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FLUX RECOVERY AND A POSTERIORI ERROR ESTIMATORS:
CONFORMING ELEMENTS FOR SCALAR ELLIPTIC EQUATIONS*

ZHIQIANG CAIT AND SHUN ZHANGT

Abstract. In this paper, we first study two flux recovery procedures for the conforming finite
element approximation to general second-order elliptic partial differential equations. One is accurate
in a weighted L? norm studied in [Z. Cai and S. Zhang, SIAM J. Numer. Anal., 47 (2009), pp. 2132
2156] for linear elements, and the other is accurate in a weighted H(div) norm, up to the accuracy
of the current finite element approximation. For the L2 recovered flux, we introduce and analyze an
a posteriori error estimator that is more accurate than the explicit residual-based estimator. Based
on the H(div) recovered flux, we introduce two a posteriori error estimators. One estimator may
be regarded as an extension of the recovery-based estimator studied in [Z. Cai and S. Zhang, SIAM
J. Numer. Anal., 47 (2009), pp. 2132-2156] to higher-order conforming elements. The global relia-
bility and the local efficiency bounds for this estimator are established provided that the underlying
problem is neither convection- nor reaction-dominant. The other is proved to be exact locally and
globally on any given mesh with no regularity assumptions with respect to a norm depending on the
underlying problem. Numerical results on test problems for these estimators are also presented.
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1. Introduction. Since Babiiska’s pioneering work [3] in 1976, the a posteriori
error estimation and adaptive methods have been extensively studied. Impressive
progress has been made during the past three decades, and there is now a vast litera-
ture in this research area. For references up to 2003 and historic remarks, for example,
see the survey articles of Eriksson et al. [24], Bank [6], Becker and Rannacher [10],
the books of Verfiirth [37], Ainsworth and Oden [1], Babuska and Strouboulis [4],
Bangerth and Rannacher [5], and the references therein.

Existing error estimators can be categorized as three classes: the residual, the
gradient recovery, and the hierarchical bases. Obviously, the residual is the only
quantity directly related to the true error and, hence, a natural means for developing
estimators. There are three kinds of residual-based estimators: explicit, implicit, and
equilibrated. For simple model problems, the energy norm of the true error is equal
to the dual norm of the residual (element residuals and jumps on interior edges).
Unfortunately, the dual norm is not computationally feasible. So the explicit residual
estimators are basically estimations of the dual norm of the residual and are not
accurate for error control in general. For details on implicit and equilibrated residual
methods and bibliographical remarks, see the book by Ainsworth and Oden [1].

Recently, for simple model problems and linear elements, estimators with guaran-
teed reliability bounds are studied through the equilibrated residual method combin-
ing with the introduction of a dual mesh [29] or the method of hypercircle. Estimators
resulting from the method of hypercircle had been studied by Ladeveze and D. Leguil-
lon [28], Vejchodsky [36], Braess and Schoberl [14], Verfiirth [39], etc. More recently,
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it is further extended to higher-order elements for Poisson equations in [13]. Estima-
tors of this type are based on the so-called Prager—Synge identity, which holds for
only positive definite problems, and requires recovery of the flux in the H(div) con-
forming finite element spaces satisfying the equilibrium equation exactly. Estimators
developed in [28, 36, 14] differ in local recovery procedures. For applications of this
type of methods to the reaction-dominant diffusion and the interface problems, see
[39] and [21], respectively.

The existing recovery-based estimators (the Zienkiewicz—Zhu (ZZ) estimator and
its variations) are simply the L? norm of the difference between the direct and post-
processed approximations of the gradient/flux. The recovered gradient/flux is a pro-
jection of the direct approximation onto vector-valued continuous finite element space
with respect to either a discrete or L? inner product. When the underlying problem
is smooth and the finite element approximation has a superconvergence property, this
type of estimator is asymptotically exact. This property guarantees accurate error
control for sufficiently small mesh size. However, for nonsmooth problems, in partic-
ular, those with discontinuous gradient/flux, it is well known [7, 31, 19] that these
estimators are not efficient on relatively coarse meshes. That is, they might overrefine
regions where there are no errors and, hence, they fail to reduce the global error. One
could overcome this difficulty by applying the method on each subdomain separately.
For reasons why this local approach is not favorable, see detailed discussions in [31].
By simply projecting the direct approximation of the flux onto conforming finite el-
ement spaces of H(div), we developed a global approach in [19] for the conforming
linear finite element approximation to the interface problem. It was shown in [19]
that this global approach is robust with respect to the diffusion coefficients. The ap-
proach was further extended to the mixed and nonconforming elements in [20]. Other
drawbacks of the recovery-based estimators include the limitation to linear elements
and the unreliability on coarse meshes (see [1] for a one-dimensional example). For
recent development on higher-order finite element approximations, see [9, 8, 41].

The purpose of this paper is twofold: (1) constructing accurate approximations
to the flux based on the current Galerkin finite element approximation, and (2) using
the recovered flux to design a posteriori error estimators that overcome the drawbacks
of existing estimators mentioned above. Given the Galerkin finite element approxi-
mation, we consider two flux recovery procedures with recovered fluxes in H(div) con-
forming finite element spaces such as Raviart—-Thomas and Brezzi-Douglas—Martini
elements [16]. The reason for using these finite element spaces is to accommodate
possible discontinuities of the flux and, hence, to eliminate possible overrefinements
on regions where there are no errors. The first one is simply a weighted L? projection
of the direct approximation of the flux, which was studied in [19] for linear elements.
For higher-order elements, we show that this L? recovered flux is again accurate in
the weighted L? norm up to the accuracy of the finite element approximation in the
energy norm. Essentially, this L? recovery procedure guarantees that the recovered
flux approximately satisfies the constitutive equation. To recover a more accurate
flux, we introduce a new procedure that approximately satisfies both the constitutive
and the equilibrium equations. We show that this procedure, referred to as H(div)
recovery, is accurate in a weighted H (div) norm. It is important to point out that the
H(div) recovery always results in a linear, symmetric, and positive definite problem
that can be solved very efficiently by fast multigrid iterative methods, even if the
underlying problem is highly nonlinear or convection-dominant.
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With the L? recovered flux, we introduce and analyze an a posteriori error es-
timator that is the recovery-based estimator plus weighted element residuals. This
estimator is comparable to the explicit residual-based estimator (see, e.g., [1, 37]),
but it is more accurate than the latter. It is important to point out that the ele-
ment residual is necessary for higher-order elements and guarantees the reliability on
coarse meshes. We analyze this estimator by establishing a global reliability bound,
provided that the underlying problem is coercive in the energy norm, and a local effi-
ciency bound. A similar idea, adding two additional terms to the ZZ estimator, was
studied by Fierro and Veeser [25] and the resulting estimator is rather sophisticated.

With the H(div) recovered flux, we introduce and analyze two a posteriori error
estimators. The first one is the recovery-based estimator, defined as the weighted
L2 norm of the difference between recovered and direct fluxes. This estimator may
be regarded as an extension of the estimator developed in [19] for linear elements
to higher-order elements. Based on the discussion in section 6.2, the new recovery
procedure is necessary for guaranteeing reliability. Under the assumption that the
underlying problem is neither convection- nor reaction-dominant, we prove global re-
liability and the local efficiency without regularity assumptions for higher-order finite
element approximations. Finally, it is also important to point out that straightforward
extensions of existing recovery-based estimators to higher-order elements usually fail,
and developing a viable estimator is nontrivial. For example, Bank, Xu, and Zheng
in [8] recently studied the recovery-based estimator for Lagrange triangular elements
of degree p, and their scheme requires recovery of all partial derivatives of pth order
instead of the gradient with only 2 (or 3) partial derivatives of first-order in two (or
three) dimensions.

The second estimator is defined by adding the L? norm of the element residuals to
the recovery-based estimator. Apparently, the element residual is natural for design-
ing a posteriori error estimators and is inexpensive to compute. More importantly, it
is essential for guaranteeing the reliability on coarse meshes. By using the L? norm
on the element residual, we are able to show that this estimator is exact locally and
globally on any given mesh, including an arbitrary initial mesh, with no regularity
assumptions. Exactness on any given mesh implies that the estimator is ideal for error
control (or so-called solution verification) on coarse meshes. Error control on coarse
meshes is of paramount importance for simulating physical phenomena in engineering
applications and scientific predictions with limited computer resources. No regularity
assumptions in this paper means that only assumptions on the existence of the un-
derlying problem are required. This is weaker than those required for approximation
theory and much weaker than those required by the current theory of the recovery-
based estimators. Therefore, the estimators can be applied to problems of practical
interest, such as interface singularities, discontinuities in the form of shock-like fronts,
and of interior or boundary layers.

The paper is organized as follows. Elliptic problems and their finite element
approximation are described in sections 2 and 3, respectively. Section 4 introduces
a flux recovery procedure. Two a posteriori error estimators are defined in section 5
and analyzed in section 6. Finally, numerical experiments for some test problems are
presented in section 7.

1.1. Notation. We use standard notations and definitions for the Sobolev spaces
H*(Q)? and H*(9Q)? for s > 0. The standard associated inner products are denoted
by (-, -)s,0 and (-, -)s,00, and their respective norms are denoted by ||-||s,o and ||-|s,00-
(We suppress the superscript d because the dependence on dimension will be clear by
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context. We also omit the subscript €2 from the inner product and norm designation
when there is no risk of confusion.) For s = 0, H*(Q)? coincides with L?(2)¢. In this
case, the inner product and norm are denoted by || - || and (-, -), respectively. Set

HH(Q):={vec H(Q) : v=00onTp}.

We denote the duals of H}(Q) and Hz(9Q) by Hp'(9) and H~2(99) with norms
defined by

—~

[¢l-1,p= sup %Y%) nd Il _1/2.00 =  sup _(&9)

oxpent @) ¥l O£peHS (9Q) 112,00

When I' = 9Q, denote H}(Q) by H(Q). Finally, set
H(div;Q) = {r € L*(Q)? : V-1 € L*(Q)},

which is a Hilbert space under the norm

=

Il m@ivie) = (178 + 1V 7l30)*
and define the subspace
Hy(div; Q) = {r € H(div;?) : n-7=0o0nI'y}.

2. Elliptic problem. Let 2 be a bounded, open, connected subset of R? (d = 2
or 3) with a Lipschitz continuous boundary 9. Denote n = (nq, ..., ng), the outward
unit vector normal to the boundary. We partition the boundary of the domain 2 into
two open subsets I'p and I' 5 such that 9Q = T'pUL y and I'pNI'x = @. For simplicity,
we assume that I'p is not empty (i.e., mes(I'p) # 0). (Otherwise, solutions of the
partial differential equations considered in this paper are unique up to an additive
constant.)

Consider the second-order elliptic boundary value problem

(2.1) —V-(AVu)+b-Vu+bu=f inQ

with boundary conditions

(2.2) u=0 onl'p and n-AVu=0 only,

where the symbols V- and V stand for the divergence and gradient operators, respec-
tively; and A = (aij)axd, b = (bi)ax1, and by and f are given matrix-, vector-, and
scalar-valued functions, respectively. Assume that the diffusion tensor A is uniformly
symmetric positive definite: there exist positive constants 0 < Ay < Aj such that

(2.3) AogTE < €T AE < METE

for all £ € R and almost all z € Q. We assume homogeneous boundary conditions
for simplicity and assume that a;; and b; are in L*°(2).
For any v € H*(f2), denote

1/2
lollo = (o3 + 14/290)3 ) ",
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the H! norm weighted by the diffusion tensor. Let
Xv=Db-Vv+byv.

It is known that

(2.4) [X vl < Cxllvle Vve HY(Q),

where C apparently depends upon bounds of the coefficients A, b, and by. Here and
hereafter, we use C' with or without subscripts to denote a generic positive constant,
possibly different at different occurrences, that is independent of the mesh parameter
hx introduced in subsequent sections, but may depend upon the domain Q.

Let U = H5(Q2). The corresponding variational form of system (2.1) is to find
u € U such that

(2.5) a(u, v) = (f,v) Yovel,
where the bilinear form is defined by
a(u, v) = (AVu, Vv) + (Xu, v).

Assume that (2.5) has a unique solution in U for any given f € H~1(Q). It is then
well known that problem (2.5) satisfies the following H!™" regularity estimate:

(2.6) lullier < ClFl-14r

with » > 0.

In the remainder of this section, we describe two special cases of the boundary
value problem in (2.1)—(2.2).

Elliptic interface problem. Let {€;}}'_; be a partition of the domain Q with
Q; being an open polygonal domain. Let a(x) be positive and piecewise constant
on subdomains, {Q;}, of Q with possible large jumps across subdomain boundaries
(interfaces):

az)=aq; >0 in Q;

for + = 1,...,n. The elliptic interface problem is the boundary value problem in
(2.1-2.2) with

A=«al and b=0,
where I = I;5q4 is the identity matrix; that is,

=V -(aVu)+bu=f in Q,
(2.7) u=0 on I'p,
n-(aVu)=0 on I'y.

The corresponding energy norm for this problem is
1/2
1/2
Wla = (l*/2Vold o+ 6503 0) -

It is well known that the smoothness of the solution depends upon the jumps of the
diffusion coefficient « and that r could be very small.
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Singularly perturbed reaction-diffusion equation. Let ¢ be a very small
perturbation parameter 0 < € < 1. The singularly perturbed reaction-diffusion equa-
tion is the boundary value problem in (2.1)—(2.2) with

A=¢I, b=0, and by=1;
that is,
—Au+u=f in
(2.8) u=0 on I'p,
n-(eVu)=0 on I'y.

The corresponding energy norm for this problem is

1/2
lolle = (lVlg o +lvlge) "

It is well known that the solution of the problem satisfies the regularity estimate

lulle < Clifllo.;

which follows easily from
1
ol = (f, w) < llfloelluloe < 5 (1150 + luli.q) -

Moreover, if u € H?(£2), then

ellullz,a + lulle < Cllfloe,

which is a direct consequence of the H? regularity estimate of the Poisson operator:
lull2,0 < C (|Aullo0 + |lullo,), the first equation in (2.8), the triangle inequality,
and the energy estimate above. These estimates indicate that the L2, H', and H?
norms of the solution have the respective scales: 1, e~ /2, and e~ .

3. Finite element approximation. For simplicity of presentation, we consider
only triangular and tetrahedra elements for the respective two and three dimensions.
Extension to rectangular and standard isoparametric elements is straightforward. As-
suming that the domain € is polygonal, let 7 = {K} be a finite element partition
that is regular (see [15]); i.e., for all K € T, there exists a positive constant x such
that

hK S RPK,

where hg denotes the diameter of the element K and px denotes the diameter of the
largest circle that may be inscribed in K. Note that the assumption of regularity does
not exclude highly, locally refined meshes.

Let Py(K) be the space of polynomials of degree k on element K. Denote the
finite element space of order k associated with the triangulation 7 by

U =U*T)={veU: g e P(K) YKeT}CU.

It has the following approximation property: if k& > 1 is an integer and [ € [1, k + 1],
then

(3.1) inf (v —e¢log+h(-e)lhe) <C W' vl Vve H(Q)
©
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584 ZHIQIANG CAI AND SHUN ZHANG

with the weighted norm defined by

1/2
18! 0l m,0 = (Z h%llﬂli,x) :

KeT
The finite element approximation of (2.5) is then to find u, € U* such that
(3.2) a(u,,v) = (f,v) Yvelur.

To the best of our knowledge, there are no a priori error estimates for the Galerkin
finite element approximation to the general elliptic equation without the assumption
that the largest mesh size is sufficiently small. Below, we state the a priori error esti-
mate for the singularly perturbed reaction-diffusion problem, which is straightforward
from the standard error analysis. Based on the following theorem and the regularity
estimates in the previous section, it is easy to see that the mesh size has to be small
enough to guarantee the accuracy of the finite element approximation.

THEOREM 3.1. For the singularly perturbed reaction-diffusion problem, assume
that u. € U' is the piecewise linear finite element approzimation defined in (3.2),
then there exists a positive constant C' such that

1/2
Ju —uyllo < Ce™ /2 (Z W (€% |ul3 i + ¢ luliK>> -
KeT

Proof. Let us be the interpolant of u in ¢, then a standard argument shows that

1/2
e —ullo < lu—urllo = (Z (EllV (u—ur) I3 g + llu— ufnax)) :

KeT
which, together with the approximation property, implies the theorem. d
4. Flux recovery. The flux, & = —AVu, is an important physical quantity,

often the primary concern in practice. Hence, it is desirable to compute an accurate
approximation to the flux based on the current finite element approximation, u.. In
this section, we study two flux recovery procedures. One is referred to as the L2
recovery studied in [19] for linear finite elements. The other is new and referred to as
H (div) recovery.

In both recovery procedures, the flux is approximated using H(div) conforming
finite elements. Of the several families of the H(div;2) conforming finite element
spaces (see, e.g., [16]), we consider only Raviart—Thomas elements for simplicity and
remark on Brezzi-Douglas—-Marini elements. Denote the local Raviart—Thomas space
of index k on element K € T by

RT(K) = Pp(K)? + x Py (K)
with x = (z1,...,24). Denoting
¥ = Hy(div; Q),

the standard H (div; Q) conforming Raviart—-Thomas space of index k is then defined
by

(4.1) VE=V¥T)={r€X : 7|k € RTH(K) VK € T}.
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It is well known (see [16]) that V¥ has the following approximation property: let & > 0
be an integer, and let [ € [1, k + 1]

. 1/2
(42) Aof o = Tlla@ivie < C (IB' oliia + 1A' V- aliq)

for o € H{(Q)? N with V- o € HY(Q).
With the definition of the flux, the general second-order elliptic boundary value
problem in (2.1-2.2) may be rewritten as the first-order system

o+ AVu =0 in Q,
(4.3)

Vio+Xu=f in
with boundary conditions
(4.4) u=0 onl'p and n-o=0 only.

Let @, € U* be the current approximation of the exact solution u € U of (2.1-2.2).
Define the bilinear forms

(4.5) bo,7)=(A"'e, 7) and b(o, 7)=blo, T)+(V -0,V -T)

for any (o, 7) € X x X. The L? recovery procedure is to find . € V™ such that
(4.6) b, 7)V=—(Vi,, ) YreVm

The H(div) recovery procedure is to find o € V™ such that

(4.7) o, 71)=—Vu, )+ (f-Xa, V-T) VreV™

Note that we assume f € L*(Q) in the H(div) recovery.
Denote the true errors by

e=u—1u,, E=0-6,, and E=0-0,,

and denote the norms induced by the bilinear forms by

17,0 =0T, ) and |7

B,Q — b(Ta T)7

which are weighted L2 and H (div) norms, respectively.
THEOREM 4.1. The following a priori error bounds for the recovered fluxes hold:

(48) Bl < € (inf, lo = 7ll50+ Illo )

and

(4.9) |Ellsa < C ( inf Jlo - 7z + |||e|||a) .
Teym

Proof. Since proofs on (4.8) and (4.9) are similar, we show only the validity of
(4.9). For all 7 € V™, using both equations in (4.3) gives the error equation

(4.10) bE,T)=—(Ve, 7)—(Xe, V-T1).
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Using (4.10) with 7 = 7 — o, and the Cauchy—Schwarz inequality yield
|El30 =bE,E)=bE, 0 —7) +bE,T—0,)
=bE,c—-17)—(Ve,7—0,)—(Xe,V-(Tr—0,))

1
2
< [Bllzalo — rllza+ (|472Veliq + X el a) T - o llze,

which, combining with the triangle inequality and (2.4), gives

1Bl < |Blsale —7lsa+Clela (I7 - ollz.o + [|Els.0)
<|[Ellza(le-7lza+Clelo) + Clelallr - ol

for all 7 € V™. Now, the error bound in (4.9) follows from the above inequality and
the € inequality (ab < 3-a® + $b?). 0

Remark 4.1. Theorem 4.1 and the approximation property in (4.2) indicate
that we should use the Raviart—Thomas elements of index k — 1 for approximating
o in (4.6) and (4.7) in order to be accurate up to that of the current finite element
approximation. We may also use other families, e.g., Brezzi—-Douglas—Marini elements
of index k [16], of H(div; 2) conforming finite element spaces of appropriate order to
approximate the flux in (4.6) and (4.7).

Remark 4.2. The resulting system of linear equations from the L? recovery is a
mass matrix and, hence, it can be very efficiently solved with several sweeps of the
Jacobi iteration or, better, the preconditioned conjugate gradients with the Jacobi
preconditioner. Due to the hierarchical structure of the meshes in adaptive finite
element method and the availability of the finite element approximations on previous
meshes, problem (4.7) can be solved efficiently by a fast H(div)-type full multigrid
method on a composite grid. For efficient full multigrid methods, see, e.g., [33, 34].
For fast H(div)-type multigrid methods, see [2, 35, 26, 34].

Remark 4.3. For the purpose of a posteriori error estimators, problem (4.7) may
be approximated roughly. As demonstrated numerically in section 7.2, one iteration
of an H(div) V(1,1)-cycle multigrid method is sufficient to produce a reliable and
efficient estimator. Estimators based on the localization of problem (4.7) are the
subject of a forthcoming paper.

5. Error estimator. Based on the L? recovered flux, ¢, defined in (4.6), we
introduce a new a posteriori error estimator:

1/2
(5:1) G = (147126, + A2V, | o + BRIV - 67 + Xiy — fI3 ) VKET

and

1/2
(5.2) (= (Z <,%>

KeT

with S > 0 depending upon coefficients of the underlying problem. For example, for
the interface problem described in section 2, we choose

1/2

Br = ax ' "hy,
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and for the singularly perturbed reaction-diffusion equation, we choose
B = min{s_l/QhK, 1}

Unlike existing recovery-based estimators, including those in [19], the estimator ¢ has
an extra term, which is a weighted element residual. This term guarantees reliability
of the estimator on coarse meshes, which we believe is necessary for higher-order
elements (see Figure 1). This is because, in general, the element residual is not
higher-order compared to the first term. This estimator is comparable to the explicit
residual-based estimator (see, e.g., [1, 37]), but it is more accurate than the latter (see,
e.g., Figures 10 and 12 for a singularly perturbed reaction-diffusion test problem). A
similar idea, adding two additional terms to the ZZ estimator, was studied in [25] and
the resulting estimator is sophisticated.

With the H(div) recovered flux, o, defined in (4.7), we introduce two a posteriori
error estimators. The first one is defined as follows:

(5.3) e = 1AV 20+ AY2VU o YKET
and
1/2
(54) §= (Z si) = |47V 2o, + A2V, |o 0.
KeT

This estimator may be considered as an extension of the recovery-based estimator
studied in [19] to both higher-order conforming elements and general scalar elliptic
partial differential equations. As shown in [19], estimators of this type are robust
with respect to the diffusion tensor and are possibly asymptotically exact. By adding
“element” residuals, we have the second estimator defined by

(5.5) ne = (2 +|V-o, +Xu, — fI2 )" VEeT
and
1/2
_ 1/2
(5.6) 0= (Zﬁ) — (@ +|V-a, +Xu, — fI2a)"".
KeT

We show that the estimator 7 is locally and globally exact on any given mesh with
respect to a norm depending upon the underlying problem.

Remark 5.1. For diffusion and diffusion-reaction problems, the estimators based
on the L? recovery, the ¢ defined in (5.2) and those developed in [19], are sufficient.
The £ and 7 defined in the respective (5.4) and (5.6) are designed for the convection-
diffusion-reaction and the Helmholtz problems, i.e., when b # 0 or by is nonpositive
in (2.1). The £ and 7 differ in norms measuring the error: the “energy” norm and
a stronger norm. When the right-hand side is only in L2, then the stronger norm
measured by the 7 is too strong for the underlying problem. Hence, one can either
use the &, which is not reliable on relatively coarse meshes, or modify the 7 as follows:

1/2
0= (Z ni) with

KeT

R B B B 1/2
e = (14720, + A2V, |3 g + BRIV -0, + Xu, — fI i) -

It is easy to show that the 7) is robust with proper choices of Sk in a similar fashion
as the proofs for the (.
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6. Analysis. In this section, we establish reliability and efficiency bounds for
the estimators ¢ and £ and local and global exactness for the estimator 7.
Let U* denote the dual space of U equipped with the dual norm

1l = sup L2

vev [[vlle

for any f € U*. For any element K € T, denote

1

_ 2
Im o)l = (IA727 13 g + 0l i + 1472900 )

and
1
Ir, W)lla.ie = (14727 + AYV20) e + V-7 + X o) 1)

Let

1
1
_ 2
1,Q = 1,K Q )
lr, o)l (an o)l ) = (Il + 14727113 o)
KeT
and

=

1(7, v)ll2,0 = (Z (T, v ||2K>

KeT

Nl=

= (14727 + A2V0[3 o + IV - 7+ Xvld )

Obviously, ||(T, v)||1.q defines a norm for (7, v) € L2(Q)?*4 x HL(Q). If 7 = —AV,
then

1/2
Im. o)la = (ol a +2 1472000

defines an “energy” norm for v € H}(Q). We show that ||(T, v)||2.0 also defines a
norm on X X U in section 6.2.

THEOREM 6.1. For any (7, v) € X x U, there exists positive constants C1 and
Cy such that

(6.1) Cill(, v)liq < A2 + A2V o + ||V - 7 + X
with Cy = 2max{2, 1+ C%} and that
(6.2) Ca (Iollg, + ITl5.0) < (7, v)I13.0 < 2Cx (I}, + 715 .0) -

Similar results as those in (6.1) and (6.2) were proved in [12] and [18], respectively.
The upper bounds in (6.1) and (6.2) are direct consequences of the triangle inequality,
(2.4), and the fact that

IV 7lo- < ||A’1/27'H0,Q and || Xv]

- <Gl )i

v+ < [ X0

The proof of the lower bound in (6.2) is quite technical in [18]. This can be proved
alternatively by first establishing

(6.3) ol + 17150 < € (7, V)50 + 10]50)

and then using the standard compactness argument to remove |[v]|2 , in the above
inequality (see [17]). For the reader’s convenience, we provide the proof in section 6.4.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



A POSTERIORI ERROR ESTIMATORS OF RECOVERY TYPE 589

6.1. Analysis for estimator {. To establish the local efficiency, we assume
that there exist a positive constant C, independent of Sk such that

(6.4) Prlf +V - (AVu,) = Xt o,k < Callelx + Bxllf = vllo.x,

forallv € P, = {v € L*(Q) : v|x € Px(K) for all K € T}. For the choices of
Bk in section 5, this was proved for the elliptic interface problem in [11] and for the
singularly perturbed reaction-diffusion equations in [38].

THEOREM 6.2. Let f. be the L? projection of f onto P,. Assume that (6.4)
holds. Then the error estimator ¢ defined in (5.2) satisfies the local efficiency bound:
there exists a positive constant C, such that

(6.5) (i < Cl(B, e)ll1,x + Brllf — Frllox

and the global efficiency bound: there exists a positive constant C. such that

1/2
5) ¢ <6 (elaxt (z Bf(If—fTIIS,K>

KeT

Moreover, both C, and C, are independent of the jumps and € for the interface and
singularly perturbed reaction-diffusion problems, respectively.
Proof. For any K € T, (2.3) implies there exists a positive constant A such that

¢TAE < ApeTe

for all € € R and almost all z € K. It then follows from the triangle inequality, (6.4),
and the inverse inequality with constant C; that

Brllf =V 6, — X, |ox
<Brlf +V - (AVu,) — Xa,|

o5 + BklIV - (6, + AV, )|

0,K
< Cullellx + Bxllf — frllox + Ci Brchig AL A™Y26  + A2V, |lo

< Collelx + Brllf = £+

where C' in the above inequality equals one for the interface problems and the singu-
larly perturbed reaction-diffusion equations. Using the first equation in (4.3) and the
triangle inequality gives

0.k +CiClA™Y26_ + AYV?Vi_||o.x,

|A7Y26, + A2V, ok = |ATYPE+ AY2Ve|ox < ||(B, €)1k

Now, combining the above two inequalities yields the local efficiency bound in (6.5).
The global efficiency bound in (6.6) is a direct consequence of (6.5) and (4.8). O

To establish the global reliability bound, we assume that there exist an e; € U*
and a positive constant C; independent of Sx such that

1/2
(6.7) <Z B lle = erllg, x + 142V (e — eﬂll?z) < Crlleflo.

KeT

For both interface problems and singularly perturbed reaction-diffusion equations,
(6.7) holds for the choices of Sk in section 5 with e; = Ie, where I is a Clément-type
interpolation operator (see, e.g., [11, 19, 32, 38]).
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THEOREM 6.3. Assume that @, = u, and that the bilinear form a(-, -) is coercive,
i.e., there exists a positive constant v such that

Ylvl* < a(v, v) Vwvel.

If (6.7) holds, then the error estimator ¢ defined in (5.2) satisfies the global reliability
bound: there exists a positive constant C, such that

(6.8) I(E, &)1 < Cr.

Proof. Tt follows from the coercivity of a(-, -), the orthogonality property of the fi-
nite element approximation, integration by parts, and the Cauchy—Schwarz inequality
that for all v € U¥

vllelld < ale, €) = ale, e —v) = (AV(u — u, ), V(e = v)) + (X (u—u,), e = v)
=(AVu+6,,V(e—v))—(6,+AVu, , V(e—v))+ (X(u—u,), e—v)
=(f-V-6,—Xu,,e—v)—(6,+AVu,_, V(e—))
<Y NF=V-or = Xugllox lle = vllo, k +[| A2 Vu, + A6 0,0 [le — vl

KeT
1/2
<< (Z Billle —vll§ x + lle — v|||?2> < Cr¢|ele-
KeT

Hence, choosing v = e; and using (6.7), we have
lelle < Crv¢,
which, together with the triangle inequality, yields
|A7Y2El|o, 0 < |[AT2E + A2V ello,0 + |42V elo,0 < (1+CryY) ¢

Combining the above two inequalities implies (6.8). This completes the proof of the
theorem. O

6.2. Analysis for estimator £&. By the constitutive equation in (4.3), the es-
timator £ has the following local representation in terms of the true error (E, e) =
(-0, u—1u,):

(6.9) € = Ex(B, €) = [ATPE + A2 Velo
for any element K € T.
THEOREM 6.4. Assume that Ag > 1. Then the estimator £ defined in (5.4)
satisfies the global reliability bound
(6.10) IE, e)le <CE+h(f =V -0, = Xi,)]oe)-
Proof. Tt follows from (6.1) and (6.9) with (7, v) = (E, e) that

(6.11) I(E, )10 < Cr (€ + IV - B+ Xel3.) .
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For any given v € U, there exists a 7 € 3 such that (see [15])
(6.12) Ver=v in Q and 7|10 <Clvloa-

Let Iy : H(div; Q) N LY(Q)? +— VO for fixed t > 2 be the well-known RTj interpo-
lation operator (see [16]), then it satisfies the following approximation and stability
properties:

[V (T =Tlo7)llo.x < Chr||V-Tl1x and |[Io7T]oo < Cl7(1,0,

which, together with (6.12), the error equation in (4.10), the Cauchy—Schwarz in-
equality, and (2.3), yields

(V-E+ Xe,v)=(V-E+ Xe, V-T1)
=(V-E+Xe, V- (t—1IIp7)) + (V-E+ Xe, V-IIyT)

=Y (V-E+Xe, V- (7 —Ig7))x + (A7/2E + AY?Ve, A7/ 1,7)
KeT

<C Y hg|V-E+ Xelox |V 7lik +[[A7PE + AY2Ve|o | AT ]0.q

KeT
< (Y B+ Xe)foa [v]ne +CA € [v]o0
Hence,
IV-E+Xelp- <C (|MV-E+Xe)loo+& =C ([h(f =V 0, — Xt )l[oo+E).
Combining with (6.11) proves the validity of (6.10) and, hence, the theorem. O

Let m =k — 1 in (4.7), then the second term in (6.10),
1h(f =V -0, = Xu)oo=[h(V-E+Xe)loq,

is a higher-order term comparing to the estimator £. This can be seen clearly from the
triangle inequality and (4.9). Alternatively, this term can be bounded by the so-called
oscillation of the element residual and the estimator. To do so, let

R=f-V-0,—Xu, =V-E+ Xe,

and let P,_; be the L? projection operator onto the discontinuous piecewise polyno-
mial space of degree k — 1 with respect to the triangulation 7T,

wel?Q) vk e P (K)YK T}

LEMMA 6.5. Assume that A9 > 1. Then there exists a positive constant C' such
that

(6.13) If =V-o, =Xt oo =|Rloe <CE+||R—PraRlo.q.
Proof. There exists a 7 € ¥ such that (see [15])

(6.14) V.r=R in Q and |7

1,0 < C|R[|o,0.
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Let Il_; : H(div; Q) N L}(Q)¢ ~— V*~! for fixed t > 2 be the well-known RT}_;
interpolation operator (see [16]), then we have

V- lly_171=P,_1V-7T=P,_1R and HH/C,1T|‘0)Q <C HT”LQ.

Now, it follows from the error equation in (4.10), the Cauchy—Schwarz inequality, and
(2.3) that

IR|3 o= (R, R)= (R, R—V -I_17) + (A"Y2E + A/?Ve, A1 7)
= (R, R—P,_1R) + (A" Y20+ AY2Vau_, A~YV210,_ 1)
< IR~ Pe_1Rllo.0l Rllo.c + CAy *€ || Rl0.0,

which implies (6.13) and, hence, the lemma. d

Remark 6.6. The assumption, Ag > 1, in Theorem 6.4 and Lemma 6.5 excludes
both convection- and reaction-dominant problems but not the interface problems. For
the singularly perturbed reaction-diffusion problems, the estimator £ would fail when
the mesh size is not small enough, more precisely, if hx > Cel/2.

THEOREM 6.7. For any element K € T, the estimator & satisfies the local effi-
ciency bound

(6.15) €k < |ATV?E|ox + [|AY2Veo,x < V2||(E, €)]

1,K-

Proof. The local efficiency bound in (6.15) is a simple consequence of the local
representation of the estimator ¢ in (6.9) and the triangle inequality. O

6.3. Analysis for estimator 7. By the constitutive and equilibrium equations
in (4.3), we have the following local representation of the estimator #:

1/2
(616)  ne = (B, €) = (1472 + AV2Ve|f 1 + |V - E+ Xell} «)

for any element K € T.
LEMMA 6.8. The ||(T, v)||2,o defines a norm in the product space ¥ x U, which

is equivalent to the norm (|Jvl3 + H‘"||213,Q)1/2-
Proof. With the equivalence in (6.2), it suffices to show that ||(-, -)||2, o satisfies
the triangle inequality. For any (74, v;) € £ x U (i =1, 2), let

CLZ‘ZHAil/QTi-i-Al/zV’Ui”QQ and biZHV-Ti—I—X’l}iHQQ;

then [|(7i, vi)||3, o = a7 + b7. Tt follows from the Cauchy-Schwarz inequality that

V)

(71, v1) + (T2, v2)l13,0 < D (a7 +b7) + 2 (a1az + b1bs)
=1

< (a? +b2) +24/a3 + b3 /ad+ b3

= (I(r1, vD)ll2, @ + (72, v2)ll2,0)%.

o
Il

[

ﬁ
Il
-

Taking the square root on both sides of the above inequality proves the triangle
inequality and, hence, the lemma. a
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Remark 6.9. When X v = v, it follows from integration by parts that
2 1/2 2 —1/2_42 5 \1/?
17y Wz, = ([0l o+ 14290lE g + 1147273 o + IV - 73 o)
1/2
= (Il + 7113 0)

for any (7, v) € ¥ x U. Moreover, when 7 = —AVwv, we have

1/2
I(=AVv, V)20 = (ol o + 214720l o + IV - (AV0)3a)

which is stronger than the “energy” norm, ||v|q, of v.
THEOREM 6.10. The a posteriori error estimator n defined in (5.6) is exact locally

and globally with respect to the seminorm ||(-, -)|l2,x and the norm [|(-, -)|l2.0
(6.17) Ne = 1(E; e)llax  and 1= |[|(E, e)]|2,0,
respectively.
Proof. Equation (6.17) is a direct consequence of the local representation of the
estimator 7 in (6.16). O

Remark 6.11. Obviously, Theorem 6.10 indicates that the estimator n satisfies
both the (local) efficiency and (global) reliability bounds with both constants being

one.
Remark 6.12. When Xv = v, Remark 6.9 and Theorem 6.10 imply that the

estimator 7 is exact globally with respect to the norm (|Jo|3, + ||T||QB7Q)1/2. Similarly,
if Xv = bo(z)v with bo(x) > 0 for almost all z € 2, then the modified estimator

5 B B _ B 1/2
6.18) = (420, + A2V, R o+ 0 (V0 +boa, — DR o)

is exact globally with respect to the norm
1/2
1/2 — —1/2
(16520113 0 + 147290l o + A2 78 o + 16 V2V - 7l g)

Here the recovered flux, o, € V™, in (6.18) is the solution of the following problem
(a modification of problem (4.7)):

bo,, )+ (bg'V-o,V-T)=—(Vi,, )+ (bg ' (f — Xa,), V.r) VreV™

6.4. Proof of the lower bound in (6.2).

Proof. To show the validity of the lower bound in (6.2), we first establish (6.3).
For any (7, v) € ¥ x U, it follows from integration by parts, the Cauchy—Schwarz
inequality, (2.4), and the Poincaré inequality that

|AZV |2 o = (A2Vo+ A 37, A3V ) — (1, V)
= (A2Vo+ A7, A3V o)+ (V- T,0)
= (A%VU—FA_%T, A%V’U) + (V- -7+ Xv,v) — (Xv, v)

< |AZVv+ A 3700 |AEV ullo, + |V - T + Xvllo, [[v]

0,0 + [ Xvllo,a[[v]lo,e

< (4490 + A7 Ar)o,0 + C ollo,0) |43 o0 + IV - 7 + Xv|

o,allvllo, -

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



594 ZHIQIANG CAI AND SHUN ZHANG
Hence,
1
(6.19) |42V 0[5 o < C (Il(7, v)ll2.2 + [V]E,0) ,
which, together with the triangle inequality, gives
jA7 73 g <2 (1473 r + AT 0] o + 143Vl o)
<O (lltr, v)llz0 + VI3 o) -
By the triangle inequality, (2.4), and (6.19), we have
IV-7l§ 0 <2(IV- 7+ X0[§ o + IX0]§ o) <2(IV -7+ X0lf o + Cllv]3)

<C (l(r, v)l

2,0+ ||U||(2)Q) .

Combining the above three inequalities yields (6.3).

With (6.3), we show the validity of the lower bound in (6.2) by the compactness
argument. To this end, assume that the lower bound in (6.2) is not true. This implies
that there exists a sequence {(7,, v,)} € ¥ x U such that

1
(6.20) ITallB o+ llvalle, =1 and  [[(Tn, vn)ll2.0 < o

Since U is compactly contained in L?(Q), there exists a subsequence {v,, } € U which
converges in L*(Q). For any k, [ and (Ty,, Un, ), (Tn;, Un,) € X x U, it follows from
(6.3) and the triangle inequality that

HTnk - Ty ”?379 + |||vnk — Uy "l?)
< C (”(Tnk — Tnys Ung — Unz)”%,ﬂ + ||vnk — Un, ”379)
<C (”(Tnk? Unk)||27Q + ”(TTLH vnz)”279 + ||Unk = Uny ”379) —0 as k, [ — oo

This implies that {(7,,, vn,)} is a Cauchy sequence in the complete space ¥ x U.
Hence, there exists (7, v) € ¥ x U such that

im (|7, —7lB.0+ lva, —vle) = 0.
k— o0
Next, we show that
(6.21) v=0 and T=0,
which contradict with (6.20) that
1750 + Iole = Jim 750+ lon, 6 = 1.
—00

To this end, for any ¢ € U, integration by parts and the Cauchy—Schwarz inequality
give

a(vn,,, @) = (AVun,, VO) + (Xvn,, ¢) = (AVun, + Ty, VO) + (Xvp, +V - Th,, @)

1
< T vn)llza Idlle < . I élle-
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Since limy o0 vp, = v in U, we then have
|a(v, ¢)| = lim |a(vnka ¢)| <0,

k— o0

which, together with the uniqueness of the variational problem (2.5), implies
v=0.
Now, 7 = 0 follows from (6.3):

I7l0 = im |70, 50 < C lim ([(Tne, vn)l3,0 + lonl6 ) =0

—00 k—o0

This completes the proof of (6.21) and, hence, the lower bound in (6.2). O

Remark 6.13. When Xv = bgv with by > 0, the compactness argument in the
above proof is not needed. That is, (6.2) may be proved in the same fashion as that
of (6.3).

7. Numerical examples. In this section, we report numerical results on several
one- and two-dimensional test problems. Starting with a coarse triangulation 7y, a
sequence of meshes {7} is generated by using a standard adaptive meshing algorithm
that adopts the Dérfler’s bulk marking strategy [23]; i.e., at each refinement step,
elements K € M, satisfying

1/2 1/2
<Zni> >@<Zni> ©=1/2)

KeMy KeTy

are marked for refinement. In two dimensions, marked triangles are refined regu-
larly by dividing each into four congruent triangles. Additionally, irregularly refined
triangles are needed in order to make the triangulation admissible.

7.1. One-dimensional Poisson equation. Consider a one-dimensional Pois-
son equation

1) { —u" =f in I=(0,1),

u(0) =u(1) =0.
For ¢ =1, 2, denote by
U ={veC®[0,1]) : vk € P(K)V K € T}

the finite element space of order i, where T is a one-dimensional mesh of (0, 1) with
element K = (xy, xx4+1), and P;(K) is the collection of all polynomials of degree i.
Let u; be the finite element approximation; i.e., u; € Ui =U' N H (1) satisfies

(uf, ') = (f,v) Y vel

Let 6; € U and o; € U be the L? and H (div) recovered fluxes satisfying the equations
(65, 7)=—(ul, 1) VY TeU

and

(i, 7)+ (0, 7)==, 7)+ (f,7") V1€ u,
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respectively. For two test problems, we will present numerical results for the four
estimators

N 1/2
X, = lloi +llos, G = O+ (o} — NIEN"?,

1/2
& = lluj +oillo, and n; = (i + oillg ; + ot — fII5.r)

To visually illustrate that ||h(o} — f)|lo,r is a higher-order term, we introduce

0 = (It +ailly s + (ot = £)I3.)".
The relative error estimator is calculated as the ratio of the estimator and ||u}|o,;.
The first test problem is (7.1) with the right-hand side function f = 302* — 2023
and the exact solution u = 2°(1—x). The initial mesh is a uniform grid with the mesh
size 0.1. For the estimator yx,, adaptive calculation is stopped after 10 refinements
because local mesh refinements do not improve the accuracy of the approximation
(see Figure 1), which indicates the failure of the estimator x, on coarse meshes. For
the estimator &, the stopping criterion is that the relative error is less than 1074
Figure 2 shows that the recovery-based estimator &5 is very accurate and that the term
[[h(oi — f)llo,r is higher-order. Moreover, the slope of the log(dof)-log(relative error)
for both & and g, is —2, which implies the optimal decay of the error with respect
to the number of unknowns. This test problem provides an example showing that a
straightforward extension of recovery-based estimators to the quadratic element fails
on coarse meshes.

107" y

—e— /Il

—e—&/ |l

—— [l U/ 1T

—e— py/ Il

e = 1/ ol

%, and error
3
&Py and error
3

10° 10
number of nodes number of nodes

FIG. 1. x2 vs. errors. FIG. 2. &2 and p2 vs. errors.

The second test problem is (7.1) with the right-hand side function f = psin
(2mmx), where m is a fixed integer and p is an arbitrary constant. The exact solution
of this problem is

1
U= sh sin(2™rx),

which is oscillatory. The problem was constructed by Ainsworth and Oden in [1] in
order to show that existing recovery-based estimators could be unreliable on coarse
meshes. More specifically, consider a uniform mesh of (0,1) with element nodes lo-
cated at the points

xp =k/2" for k=0,...,2"
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When m > n, it is easy to see that the error estimator x, defined above and any
recovery-based estimators solely based on u; is zero, but the true error is proportional
to || and could be arbitrarily large. (For more details, see page 83 of [1].) When
m > n, a simple calculation shows that (f, 7/) = 0 for all 7 € &'. This implies that
o1 is identical zero and, hence, the estimator &; is also unreliable on coarse meshes.

On the other hand, for the test problem with =1, m =5 and n = 1, Figure 3
clearly shows that the estimator 7; is reliable on coarse meshes even though the true
error does not decrease until the mesh is fine enough. It also shows that 7, is accurate
with respect to the norm

9 )1/2.

(Iw = w)lI§ o + ll(0 = a1)lI3 0

Moreover, when meshes are fine enough, the slope of the log(dof)-log(relative error)
is —1, which indicates the optimal (quadratic) decay of the error with respect to the
number of unknowns. Here, we do not present numerical results of the estimator (;
that should also be reliable on coarse meshes but is less accurate than 7;.

—o—n,
—*— Error

n, and error
5

number of nodes

Fic. 3. m ws. error. Fic. 4. Mesh generated by .

7.2. Two-dimensional interface problem. This subsection presents two sets
of numerical results for a benchmark interface problem with intersecting interfaces
[30]. Let @ = (=1,1)2, Ty =0, f =0, bp = 0, a(x) = R in (0,1)2 U (—1,0)?,
and a(x) = 1 in Q\ ([0, 1]? U [-1,0]?), then the exact solution of (2.7) in the polar
coordinates at the origin is u(r, ) = r®u(6), where () is a given smooth function
of §. For f = 0.5 and 0.25, R ~ 5.8 and 25.3, respectively. For this test problem
including S = 0.1, numerical results on various error estimators were reported in
[19] for the conforming linear element and in [20] for the mixed and nonconforming
elements of the lowest order. In particular, the recovery estimators in [19] based on
the L? recovery are robust, accurate, and computationally efficient. The purpose of
the first test problem with 5 = 0.5 is to show that the estimators £ and 7, defined
respectively in (5.4) and (5.6), work well for quadratic elements.

To visually illustrate that [|2(V - o, — f)||§  is a higher-order term, we also
introduce

0= (E+ V-0, - NI2a)".

Meshes generated by ¢ and 7 are similar, and the mesh generated by ¢ is depicted
in Figure 4. As expected, refinements are centered around the origin. The estimator
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STy ‘ ‘
=
o /1A ul, —+—error

2 2
oy IWBY e | A2 ull,

n and error

" e " "
YAV ully p/IAY ully and A2V e [/ A2V

number of unknowns number of unknowns

Fic. 5. £ and p vs. error. FiG. 6. n vs. error.

¢, the quantity o, and the relative error |AY/2Ve||o.0/||AY?Vuloq as functions of
the number of unknowns are drawn in Figure 5. The effectivity index for £ is about
1.35. As shown in Theorem 6.6, the estimator 7 is exact with respect to the norm
(IA=Y2E + AY2Ve|3 o + |V - El§ o) Y2 But in Figure 6, we illustrate the estima-

tor 7 and the error in the norm ([|AY/2Ve|3 , + ||V - E||g7Q)1/2. Since the slopes of
the log(dof)-log(error) in Figures 7 and 8 are —1, this means that the error decays
optimally with respect to the number of unknowns.

20

number of V- cycle iterations
s

o . .
10 10° 10° 10
number of unknows (edges)

F1G. 7. Number of V-cycle iterations and number of unknowns (edges).

The second set of numerical results is for 8 = 0.25 and for linear element. The
vertex bisection is used for generating adaptive meshes. The purpose here is to show
numerically that the H(div) recovery defined in (4.7) may be computed very efficiently
by multigrid methods, and that the one step multigrid iteration on problem (4.7) is
sufficient to generate a robust and accurate estimator.

A V(1,1)-cycle multigrid (MG) method developed in [35, 26] is employed for
numerically solving problem (4.7) on adaptive meshes. (For a detailed matrix pre-
sentation of the algorithm and a recent review, see Algorithm F.1.1 in [34] and [40],
respectively.) The smoothing consists of one Gauss—Seidel (GS) iteration of the un-
derlying H (div) system and one GS iteration of a curl-curl system related to the null
space of the divergence operator. On each level, the smoothing is only performed on
the new unknowns and their neighbors. Hence, the cost of one smoothing step is of
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o,

o

ATV u =V u) I, /AT ull,

12
A2y ull,

—a

—

%

Y27 5~V ) ],/ IIAY2Y ull, and & []4"29 ui|

number of nodes

Fic. 8. Mesh generated by & with H(div)
MG solver. F1G. 9. £ vs. error.

O(N) with a relatively small constant, where N is the number of unknowns on the
finest mesh.

For an initial guess, it is natural to use prolongation of the solution at the previous
adaptive step. The stopping criterion is that the ratio of the £? norms of the current
and initial residuals is less than 0.001. The number of MG iterations versus the
number of unknowns (edges) is depicted in Figure 7, and it shows that the number of
MG iterations is constant once the underlying discretization is relatively large enough
(several hundred unknowns). This is different from the observation of section 6.3
in [22].

The mesh generated by the £ and the & versus the true error as functions of the
number of nodes is depicted in Figures 8 and 9, respectively. The decay of the error
is optimal and the effectivity constant is 1.4. The estimator £ using a direct solver
for problem (4.7) is also tested and its performance is similar to that using the MG
solver, and, hence, not reported here. Finally, the estimator £ using one MG iteration
is tested and, again, its performance (see Figures 10 and 11) is very similar to that
using the MG solver. Note that the computational cost in this case is comparable to
explicit error estimators.
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Fi1Gc. 10. Mesh generated by & with one ] )
step V cycle H(div) MG solver. Fic. 11. & with one step V cycle H(div)
MG solver and error.

7.3. Singularly perturbed reaction-diffusion problem. In this section, we
report numerical results on one- and two-dimensional singularly perturbed reaction-
diffusion problems in (2.8). A robust explicit residual-based estimator for this problem
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was studied by Verfiirth in [38] (see also [27]) and defined as

1/2
(72) n, = (51/2ZO‘K|5[n'VUT]e”(2),e + Z a%”f—l—gAuT _U’T|3,K> )

ecé KeT

where ax = min{e~*/?hy,1}. This is the only existing robust estimator to the best
of our knowledge.
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F1G. 12. Numerical solution. Fic. 13. ¢, ny,, and error.

The first test problem is a one-dimension singularly perturbed reaction-diffusion
problem, i.e., (2.8) with

Q=(0,1), ¢=10° f=2+2(1—-2x), and T'y=0.

This problem has an exact solution u = e~%/V% 4 (1 — x). Using linear element,
© = 0.7 in the Dorfler marking, and the stopping criterion when the error is less than
10~*, a numerical solution on the finest mesh generated by ¢, is depicted in Figure 12.
In Figure 13, we plot the estimators ¢ and 7),, defined in (5.2) and (7.2), respectively,
and the true error on the adaptive meshes generated by (. It is clear that ¢ is more
accurate than 7, .

—e—ulllull
—es—n/lllull
——lllelll1Il ulll

Yllulllng/ Nlulll,and {llelll /{11 ulll

<
: : : : ~
~
107 . . . S

number of nodes

F1G. 14. Mesh generated by C. Fic. 15. ¢, n,,, and error.

The second test problem for a singularly perturbed reaction-diffusion equation is
(2.8) in two dimensions with

Q=(-1,1)% e=10"" and Tn=0.
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The right-hand side f is chosen so that the exact solution is
u = tanh(e V2 (22 + 4> — 1/4)) — 1.

This problem exhibits an interior layer along the circle of radius 1/2 centered at the
origin. The coarsest triangulation is obtained by first partitioning the domain €2 into
4 squares with sides of length 1 and then dividing each square into two triangles by
connecting the top-left and right-bottom corners of the square. Using linear element,
© = 0.5 in the Dérfler marking, and the stopping criterion when the error is less than
104, the finest mesh generated by ( is depicted in Figure 14, and the estimators ¢ and
71, and the true error in the energy norm is reported in Figure 15. (Meshes generated
by 7 are similar to those by ¢.) Again, it is clear that the ¢ is more accurate than the
7y and that the mesh generated by ( is optimal. Finally, the effectivity index ¢/|e||
is about 2.3.
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