step. This method is extended to problems with crack singularities and to a higher-order method for smooth
data in [Z. Cai, S. Kim, G. Woo, A finite element method using singular functions for the Poisson equation: crack sin-
gularities, Numer. Linear Algebra Appl. 9 (2002) 445–455]. In this paper, we study the Poisson equation with mixed
boundary conditions. Examples with various singular points and numerical results are presented.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Assume that X � R2 is a polygonal domain. Let CD and CN be a partition of the boundary of X such
that oX ¼ CD [ CN and CD \ CN = ;. For simplicity, assume that CD is not empty (i.e., meas(CD) 5 0).
Let m denote the outward unit vector normal to the boundary. For a given function f 2 L2(X), consider
the Poisson equation with homogeneous mixed boundary conditions:
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doi:10.1016/j.cma.2005.06.004

q This work was sponsored in part by KRF-2002-070-C00014 and by INT-0139053.
* Corresponding author.
E-mail addresses: zcai@math.purdue.edu (Z. Cai), sckim@sarim.changwon.ac.kr (S. Kim), skim@knu.ac.kr (S. Kim),

ksr@changwon.ac.kr (S. Kong).

mailto:zcai@math.purdue.edu
mailto:sckim@sarim.changwon.ac.kr
mailto:skim@knu.ac.kr
mailto:ksr@changwon.ac.kr


2636 Z. Cai et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2635–2648
�Du ¼ f in X;

u ¼ 0 on CD;

ou
om

¼ 0 on CN;

8>><
>>: ð1:1Þ
where D stands for the Laplacian operator. Solution of (1.1) has singular behavior near corners even when f

is very smooth. Such singular behavior affects the accuracy of the finite element method throughout the
whole domain.

Solutions of many elliptic boundary value problems on polygonal domains have a singular function rep-
resentation: a linear combination of singular functions and the regular part of the solution (see (2.9) for more
details). Coefficients of singular functions in this representation are called the stress intensity factors. This
property has been explored in several ways to design accurate finite element methods in the presence of cor-
ner singularities. One approach is the so-called Singular Function Method (SFM) (see, e.g., [16]) that aug-
ments singular functions to both the trial and test spaces. However, the convergence of the stress intensity
factors is sometimes very poor (see [13,19]). They usually must be corrected by a suitable post-processing. To
overcome this difficulty, the so-called Dual Singular Function Method (DSFM) was introduced (see, e.g.,
[14,5,7,15]), that augments singular functions to the trial space and the corresponding dual singular func-
tions to the test space. The DSFM was implemented as an iterative procedure which iterates back and forth
between the singular function representation formula, the original equation, and the extraction formula (see
(2.10)) for the stress intensity factors. This approach was extended to full multigrid versions in [8].

Recently in [9,11] we also use this property in order to calculate accurate finite element approximations
to both the solution and the stress intensity factors. The loss of standard finite element approximation accu-
racy for elliptic boundary value problems with corner singularities is due to the non-smoothness of the solu-
tion. Therefore, it is natural to first approximate the regular part of the solution, and then compute the
stress intensity factors and the solution. By using the dual singular functions and a particularly chosen
cut-off function, we are able to deduce a well-posed variational problem for the regular part of the solution.
Based on this variational problem, we showed that continuous piecewise linear finite element approxima-
tion on a quasi-uniform triangulation yields O(h) optimal accuracy in H1. Also, we established Oðh1þp

xÞ
error bound for the solution in L2 and for the stress intensity factors in the absolute value, where x depends
on the re-entrant angles of the domain X. Our numerical experiments in [10] seem to indicate that our ap-
proach achieves O(h2) accuracy.

The problem for the regular part of the solution is no longer a ‘‘nice’’ Poisson equation. Instead, it is a
Poisson equation perturbed by integral terms which are only non-zero on strips away from the corners. Be-
cause of such perturbation, the problem is non-symmetric and possibly indefinite. To solve non-symmetric
algebraic equations arising from the discretization, it was shown in both theory and numerics in [10] that a
standard multigrid method is very efficient. This is because the non-symmetric perturbation with pseudo-
differential order of �1 is well-controlled by the Laplace operator whose pseudo-differential order is 2. The
solution method adopted in [10] is a simple V-cycle multigrid method that uses an exact coarsest grid solver
and smoothing operators depending only on the discrete Laplace operator.

Corner singularities can also be overcome by the method of local grid refinement (see, e.g., [1,2]). Using
this method, the number of degrees of freedom is of order O(h�2) and the error of the computed stress
intensity factor is of order O(h2). This method also has the advantage that it does not require the knowledge
of the exact forms of the singular functions. It only needs the knowledge of the exponents of the singular
functions. However, it is more difficult in this approach to use fast multilevel solution techniques (see
[18,20,21]) because the mesh sizes of fine grids decade exponentially.

The purpose of this paper is to extend results for the Poisson equations with Dirichlet boundary condi-
tions in [9] to mixed boundary conditions. Singular functions for mixed boundary conditions differ from
those for Dirichlet boundary conditions in both form and angles of corners. In Section 2, singular function
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representation of the solution for various boundary conditions is presented and a variational problem for
regular part of the solution is derived. In Section 3, we introduce a finite element approximation and esti-
mate its error bound. Finally, in Section 4, we present two examples with various singular functions and
their numerical results.

We will use the standard notation and definitions for the Sobolev spaces Ht(X) for t P 0; the standard
associated inner products are denoted by (Æ, Æ)t,X, and their respective norms and seminorms are denoted by
k Ækt,X and j Æ jt,X. The space L2(X) is interpreted as H0(X), in which case the inner product and norm will be
denoted by (Æ, Æ)X and k ÆkX, respectively. H 1

DðXÞ ¼ fu 2 H 1ðXÞ : u ¼ 0 on CDg.
2. Singular function representations

Let x1, . . .,xM be internal angles of X satisfying
p=2 < xj < 2p if boundary condition changes its type;

p < xj < 2p otherwise
and denote by vj (j = 1, . . .,M) the corresponding vertices. Let the polar co-ordinates (rj,hj) be chosen at the
vertex vj so that the internal angle xj is spanned counterclockwise by two half-lines hj = 0 and hj = xj. Below
is a list of singular functions at vj depending on boundary conditions:

• D/D If xj > p, there is a singular function of the form
sj;1ðrj; hjÞ ¼ r
p
xj
j sin

phj
xj

; ð2:1Þ
• N/N If xj > p, there is a singular function of the form
sj;1ðrj; hjÞ ¼ r
p
xj
j cos

phj
xj

; ð2:2Þ
• D/N If p
2
< xj 6

3p
2
, there is a singular function of the form
sj;12ðrj; hjÞ ¼ r
p

2xj
j sin

phj
2xj

. ð2:3Þ
If 3p
2
< xj < 2p, there are two singular functions of the form
sj;12ðrj; hjÞ ¼ r
p

2xj
j sin

phj
2xj

and sj;32ðrj; hjÞ ¼ r
3p
2xj
j sin

3phj
2xj

; ð2:4Þ
• N/D If p
2
< xj 6

3p
2
, there is a singular function of the form
sj;12ðrj; hjÞ ¼ r
p

2xj
j cos

phj
2xj

. ð2:5Þ
If 3p
2
< xj < 2p, there are two singular functions of the form
sj;12ðrj; hjÞ ¼ r
p

2xj
j cos

phj
2xj

and sj;32ðrj; hjÞ ¼ r
3p
2xj
j cos

3phj
2xj

. ð2:6Þ
Here, D/D and N/N mean that type of boundary conditions remains unchanged while D/N and N/D mean
that type of boundary conditions changes passing the vertex vj. For convenience, we denote index set of
singular functions by Lj. Hence,
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Lj ¼

f1g for (2.1) and (2.2);

1

2

� �
for (2.3) and (2.5);

1

2
;
3

2

� �
for (2.4) and (2.6).

8>>>>>><
>>>>>>:
It is easy to see that sj;32 2 H
1þ 3p

2xj
�eðXÞ, sj;1 2 H

1þ p
xj
�eðXÞ, and sj;12 2 H

1þ p
2xj

�eðXÞ for any e > 0. Hence, sin-

gular functions at the vertex vj belong to either H
1þ p

xj
�eðXÞ for D/D and N/N vertex or H

1þ p
2xj

�eðXÞ for D/N
and N/D vertex. This indicates that the solution of Poisson equation (1.1) is in H 1þp

x�e where
x ¼ max16j6Mx̂j and
x̂j ¼
xj if vj is D=D or N=N vertex;

2xj if vj is D=N or N=D vertex.

�

To deduce an equation for the regular part of the solution, we need to use the so-called dual singular func-
tions that are defined as follows: for l 2 Lj,
sj;�lðrj; hjÞ ¼ r
� lp

xj
j sin

lp
xj

hj and sj;�lðrj; hjÞ ¼ r
� lp

xj
j cos

lp
xj

hj; ð2:7Þ
are the dual singular functions corresponding to
sj;lðrj; hjÞ ¼ r
lp
xj
j sin

lp
xj

hj and sj;lðrj; hjÞ ¼ r
lp
xj
j cos

lp
xj

hj; ð2:8Þ
respectively. We will also need cut-off functions. To this end, set
Bjðt1; t2Þ ¼ ðrj; hjÞ : t1 < rj < t2 and 0 < hj < xj

� �
\ X and Bjðt1Þ ¼ Bjð0; t1Þ.
A family of cut-off functions of rj, gqjðrjÞ, is then defined as follows:
gqjðrjÞ ¼

1 in Bj
1
2
qjR

� �
;

15

16

8

15
� 4rj

qjR
� 3

 !
þ 2

3

4rj
qjR

� 3

 !3

� 1

5

4rj
qjR

� 3

 !5
8<
:

9=
; in Bj

1
2
qjR; qjR

� �
;

0 in X n BjðqjRÞ;

8>>>>><
>>>>>:
where qj is a parameter in (0,2] and R 2 R is a fixed number so that the g2sj,l has the same boundary con-
dition as u. We assume that R is small enough so that the intersection of either BjðqjRÞ and Bið2RÞ or Bjð2RÞ
and BiðqiRÞ for j 6¼ i is empty.

It is well known [3,12,14] that the solution of problem (1.1) has the following singular function
representation:
u ¼ wþ
XM
j¼1

X
l2Lj

kj;lgqjðrjÞsj;lðrj; hjÞ; ð2:9Þ
where w 2 H 2ðXÞ \ H 1
DðXÞ is the regular part of the solution and kj;l 2 R are the stress intensity factors that

can be expressed in terms of u by the following extraction formulas ([6,17]):
kj;l ¼
1

lp

Z
X
f gqj sj;�l dxþ

Z
X
uDðgqj sj;�lÞdx

� �
. ð2:10Þ
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Moreover, the following regularity estimate holds:
kwk2 þ
XM
j¼1

X
l2Lj

jkj;lj 6 CRkf k. ð2:11Þ
In the remainder of this section, we derive a well-posed problem for w. To this end, assume that qj in
(2.9) belongs to (0,1] and denote cut-off functions with bigger supports by
g�ðrjÞ ¼ g2ðrjÞ.

Choosing gq(rj) = g*(rj) in (2.10) gives
kj;l ¼
1

lp
ðu;Dðg�sj;�lÞÞ þ

1

lp
ðf ; g�sj;�lÞ.
Substituting u ¼ wþ
PM

i¼1

P
k2Liki;kgqiðriÞsi;kðri; hiÞ into the above equation yields
kj;l ¼
1

lp
ðw;Dðg�sj;�lÞÞ þ

1

lp
ðf ; g�sj;�lÞ þ

1

lp

XM
i¼1

X
k2Li

ki;kðgqi si;k;Dðg
�sj;�lÞÞ. ð2:12Þ
When i = j, the support of gqjðrjÞ for 0 < qj 6 1 is Bj(qjR) on which g* = 1. Since sj,�l is harmonic, then for
all k 2 Lj,
ðgqi si;k;Dðg
�sj;�lÞÞ ¼ 0.
When i 5 j, by the assumption that BiðqiRÞ \ Bjð2RÞ ¼ ; we have that
ðgqi si;k;Dðg
�sj;�lÞÞ ¼ 0; 8k 2 Li.
Hence, we have established the following extraction formulas of kj,l in terms of w:
kj;l ¼
1

lp
ðw;Dðg�sj;�lÞÞBjðR;2RÞ þ

1

lp
ðf ; g�sj;�lÞBjð2RÞ. ð2:13Þ
Using (2.13) and substituting (2.9) into the Poisson equation, we obtain an integro-differential equation
for w:
�Dw�
XM
j¼1

X
l2Lj

1

lp
ðw;Dðg�sj;�lÞÞBjðR;2RÞDðgqj sj;lÞ ¼ f þ

XM
j¼1

X
l2Lj

1

lp
ðf ; g�sj;�lÞBjð2RÞDðgqj sj;lÞ in X.
Multiplying the above equation by a test function v 2 H 1
DðXÞ ¼ fv 2 H 1ðXÞ : v ¼ 0 on CDg, integrating

over X, and using integration by parts lead to the following variational problem: finding
w 2 H 2ðXÞ \ H 1

DðXÞ such that
aðw; vÞ ¼ gðvÞ 8v 2 H 1
DðXÞ; ð2:14Þ
where the bilinear form a(Æ, Æ) and linear form g(Æ) are defined by
aðw; vÞ ¼ asðw; vÞ þ bðw; vÞ; asðw; vÞ ¼ ðrw;rvÞ;

bðw; vÞ ¼ �
XM
j¼1

X
l2Lj

1

lp
ðw;Dðg�sj;�lÞÞBjðR;2RÞðDðgqj sj;lÞ; vÞBj

1
2qjR;qjRð Þ

ð2:15Þ
and
gðvÞ ¼ ðf ; vÞ þ
XM
j¼1

X
l2Lj

1

lp
ðf ; g�sj;�lÞBjð2RÞðDðgqj sj;lÞ; vÞBj

1
2qjR;qjRð Þ. ð2:16Þ



2640 Z. Cai et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2635–2648
Note that the second terms in the respective bilinear and linear forms provide a singular correction so
that w 2 H2(X) for f 2 L2(X). Note also that the bilinear forms a(Æ, Æ) are not symmetric.

Lemma 2.1. For any 0 < q 6 1, we have that
kDðg�sj;�lÞkBjðR;2RÞ 6 C1R
� lp

xj
�1 ð2:17Þ
with C1 ¼
ffiffiffiffiffiffiffiffi
120lp
7

q
and that
kgqj sj;lkBjðqjRÞ 6 C2ðqjRÞ
1þ lp

xj and krðgqj sj;lÞkBjðqjRÞ 6 C3ðqjRÞ
lp
xj ð2:18Þ

1

with C2 ¼ xj

2
ffiffiffiffiffiffiffiffiffi
lpþxj

p and C3 ¼
C2x2

j

4ðlpþxjÞ ð1� 2
�2ð lpxjþ1ÞÞ þ lp

2


 �
2

.

Proof. This lemma can be established by an elementary calculation. h

In a similar fashion as in [9], we can prove the coercivity and continuity of the bilinear form a(Æ, Æ) and the
well-posedness of problem (2.14).

Lemma 2.2. For 0 < q 6 1, the bilinear forms a(Æ, Æ) are continuous and coercive in H 1
DðXÞ; i.e. there exist

positive constants a, K1, and K2 such that
ak/k21 6 að/;/Þ þ K1k/k2 ð2:19Þ

for all / 2 H 1

DðXÞ and that
að/;wÞ 6 K2k/k1kwk1 ð2:20Þ

for all / and w in H 1

DðXÞ.

Theorem 2.1. For 0 < q 6 1, we have that

(1) if f 2 L2(X), then problem (2.14) has a unique solution w 2 H 2ðXÞ \ H 1
DðXÞ,

(2) there exists a positive constant c such that
ck/k1 6 sup
w2H1

D
ðXÞ

að/;wÞ
kwk1

ð2:21Þ
for any / 2 H 1
DðXÞ.
3. Finite element approximation

This section presents standard finite element approximation on a quasi-uniform grid for w based on the
variational problem in (2.14). Approximations to the stress intensity factors and the solution of problem
(1.1) can then be calculated according to (2.13) and (2.9), respectively. Error estimates are established in
Theorem 3.1.

Let Th be a partition of the domain X into triangular finite elements; i.e., X ¼
S

K2Th
K with

h ¼ maxfdiamK : K 2 Thg. Assume that the triangulationTh is regular. Denote continuous piecewise lin-
ear finite element space by
V h ¼ f/h 2 C0ðXÞ : /hjK is linear 8K 2 Th and /h ¼ 0 on CDg � H 1
DðXÞ.
It is well known that
inf
/h2V h

ðk/� /hk þ hj/� /hj1Þ 6 CAh
1þtk/k1þt;X ð3:1Þ
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for any / 2 H 1
DðXÞ \ H 1þtðXÞ and 0 6 t 6 1. The finite element approximation to problem (2.14) is to find

wh 2 Vh such that
aðwh; vÞ ¼ gðvÞ 8v 2 V h. ð3:2Þ

Approximations to the kj,l and the solution are calculated as follows:
khj;l ¼
1

lp
ðwh;Dðg�sj;�lÞÞBjðR;2RÞ þ

1

lp
ðf ; g�sj;�lÞBjð2RÞ ð3:3Þ
and
uh ¼ wh þ
XM
j¼1

X
l2Lj

khj;lgqjðrjÞsj;lðrj; hjÞ. ð3:4Þ
In order to establish the error bound in the L2-norm, we consider the following adjoint problem of (2.14)
with a simplified linear form: find z 2 H 1

DðXÞ such that
aðv; zÞ ¼ ðw� wh; vÞ 8v 2 H 1
DðXÞ. ð3:5Þ
The next lemma establishes the well-posedness of problem (3.5) and provides the regularity estimate for z.

Lemma 3.1. For 0 < qj 6 1, problem (3.5) has a unique solution z in H1
DðXÞ. Moreover, there is a singular

function representation
z ¼ wz þ
XM
j¼1

X
l2Lj

kzj;lgqj sj;l; ð3:6Þ
where wz 2 H 2ðXÞ \ H 1
DðXÞ and kzj;l 2 R satisfy the regularity estimate
kwzk2 þ
XM
j¼1

X
l2Lj

jkzj;lj 6 C0
Rkw� whk. ð3:7Þ
Proof. Similar to Theorem 2.1, the adjoint problem in (3.5) has a unique solution in H 1
DðXÞ and that there

exists a positive constant c 0 such that
c0kwk1 6 sup
/2H1

D
ðXÞ

að/;wÞ
k/k1

8w 2 H 1
DðXÞ.
Let z be the solution of (3.5), by the Cauchy–Schwarz inequality we then have that
kzk1 6
1

c0
sup

/2H1
D
ðXÞ

að/; zÞ
k/k1

¼ 1

c0
sup

/2H1
D
ðXÞ

ðw� wh;/Þ
k/k1

6
1

c0
kw� whk. ð3:8Þ
It is easy to check that the solution, z 2 H 1
DðXÞ, of problem (3.5) satisfies
Dz ¼
XM
j¼1

X
l2Lj

1

lp
ðrz;rðgqj sj;lÞÞDðg

�sj;�lÞ � ðw� whÞ in X. ð3:9Þ
Since the right-hand side of the above equation is at least in L2(X), so is Dz. Therefore, z has the singular
function representation
z ¼ wz þ
XM
j¼1

X
l2Lj

kzj;lgqj sj;l;
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where wz 2 H 2ðXÞ \ H 1
D and
kwzk2 þ
XM
j¼1

X
l2Lj

jkzj;lj 6 CRkDzk.
Now, the regularity bound in (3.7) follows from the triangle and Cauchy–Schwarz inequalities, (3.8), and
Lemma 2.1 that
kwzk2 þ
XM
j¼1

X
l2Lj

jkzj;lj 6 CRkDzk 6 CR

XM
j¼1

X
l2Lj

1

lp
jðrðgqj sj;lÞ;rzÞBðqjRÞj kDðg

�sj;�lÞkBðR;2RÞ þ kw� whk
 !

6 CR

XM
j¼1

X
l2Lj

C1C3

c0Rlp
q

lp
xj
j þ 1

 !
kw� whk.
This proves the inequality in (3.7) with
C0
R ¼ CR

XM
j¼1

X
l2Lj

C1C3

c0Rlp
q

lp
xj þ 1

 !
and, hence, the lemma. h

Now we are ready to establish error bounds for the finite element approximations.

Theorem 3.1

(i) For 0 < qj 6 1, there exists a positive constant h0 such that for all h 6 h0 (3.2) has a unique solution wh in

Vh. Moreover, let w 2 H 2ðXÞ \ H 1
DðXÞ be the solution of (2.14), then we have the following error

estimates:
kw� whk1 6 C4hkf k and kw� whk 6 C5h
1þp

xkf k. ð3:10Þ

(ii) Let kj,l and khj;l be defined in (2.13) and (3.3), respectively. Then
jkj;l � khj;lj 6
C
lp

R
� lp

xj
�1kw� whk 6 C6R

� lp
xj
�1
h1þ

p
xkf k. ð3:11Þ
(iii) Let u be the solution of (1.1) and uh be its approximation defined in (3.4), then we have the following error
estimates:
ku� uhk1 6 C7hkf k and ku� uhk 6 C8h
1þp

xkf k. ð3:12Þ
Proof. (i) We first establish error bounds in (3.10) for any solution to problem (3.2) that may exist. Then,
for f � 0, the uniqueness of the solution to problem (2.14) and the error bound in (3.10) imply that wh � 0.
Hence, (3.2) has a unique solution wh in Vh since it is a finite dimensional problem with the same number of
unknowns and equations.

To establish error bounds, note first the orthogonality property
aðw� wh; vÞ ¼ 0 8v 2 V h. ð3:13Þ

By choosing v = w � wh in (3.5) and using the orthogonality property in (3.13) and the continuity bound in
(2.20), we have that
kw� whk2 ¼ aðw� wh; zÞ ¼ aðw� wh; z� IhzÞ 6 K2kw� whk1kz� Ihzk1; ð3:14Þ
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where Ihz 2 Vh is the nodal interpolant of z. From the triangle inequality, approximation property (3.1), the
fact that (see [4])
kgqj sj;l � Ihðgqj sj;lÞk1 6 Ch
lp
xj
and Lemma 3.1, one has
kz� Ihzk1 6 kwz � Ihwzk1 þ
XM
j¼1

X
l2Lj

jkzj;lj kgqj sj;l � Ihðgqj sj;lÞk1 6 Chkwzk2 þ
XM
j¼1

X
l2Lj

Ch
lp
xj jkzj;lj

6 CDh
p
xkw� whk.
Substituting this into (3.14) and dividing kw � whk on both sides give
kw� whk 6 K2CDh
p
xkw� whk1. ð3:15Þ
Now, it follows Lemma 2.2, orthogonality property (3.13), and inequality (3.15) that for any v 2 Vh
akw� whk21 6 aðw� wh;w� whÞ þ K1kw� whk2 ¼ aðw� wh;w� vÞ þ K1kw� whk2

6 K2kw� whk1kw� vk1 þ K1ðK2CDh
p
xÞ2kw� whk21;
which, together with approximation property (3.1), implies the validity of the first error bound in (3.10)
with C4 = 2a�1K2CACR for all h 6 h0. Here,
h0 ¼
a

2K1ðK2CDÞ2

 !x
2p

.

The second error bound in (3.10) is then a direct consequence of (3.15) with C5 = C4K2CD.
(ii) Note from (2.13) and (3.3) that
kj;l � khj;l ¼
1

lp
ðw� wh;Dðg�sj;�lÞÞBjðR;2RÞ.
Hence, (3.11) follows from the Cauchy–Schwarz inequality, Theorem 3.1(i), and Lemma 2.1 that
jkj;l � khj;lj 6
1

lp
kw� whkkDðg�sj;�lÞkBjðR;2RÞ 6 C6R

� lp
xj
�1
h1þ

p
xkf k
with C6 ¼ C5C1

lp .
(iii) It follows from (2.9) and (3.4) that
u� uh ¼ ðw� whÞ þ
XM
j¼1

X
l2Lj

ðkj;l � khj;lÞgqj sj;l.
By using the triangle inequality, Lemma 2.1, (3.10) and (3.11), we have that
ku� uhk1 6 kw� whk1 þ
XM
j¼1

X
l2Lj

jkj;l � khj;lj kgqj sj;lk1;BðqjRÞ

6 C4hkf k þ
XM
j¼1

X
l2Lj

C6q
lp
x j
j ðC2qþ C3R�1Þh1þp

xkf k.
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Therefore, the first inequality of (3.12) is valid with C7 ¼ C4 þ C6

PM
j¼1

P
l2Ljq

lp
xj
j ðC2qj þ C3R�1Þhp

x. In a sim-

ilar fashion, by Lemma 2.1, (3.10) and (3.11), we may prove the validity of the second inequality of (3.12)

with C8 ¼ C5 þ C6C2

PM
j¼1

P
l2Ljq

1þ lp
xj

j . This completes the proof of the theorem. h
4. Numerical results

In this section, numerical results for Poisson equations with mixed boundary conditions are presented.
One example is defined on the unit square and the other on a domain with re-entrance corner.

Example 1. Consider the Poisson equation in (1.1) with mixed boundary conditions on the unit square
X ¼ fðx; yÞ 2 R2 : 0 < x < 1; 0 < y < 1g. Homogeneous Neumann boundary is CN ¼ fðx; 0Þ 2 R2 : 0 <
x < 1=2g and homogeneous Dirichlet boundary is CD = oXnCN (see Fig. 1(a)). This problem has a
geometric singularity at boundary point (1/2,0), where the boundary conditions change from Dirichlet to
Neumann with an internal angle x = p. More specifically, the corresponding singular function has the form
s ¼ r
1
2 sin

h
2

� �
.

Let g2 be the cut-off function defined in Section 2 with R = 1/4 and choose the right-hand side function in
(1.1) to be
f ¼ � sinðpxÞ½�p2y2ðy � 1Þ þ 2ð3y � 1Þ� � Dðg2sÞ.

Then the exact solution of the underlying problem is
u ¼ wþ gqs;
where gq is the cut-off function with R = 1/4 and 0 < q 6 1 and
w ¼ sinðpxÞy2ðy � 1Þ þ ðg2 � gqÞs
is the regular part of the solution. Numerical results are presented in Tables 1–3, respectively, that confirm
theoretical estimates.

Example 2. In this example, we consider a polygonal domain with a re-entrant corner (see Fig. 1(b)):
X ¼ fðx; yÞ 2 R2 : �1 < x < 1;�1 < y < 1g n T ;
Fig. 1. Computational domains and boundary conditions. (a) Example 1 and (b) Example 2.



Table 3
The absolute value errors and the convergence rates for k

q = 1.00 q = 0.50

jk � khj Rate jk � khj Rate

h ¼ 1
8 6.8612e�01 6.6797e�01

h ¼ 1
16 1.9996e�01 1.7787 1.9242e�01 1.7955

h ¼ 1
32 5.3705e�02 1.8965 5.3134e�02 1.8565

h ¼ 1
64 1.3776e�02 1.9628 1.6557e�02 1.8373

h ¼ 1
128 3.4729e�03 1.9879 4.3852e�03 1.9167

Table 1
The discrete L2-norm errors and the convergence rates for w

Mesh size q = 1.00 q = 0.50

L2-norm Rate L2-norm Rate

h ¼ 1
8 2.3331e�02 2.0938e�02

h ¼ 1
16 8.5794e�03 1.4433 6.8472e�03 1.6125

h ¼ 1
32 2.5658e�03 1.7414 2.1656e�03 1.6607

h ¼ 1
64 6.8989e�04 1.8949 5.9684e�04 1.8593

h ¼ 1
128 1.7708e�04 1.9619 1.5436e�04 1.9510

Table 2
The discrete H1-seminorm and the convergence rates for w

q = 1.00 q = 0.50

H1-norm Rate H1-norm Rate

h ¼ 1
8 3.5511e�01 3.2662e�01

h ¼ 1
16 1.7541e�01 1.0175 1.6750e�01 0.9635

h ¼ 1
32 5.2587e�02 1.7378 5.9165e�02 1.5013

h ¼ 1
64 1.4789e�02 1.8301 1.6557e�02 1.8373

h ¼ 1
128 3.9239e�03 1.9141 4.3852e�03 1.9167
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where T ¼ fðx; yÞ 2 R2 : 0 < x < 1;�x < y < 0g. Homogeneous Neumann boundary is CN ¼ fðx; 0Þ 2 R2 :
0 < x < 1; y ¼ 0g and homogeneous Dirichlet boundary is CD = oXnCN. At the origin, the internal angle is
x ¼ 7p

4
and the boundary conditions change from Neumann to Dirichlet. Hence, there are two singular

functions at the origin:
s1
2
¼ r

2
7 cos

2h
7

and s3
2
¼ r

6
7 cos

6h
7
.

Let gq be the cut-off function with R = 1/4 and 0 < q 6 1 and choose the right-hand side function in (1.1) to
be
f ¼ f1 � Dðg2ðs1
2
þ s3

2
ÞÞ;



Table 4
The discrete L2-norm errors and the convergence rates for w

Mesh size q = 1.00 q = 0.50

L2-norm Rate L2-norm Rate

h ¼ 1
8 1.0409e�01 7.5423e�02

h ¼ 1
16 3.8311e�02 1.4420 2.5903e�02 1.5418

h ¼ 1
32 1.1322e�02 1.7586 8.4301e�03 1.6195

h ¼ 1
64 3.1228e�03 1.8582 2.3364e�03 1.8513

Table 5
The discrete H1-seminorm and the convergence rates for w

q = 1.00 q = 0.50

H1-norm Rate H1-norm Rate

h ¼ 1
8 7.7863e�01 6.8214e�01

h ¼ 1
16 3.4152e�01 1.1889 2.8441e�01 1.2621

h ¼ 1
32 9.9839e�02 1.7742 1.1067e�01 1.3617

h ¼ 1
64 2.7625e�02 1.8536 3.2023e�02 1.7891

Table 6
The absolute value errors and the convergence rates for k1

2

q = 1.00 q = 0.50

jk1
2
� k1

2;h
j Rate jk1

2
� k1

2;h
j Rate

h ¼ 1
8 6.6352e�01 6.5044e�01

h ¼ 1
16 1.7794e�01 1.8987 1.7276e�01 1.9126

h ¼ 1
32 4.7506e�02 1.9052 4.7599e�02 1.8598

h ¼ 1
64 1.2370e�02 1.9413 1.2366e�02 1.9445

Table 7
The absolute value errors and the convergence rates for k3

2

q = 1.00 q = 0.50

jk3
2
� k3

2;h
j Rate jk3

2
� k3

2;h
j Rate

h ¼ 1
8 1.5011e�01 1.5399e�01

h ¼ 1
16 3.5198e�02 2.0924 3.5461e�02 2.1185

h ¼ 1
32 9.0060e�03 1.9665 9.0973e�03 1.9882

h ¼ 1
64 2.2780e�03 1.9831 2.2722e�03 2.0013
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where
f1 ¼
�2ðy � 1Þy2 � ðx2 � 1Þð6y � 2Þ if y P 0;

�2ðy þ 1Þy2 � ðxþ 1Þð6xy þ 2xþ 12y2 þ 6yÞ if y < 0.

�
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The exact solution of the underlying problem is then
u ¼ wþ gqs1
2
þ gqs3

2
;

where the regular part w is given by
w ¼ ðg2 � gqÞðs1
2
þ s3

2
Þ þ ðx2 � 1Þðy � 1Þy2 if y P 0;

ðxþ 1Þðy þ 1Þðxþ yÞy2 if y 6 0.

�

Note that the function w is in H2(X), but not in H3(X). Numerical results for the discretization accuracy of
the finite element approximation to w are given in Tables 4 and 5. Results for the stress intensity factors are
contained in Tables 6 and 7.
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