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Abstract
This paper develops a Galerkin approach for two-sided fractional differential equations with
variable coefficients. By the product rule, we transform the problem into an equivalent for-
mulation which additionally introduces the fractional low-order term.We prove the existence
and uniqueness of the solutions of the Dirichlet problems of the equations with certain diffu-
sion coefficients. We adopt the Galerkin formulation, and prove its error estimates. Finally,
several numerical examples are provided to illustrate the fidelity and accuracy of the proposed
theoretical results.

Keywords Fractional diffusion equation · Two-sided fractional derivative · Galerkin
methods · Error estimate

Mathematics Subject Classification 26A33 · 65M06 · 65M12 · 65M55 · 65T50

1 Introduction

Fractional order differential equations are generalizations of classical differential equations.
Over the past two decades, fractional differential equations have been used in modeling tur-
bulent flow [5,23], chaotic dynamics of classical conservative systems [32], groundwater
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contaminant transport [3], and applications in biology [16], physics [12], chemistry [13],
and even finance [20]. The main reason for their popularity is that they are equipped with
the ability to capture nonlocal phenomena and long-range interactions, and can model phe-
nomena exhibiting anomalous diffusion that cannot be modeled adequately and accurately
by canonical second-order diffusion equations.

The classical one-dimensional diffusion equation

∂t u(x, t) − ∂x [k(x)∂xu(x, t)] = f (x, t), (1.1)

is derived from the mass balance equation

∂t u(x, t) + ∂x F = f (x, t), (1.2)

and the Fick’s first law
F = −k(x)∂xu(x, t), (1.3)

where u is the concentration of the diffusing material at x and time t , F is the flux of the
material, and k is the diffusion coefficient.

Recently, researchers found that the classical Fick’s law (1.3) does not describe anomalous
diffusion in heterogeneous porous media [2,3]. Instead, a fractional Fick’s law was proposed
in [22]:

F = −k(x)
(
θ 0∂

1−β
x u(x, t) + (1 − θ) x∂

1−β
1 u(x, t)

)
, (1.4)

where β ∈ (0, 1), θ ∈ [0, 1] is a parameter describing the relative probability of particle
traveling ahead or behind the mean velocity, and 0∂

1−β
x and x∂

1−β
1 are left- and right-sided

Riemann–Liouville fractional derivatives with respect to variable x , respectively, which will
be defined in Sect. 2. Combining (1.2) with (1.4), we obtain the following fractional diffusion
equation (FDE):

∂t u(x, t) − ∂x

(
k(x)

(
θ 0∂

1−β
x u(x, t) + (1 − θ) x∂

1−β
1 u(x, t)

))
= f (x, t). (1.5)

Since in most cases the closed-form of the solution is not available, numerical approaches
are preferred to understand the behavior of the solution. Even though the solution can be
sought in constant-coefficient case, it is challenging to evaluate the fractional derivative
for most functions involved in the explicit solution. Therefore, it is essential to develop
efficient numerical methods. Liu et al. [15] and Meerschaert and Tadjeran [17,18] were the
first to develop finite difference method for fractional partial differential equations (1.5)
with constant coefficients and other kinds of equations. Subsequently, many high-order finite
difference schemes [6,11,24] have been developed. One of themain reasons for the popularity
of finite difference methods is that the resulting discrete stiffness matrix is equipped with
Toeplitz-like structure so that existing fast methods can be applied to the resulting discretized
matrix directly, with storage of O(N ) and computational operations of O(NlogN ) with
respect to unknowns, where N is the number of grid points; see [26,27].

In the context of finite element method, Ervin and Roop [8] are the first to carry out
a rigorous analysis to prove the well-posedness of a Galerkin weak formulation to frac-
tional differential equations with a constant diffusion coefficient. In addition, they proved
the optimal-order convergence for the corresponding finite element methods [6–8] based
on the assumption of a suitably smooth solution. Subsequently, many researchers extended
their analysis to other methods such as the discontinuous Galerkin method [30] and spectral
method [14]. Numerous works have been focused on either one-sided fractional equations
θ = 0, 1 in (1.5) or two-sided case but only with constant coefficient, k(x) ≡ constant .
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For the stationary one-sided diffusion equations with variable coefficient which corresponds
to θ = 1 in (1.5), Wang and Yang [25] showed that the bilinear form of the Galerkin for-
mulation may lose coercivity. To circumvent the difficulty, they proposed a Petrov–Galerkin
formulation and established its well-posedness. Based on the Petrov–Galerkin formulation,
they developed discontinuous Petrov–Galerkin method [28] and indirect method [29]. Here,
we have a natural question for two-sided fractional differential equations with θ ∈ (0, 1) and
variable coefficients: for what kind of diffusion coefficients can we use the Galerkin approach
for the equations? To get an answer for the question, we derive an required condition for the
wellposedness of the Dirichlet problem of the equations, discretize the equations and provide
its error estimates.

The remainder of this paper is organized as follows. In Sect. 2, we describe basic notations,
introduce some important properties of fractional derivatives and integrals, and recall existing
known results about fractional differential operators, Sobolev spaces as well as fractional
derivative spaces. In Sect. 3, we prove the wellposedness of the Dirichlet problem of the
two-sided fractional differential equation with variable coefficient. In Sect. 4, we set up the
Galerkin formulation of the equation and present error estimates for the approach. In Sect. 5,
we give several numerical examples to validate theoretical results. Some concluding remarks
and comments are included in Sect. 6. Throughout this paper, both c and C with or without
the subscript denote generic constants which are independent of the step size h, and may
vary at different occasions.

2 Preliminary

We restrict the domain into an unit interval (0, 1) for simplicity. The left- and right-sided
fractional integrals [19] are defined as

0D
−μ
x v(x) = 1

�(μ)

∫ x

0

v(ξ)

(x − ξ)1−μ
dξ, x > 0, μ > 0, (2.1)

and

x D
−μ
1 v(x) = 1

�(μ)

∫ 1

x

v(ξ)

(ξ − x)1−μ
dξ, x < 1, μ > 0, (2.2)

respectively. It is easily shown that

0D
−μ
x xσ = �(σ + 1)

�(σ + 1 + μ)
xσ+μ, x D

−μ
1 (1 − x)σ = �(σ + 1)

�(σ + 1 + μ)
(1 − x)σ+μ (2.3)

hold for any x ∈ (0, 1),μ ∈ (0, 1) and σ > −1. The formulas in (2.3) will be used in Sect. 5.
Let L p(0, 1) with p ≥ 1 be the space of p-th power Lebesgue integrable functions on

the interval (0, 1). The integrals are related by the so-called fractional integration by parts as
follows [19,21].

Lemma 1 The left- and right-sided fractional integral operators are adjoint, i.e., for any
μ ∈ (0, 1), (

0D
−μ
x v,w

) =
(
v, x D

−μ
1 w

)
, ∀v,w ∈ L2(0, 1), (2.4)

where (·, ·) denotes the L2−inner product. The fractional integral operators follow the semi-
group property i.e., for any v ∈ L p(0, 1) with p ≥ 1,

0D
−μ
x 0D−ν

x v(x) = 0D
−(μ+ν)
x v(x), ∀x ∈ (0, 1), ∀μ, ν > 0, (2.5a)
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x D
−μ
1 x D

−ν
1 v(x) = x D

−(μ+ν)
1 v(x), ∀x ∈ (0, 1), ∀μ, ν > 0. (2.5b)

Theμ (n−1 < μ < n)order left- and right-sidedRiemann-Liouville fractional derivatives
of v(x) are defined as

0D
μ
x v(x) = Dn

0D
−(n−μ)
x v(x), x D

μ
1 v(x) = (−1)nDn

x D
−(n−μ)
1 v(x), (2.6)

where Dn := dn/dxn . If μ = n, then 0D
μ
x v(x) = Dnv(x) and x D

μ
1 v(x) = (−1)nDnv(x).

The μ (n − 1 < μ < n) order left- and right-sided Caputo fractional derivatives of v(x)
are defined as

C
0 D

μ
x v(x) = 0D

−(n−μ)
x Dnv(x), C

x D
μ
1 v(x) = (−1)n x D

−(n−μ)
1 Dnv(x). (2.7)

The Rieman–Liouville and Caputo fractional derivatives are strongly related by the fol-
lowing lemma.

Lemma 2 [19] For μ ∈ (n − 1, n), we have

0D
μ
x v(x) = C

0 D
μ
x v(x) +

n−1∑
j=0

v( j)(0)

�(1 + j − μ)
x j−μ, (2.8)

x D
μ
1 v(x) = C

x D
μ
1 v(x) +

n−1∑
j=0

(−1) jv( j)(1)

�(1 + j − μ)
(1 − x) j−μ. (2.9)

Remark 1 From this lemma, we can immediately see that if v( j)(0) = 0 and v( j)(1) = 0,
j = 0, 1, . . . , n − 1, then

0D
μ
x v(x) = C

0 D
μ
x v(x), x D

μ
1 v(x) = C

x D
μ
1 v(x). (2.10)

Under the homogeneous Dirichlet boundary conditions, we do not need to distinguish the
fractional derivative of Caputo form from that of Riemann–Liouville form for μ ∈ (0, 1).

LetC∞
0 (0, 1) be the space of infinitely differentiable functions on (0, 1) that are compactly

supported within (0, 1). We use the standard notations in Sobolev spaces [1]. Let

Wm
p (0, 1) :=

{
v ∈ L p(0, 1) : Dkv ∈ L p(0, 1), 0 ≤ k ≤ m

}

and

‖v‖Wm
p (0,1) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
m∑

n=0
‖Dnv‖p

L p(0,1)

)1/p

, 1 ≤ p < ∞,

ess max
0≤n≤m

‖Dnv‖L∞(0,1), p = ∞.

(2.11)

For μ ∈ (0, 1) and p ∈ [1,∞), let Wμ
p (0, 1) be the fractional Sobelov space [1] with the

semi-norm

|v|Wμ
p (0,1) =

( ∫ 1

0

∫ 1

0

|v(x) − v(y)|p
|x − y|1+μp

dxdy

)1/p

,

and let

‖v‖Wm+μ
p (0,1) =

(
‖v‖p

Wm
p (0,1) + |Dmv|p

Wμ
p (0,1)

)1/p

.
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In particular, we let Hμ(0, 1) := Wμ
2 (0, 1), and Hμ

0 (0, 1) be the completion of C∞
0 (0, 1)

with respect to the norm ‖ · ‖Hμ(0,1). Let H−μ(0, 1) be the dual space of Hμ
0 (0, 1) with the

dual pair, 〈·, ·〉 : H−μ(0, 1) × Hμ
0 (0, 1) → R.

Lemma 3 [19] Let 0 < μ < 1. Then for any v ∈ L p(0, 1)

0D
μ
x 0D

−μ
x v = v, x D

μ
1 x D

−μ
1 v = v. (2.12)

For any v ∈ W 1
1 (0, 1) with v(0) = 0 and v(1) = 0, the following holds

0D
−μ
x 0D

μ
x v = v, x D

−μ
1 x D

μ
1 v = v. (2.13)

The above lemma indicates that fractional derivatives and fractional integrals are inverse to
each other under homogeneous Dirichlet boundary conditions for a class of suitably smooth
functions.

Next, we introduce fractional derivative spaces which are essential to characterize the
solution spaces. We define the (semi) norms as

|v|Jμ
L (0,1) := ‖ 0D

μ
x v‖L2(0,1), ‖v‖Jμ

L (0,1) =
(
‖v‖2L2(0,1) + |v|2

Jμ
L (0,1)

)1/2
,

|v|Jμ
R (0,1) := ‖ x D

μ
1 v‖L2(0,1), ‖v‖Jμ

R (0,1) =
(
‖v‖2L2(0,1) + |v|2

Jμ
R (0,1)

)1/2
.

We define Jμ
L,0(0, 1) and Jμ

R,0(0, 1) as the closures of C
∞
0 (	) under the norms ‖ · ‖Jμ

L (0,1)
and ‖ · ‖Jμ

R (0,1), respectively.
Wewill use the following lemmaswhenwe develop our Galerkin formulation of fractional

differential equations and prove the error estimate.

Lemma 4 [8] The spaces Jμ
L,0(0, 1), J

μ
R,0(0, 1) and Hμ

0 (0, 1) are equal and have the equiv-
alent semi-norms and norms.

Lemma 5 [8] Let μ > 0 with μ ∈ (n − 1, n). Then for u(x) a real valued function
(
0D

μ
x u, x D

μ
1 u

) = − cos(μπ)‖0Dμ
x u‖2 = − cos(μπ)‖x Dμ

1 u‖2 (2.14)

The next lemma is the fractional version of Poincaré–Friedrichs inequality.

Lemma 6 [8] For any u ∈ Hμ
0 (0, 1), we have

‖u‖L2(0,1) ≤ C |u|Hμ(0,1), (2.15)

where C = 1/�(μ + 1), and for 0 < s < μ, s �= n − 1/2, n ∈ N

|u|Hs (0,1) ≤ C |u|Hμ(0,1). (2.16)

3 Variational Formulation and Regularity

For θ ∈ (0, 1), we consider the Dirichlet boundary value problem of a steady state two-sided
variable-coefficient fractional differential equation

−D(k(x)D−β
θ Du(x)) = f (x), x ∈ (0, 1), (3.1a)

u(0) = 0, u(1) = 0, (3.1b)
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where D−β
θ = θ 0D

−β
x +(1−θ) x D

−β
1 . We assume that k ∈ W 1∞(0, 1), and k(x) is bounded:

0 < kmin ≤ k(x) ≤ kmax , x ∈ (0, 1). (3.2)

By using the product rule and dividing by k(x), (3.1) can be transformed into the following
equivalent form

−D(D−β
θ Du) + K D−β

θ Du = g, x ∈ (0, 1), (3.3a)

u(0) = u(1) = 0, (3.3b)

where K = −k′/k ∈ L∞(0, 1), g = f /k. We denote α = 2 − β ∈ (1, 2), which represents
the order of the equation. Here, our approach introduces an extra low-order term K D−β

θ Du.
We first consider the fractional differential equations without any lower order term, i.e.,

K (x) ≡ 0:

−D(D−β
θ Du) = g(x), x ∈ (0, 1), (3.4a)

u(0) = u(1) = 0. (3.4b)

We multiply (3.4a) by v ∈ Hα/2
0 (0, 1), take integral by parts and use (2.4). Then, we

obtain the variational problem: find u ∈ Hα/2
0 (0, 1) such that

Aθ (u, v) = (g, v), for any v ∈ Hα/2
0 (0, 1), (3.5)

where the bilinear form Aθ : Hα/2
0 (0, 1) × Hα/2

0 (0, 1) → R is

Aθ (u, v) = θ
(

0D
α/2
x u, x D

α/2
1 v

)
+ (1−θ)

(
x D

α/2
1 u, 0D

α/2
x v

)
, for any u, v ∈ Hα/2

0 (0, 1).

(3.6)
By using Fourier transform and Parseval’s theorem, Ervin and Roop showed that the

bilinear form Aθ (·, ·) is coercive and continuous on the space Hα/2
0 (0, 1) [8]. More precisely,

there are two positive constants Amin and Amax such that

Aθ (w,w) ≥ Amin‖w‖2Hα/2(0,1), for any w ∈ Hα/2
0 (0, 1), (3.7a)

Aθ (v,w) ≤ Amax‖v‖Hα/2(0,1)‖w‖Hα/2(0,1), for any v, w ∈ Hα/2
0 (0, 1), (3.7b)

where Amin = − cos(απ/2) = cos(βπ/2) is positive.
We now return to the general case (: K �≡ 0) and define the bilinear form

a(v,w) := Aθ (v,w) +
(
K D−β

θ Dv,w
)

for any v,w ∈ Hα/2
0 (0, 1). (3.8)

Then the variational formulation for problem (3.3a) is given by: find u ∈ Hα/2
0 (0, 1) such

that
a(u, v) = (g, v) for any v ∈ Hα/2

0 (0, 1). (3.9)

By Lemma 6, we have∣∣∣(K D−β
θ Dv,w)

∣∣∣ ≤ C‖K‖L∞(0,1)|v|H1−β (0,1)‖w‖L2(0,1) ≤ C‖K‖L∞(0,1)|v|Hα/2(0,1)|w|Hα/2(0,1)

(3.10)
for any v,w ∈ Hα/2

0 (0, 1). Thus, the continuity of bilinear form a(·, ·) is obtained as follows:

Theorem 1 Let K ∈ L∞(0, 1). Then, for any v, w ∈ Hα/2
0 (0, 1) there exists a constant C1

such that
|a(v,w)| ≤ C1‖v‖Hα/2(0,1)‖w‖Hα/2(0,1). (3.11)
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The coercivity of the bilinear form is obtained in the following theorem for the α ∈ (1, 2).

Theorem 2 Let 0 < β < 1, and let K ∈ L∞(0, 1) satisfy

‖K‖∞ < cos(βπ/2)�(β/2 + 1)�(α/2 + 1). (3.12)

Then, there exists a positive constant C(β, K ) such that for any v ∈ Hα/2
0 (0, 1)

a(v, v) ≥ C(β, K )‖v‖Hα/2(0,1). (3.13)

Proof By using Lemmas 5 and 6 in the previous section we have

(
K D1−β

θ v, v
)

≥ − θ‖K‖∞
∫ 1

0
|v(x)0D

1−β
x v(x)| dx

− (1 − θ)‖K‖∞
∫ 1

0
|v(x)x D

1−β
1 v(x)| dx

≥ − θ‖K‖∞‖v‖‖0D1−β
x v‖ − (1 − θ)‖K‖∞‖v‖‖x D1−β

1 v‖
≥ −‖K‖∞‖v‖‖0D1−β

x v(x)‖
≥ − ‖K‖∞

�(β/2 + 1)�(α/2 + 1)
‖v‖2Hα/2 , ∀v ∈ Hα/2(0, 1). (3.14)

Therefore the bilinear form is bounded below as follows.

a(v, v) ≥
(
cos(βπ/2) − ‖K‖∞

�(β/2 + 1)�(α/2 + 1)

)
‖v‖2Hα/2 . (3.15)

(3.12) implies that

C(β, K ) = cos(βπ/2) − ‖K‖∞
�(β/2 + 1)�(α/2 + 1)

> 0.

��

Remark 2 Since ‖Dk‖∞ = ‖Kk‖∞ ≤ ‖K‖∞‖k‖∞, (3.12) means

‖Dk‖∞ ≤ cos(βπ/2)�(β/2 + 1)�(α/2 + 1)‖k‖∞. (3.16)

Therefore the assumption in Theorem 2 means that the first order derivative of the diffusion
coefficient is bounded by the L∞-norm of the coefficient multiplied by a constant. As β goes
to one, then cos(βπ/2) converges to zero, and hence the coercivity is obtained for a constant
coefficient k. In [25] the authors introduced an example of diffusion coefficient which does
not satisfy (3.12), and generates a bilinear form that is not coercive.

Since the bilinear form is continuous and coercive on Hα/2(0, 1), by the Lax–Milgram
theorem [4] we obtain the existence and uniqueness of the solution as follows.

Theorem 3 Let k ∈ W 1∞(0, 1) satisfy the inequality (3.12), and g ∈ H−α/2(0, 1). Then, there
exists a unique solution u ∈ Hα/2(0, 1) of the variational form (3.9) and

‖u‖Hα/2(0,1) ≤ C‖g‖H−α/2(0,1). (3.17)
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We now turn to the adjoint problem. The strong formulation for the adjoint problem is
stated as follows:

−D(D−β
1−θ Du∗) − DD−β

1−θ (Ku∗) = g∗, x ∈ (0, 1), (3.18a)

u∗(0) = u∗(1) = 0. (3.18b)

The variational formulation for the adjoint problem (3.18) is given by: find u∗ ∈
Hα/2
0 (0, 1) such that

a∗(v, u∗) = (g∗, v), for any v ∈ Hα/2
0 (0, 1), (3.19)

where

a∗(v,w) = A1−θ (v,w) −
(
v, D1−β

1−θ (Kw)
)

for any v,w ∈ Hα/2
0 (0, 1).

To prove the coercivity of a∗(·, ·), we use the following lemma which is proved in [9].
We prove it by computing the coefficient.

Lemma 7 [9] For 0 < μ < s < 1 with s > 1/2, p and q such that the given norms are finite,
we have

‖pq‖Hμ ≤ C(μ, s)‖p‖H1(0,1) ‖q‖Hs (0,1),

where

C(μ, s) = 2

min{�(s − μ + 1), �(2 − μ)} .

Proof By the definition of fractional semi-norm, we have

|pq|2Hμ(0,1) =
∫ 1

0

∫ 1

0

(p(x)q(x) − p(y)q(y))2

|x − y|1+2μ dxdy

≤ 2
∫ 1

0

∫ 1

0

p(x)2 (q(x) − q(y))2

|x − y|1+2μ dxdy + 2
∫ 1

0

∫ 1

0

(p(x) − p(y))2 q(y)2

|x − y|1+2μ dxdy

≤ 2 ‖p‖2∞ |q|2Hμ(0,1) + 2 ‖q‖2∞ |p|2Hμ(0,1)

≤ 2

�(s − μ + 1)2
‖p‖2H1(0,1) |q|2Hs (0,1) + 2

�(2 − μ)2
‖p‖2H1(0,1) ‖q‖2Hs (0,1), (3.20)

where the Sobolev imbedding theorem [7] and Lemma 6 are used in the last inequality. By
taking the constant C(μ, s), the result is obtained. ��

If 0 < β < 1, then for μ = 1 − β and s = 1 − β/2 this lemma implies

‖DD−β
1−θ (Kv)‖L2(0,1) ≤ 2‖K‖H1(0,1)

min{�(β + 1), �(β/2 + 1)}‖v‖Hα/2(0,1). (3.21)

Therefore, we obtain the coercivity of a∗(·, ·).
Theorem 4 Let β ∈ (0, 1), and K ∈ H1(0, 1) satisfy

‖K‖H1(0,1) <
1

2
cos(βπ/2)�(α/2 + 1)min{�(β + 1), �(β/2 + 1)} (3.22)

Then there exists a constant C∗(β, K ) such that for any v ∈ Hα/2
0 (0, 1)

a∗(v, v) ≥ C∗(β, K )‖v‖2Hα/2(0,1). (3.23)
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Proof By using (3.21) we have

−
(
v, D1−β

1−θ (Kv)
)

≥ −‖v‖‖D1−β
1−θ (Kv)‖

≥ − 2‖K‖H1(0,1)

�(α/2 + 1)min{�(β + 1), �(β/2 + 1)}‖v‖2Hα/2(0,1).

Then,

a∗(v, v) = A1−θ (v, v) −
(
v, D1−β

1−θ (Kv)
)

≥ C∗(β, K )‖v‖2Hα/2(0,1),

where

C∗(β, K ) =
(
cos(βπ/2) − 2‖K‖H1(0,1)

�(α/2 + 1)min{�(β + 1), �(β/2 + 1)}
)

.

Here, C∗(β, K ) is positive due to (3.22). ��
Note that (3.22) implies (3.12). Therefore, to the end of this paper we assume that K

satisfies the inequality (3.22). By the Lax–Milgram theorem we also obtain the existence and
uniqueness of the solution of the adjoint problem.

Theorem 5 Let β ∈ (0, 1), let g∗ ∈ H−α/2(0, 1) and let K ∈ H1(0, 1) satisfy (3.22). Then,
there exists a unique solution w ∈ Hα/2

0 (0, 1) of the adjoint problem (3.19) and

‖w‖Hα/2(0,1) ≤ C‖g∗‖H−α/2(0,1). (3.24)

Since

|Dk|H1 = |Kk|H1 ≤ ‖kDK‖ + ‖K Dk‖ ≤ ‖K‖H1 (‖k‖ + ‖Dk‖) ≤ √
2‖K‖H1‖k‖H1 ,

(3.22) means that

|Dk|H1 ≤ 1√
2
cos(βπ/2)�(α/2 + 1)min{�(β + 1), �(β/2 + 1)}‖k‖H1 .

Therefore, thewellposedness of the adjoint problem is obtained for the diffusion coefficient
whose H1-seminorm of its first derivative is bounded by the H1-norm of the coefficient.

Remark 3 If k(x) is differentiable, (3.1) and (3.3) are equivalent. But when we use Galerkin
method, their discretizations can be different. For a certain diffusion coefficient k(x) the
standardGalerkinmethod for (3.1) can generate a bilinear formwhich is not coercive [25,31].
In the next sectionwe present Galerkinmethod for the variational form (3.9) with the coercive
bilinear form and prove its error estimates by using the adjoint problem.

4 Finite Element Approximation

We introduce a finite element approximation based on a partition of the interval (0, 1) with
h being the largest length of subintervals. Consider the nodes xi , i = 0, 1, . . . , N . We
then define Vh to be the set of continuous functions which are linear polynomials on each
subinterval, [xi−1, xi ], i = 1, 2, . . . , N . Then Vh ⊂ Hα/2

0 (0, 1) by the Sobolev embedding
theorem [1].

Let uh be the solution of the finite-dimensional variational problem: find uh ∈ Vh such
that

a(uh, v) = (g, v), for any v ∈ Vh . (4.1)
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By substracting (4.1) from (3.9) we obtain

a(u − uh, v) = 0, for any v ∈ Vh . (4.2)

Then, for any v ∈ Vh we have

C(β, K )‖u − uh‖2Hα/2 ≤ a(u − uh, u − uh) = a(u − uh, u − v)

≤ C1‖u − uh‖Hα/2‖u − v‖Hα/2 .

Theorem 6 Let u be the solutions of (3.9). Then there exists a unique solution to (4.1) such
that

‖u − uh‖Hα/2 ≤ C inf
v∈Vh

‖u − v‖Hα/2 ≤ C‖u − Ihu‖Hα/2 , (4.3)

where Ihu is the interpolant of u in Vh.

The interpolant Ihu satisfies the next lemma.

Lemma 8 [4] Let the mesh Th be quasi-uniform, and s ≤ μ. If u ∈ Hμ(0, 1) ∩ Hs
0 (0, 1),

then
‖u − Ihu‖Hs (0,1) ≤ C0h

μ−s‖u‖Hμ(0,1). (4.4)

Therefore, we obtain the following error estimate.

Theorem 7 Let 0 < β < 1, and let K ∈ H1(0, 1) satisfy (3.22). Let u ∈ Hα/2
0 (0, 1) ∩

Hr (0, 1), r ≥ α/2, and uh ∈ Vh be solutions of (3.9) and (4.1), respectively. Then there
exists a constant C such that

‖u − uh‖Hα/2(0,1) ≤ Chr−α/2‖u‖Hr (0,1). (4.5)

To obtain an error estimate in the L2 norm, we apply the duality technique by taking the
assumption:

Assumption 1 For the solution w of the adjoint problem with g∗ ∈ L2(0, 1) we have

‖w‖Hr (0,1) ≤ C‖g∗‖L2(0,1) for r > α/2. (4.6)

Remark 4 Unlike the integer order differential equations, we do not have full regularity for the
fractional differential equations. Recently, Hao et al. studied the regularity for the two-sided
fractional order differential equations with lower order term in the weighted Sobolev spaces
and gave a rigorous analysis. However, the regularity in standard Sobolev spaces well suited
for the finite element method is still missing in the literature. To the authors’ best knowledge,
the first attempt to discuss the regularity of the equation in two-sided case is from the work
by Ervin et al in [10], where they conjectured the regularity of solution in standard Sobolev
space by seeking a closed form expression for the kernel of fractional diffusion operator
and assuming the data f sufficiently smooth. A solution is numerically shown to be in the
standard Sobolev space Hγ with regularity index γ = min{σ, σ ∗}+1/2− ε, where ε > 0 is
an arbitrary small number, σ and σ ∗ are constants depending on the order α and parameter
θ , see [10]. In particular, the regularity index is α/2 + 1/2 − ε for the symmetrical case
θ = 1/2 and α − 1/2+ ε for the one-sided asymmetrical case θ = 1 or 0. We will illustrate
the regularity in our numerical examples; see Example 2 in Sect. 5.
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Theorem 8 Let 0 < β < 1, let g∗ ∈ L2(0, 1) and let K ∈ H1(0, 1) satisfy (3.22). Let u ∈
Hα/2
0 (0, 1) ∩ Hr (0, 1), r > α/2, and uh ∈ Vh be solutions of (3.9) and (4.1), respectively.

Then there exists a constant C such that

‖u − uh‖L2(0,1) ≤ Ch2r−α‖u‖Hr (0,1). (4.7)

Proof For g∗ = u − uh, let w be the solution of the adjoint problem.

a∗(v,w) = (u − uh, v), for any v ∈ Hα/2
0 (0, 1). (4.8)

By letting v = u − uh and using (4.2) and (3.11) we have

(u − uh, u − uh) = a(u − uh, w) = a(u − uh, w − zh)

≤ C1‖u − uh‖Hα/2(0,1)‖w − zh‖Hα/2(0,1), ∀zh ∈ Vh .

By using (4.4) and (4.5), we have

‖u − uh‖2 ≤ C1‖u − uh‖Hα/2(0,1) inf
zh∈Vh

‖w − zh‖Hα/2(0,1)

≤ C1‖u − uh‖Hα/2(0,1)‖w − Ihw‖Hα/2(0,1)

≤ Ch2r−α‖u‖Hr (0,1)‖w‖Hr (0,1) ≤ Ch2r−α‖u‖Hr (0,1)‖u − uh‖,
where the assumption (4.6) is used. Dividing by ‖u − uh‖, we obtain the result. ��

Note that if r < α, then the convergence rate 2r − α < r . Therefore in that case the
convergence rate is not optimal.

5 Numerical Experiments

We present numerical experiments to verify our error estimates. The computations were
performed on uniform meshes of mesh sizes h = 1/2n, n = 5, 6, . . . , 10. We first briefly
discuss an implementation of the Galerkin method by computing the stiffness matrix.

Let uh(x) = ∑N−1
i=1 uiφi (x),

SD = (di, j ), di j = (
0D

−β
x Dφ j , Dφi

)
, and SC = (ei j ), ei j = (

0D
−β
x Dφ j , φi

)

with i, j = 1, 2, . . . , N − 1, where {φi }N−1
i=1 is a basis for Vh consisting of the piecewise

linear functions. Let

w
(γ )

i = [−(i − 3)3−γ + 4(i − 2)3−γ − 6(i − 1)3−γ + 4i3−γ − (i + 1)3−γ ]/�(4 − γ ),

where j3−γ = 0 for j < 0. Then SD and SC are lower Hessenberg matrices with Toeplitz
structure. More precisely,

SD = h1−α

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w
(α)
1 w

(α)
0

w
(α)
2 w

(α)
1 w

(α)
0

w
(α)
3 w

(α)
2 w

(α)
1

. . .

...
...

...
. . .

. . .

w
(α)
N−2 w

(α)
N−3 w

(α)
N−4 . . . w

(α)
1 w

(α)
0

w
(α)
N−1 w

(α)
N−2 w

(α)
N−3 . . . w

(α)
2 w

(α)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.1)
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Table 1 ‖u − uh‖∞ for the problem (3.9) with the exact solution u(x) = x3(1 − x)3, k(x) = x/2 + 2 and
h = 1/2n

θ α n Rate

5 6 7 8 9 10

0.2 1.2 6.04e−5 1.51e−5 3.80e−6 9.51e−7 2.38e−7 5.60e−8 ≈ 2.00

1.5 5.82e−5 1.47e−5 3.72e−6 9.36e−7 2.35e−7 5.84e−8 ≈ 2.00

1.8 4.92e−5 1.26e−5 3.24e−6 8.28e−7 2.11e−7 5.45e−8 ≈ 1.96

0.7 1.2 6.25e−5 1.54e−5 3.83e−6 9.55e−7 2.39e−7 5.62e−8 ≈ 2.00

1.5 5.96e−5 1.49e−5 3.75e−6 9.42e−7 2.36e−7 5.86e−8 ≈ 2.00

1.8 4.98e−5 1.28e−5 3.27e−6 8.34e−7 2.12e−7 5.48e−8 ≈ 1.96

1.0 1.25 6.21e−5 1.53e−5 3.82e−6 9.54e−7 2.38e−7 5.87e−8 ≈ 2.00

1.5 6.02e−5 1.50e−5 3.77e−6 9.45e−7 2.37e−7 5.88e−8 ≈ 2.00

1.8 5.16e−5 1.32e−5 3.38e−6 8.62e−7 2.19e−7 5.65e−8 ≈ 1.96

SC = h2−α

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w
(α−1)
1 w

(α−1)
0

w
(α−1)
2 w

(α−1)
1 w

(α−1)
0

w
(α−1)
3 w

(α−1)
2 w

(α−1)
1

. . .

...
...

...
. . .

. . .

w
(α−1)
N−2 w

(α−1)
N−3 w

(α−1)
N−4 . . . w

(α−1)
1 w

(α−1)
0

w
(α−1)
N−1 w

(α−1)
N−2 w

(α−1)
N−3 . . . w

(α−1)
2 w

(α−1)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.2)

5.1 Example 1

To test the approach presented in the previous section, we first consider the problem (3.1)
with the exact solution u(x) = x3(1 − x)3, and the diffusion coefficient, k(x) = (x + 4)/2.
The coefficient matrix of the derived linear system, AU = b, is

A = θ SD + (1 − θ)STD + K̄ [θ SC − (1 − θ)STC ],

where U = (ui ), K̄ = diag(K (x1), K (x2), . . . , K (xN−1)), b = (bi ), bi = (g, φi ), and T
means the transpose. Let

Fh(x) = −k(x)D−β
θ Duh(x)

be an approximate flux. For numerical implementation, we approximate the flux as follows:

Fh(x) = −k(x)
(
θ SC − (1 − θ)STC

)
uh(x),

where x = (x1, x2, . . . , xN−1).
Table 1 shows that the proposed numerical scheme (4.1) has O(h2) convergence in the

L∞ norm because u ∈ H2(0, 1). From Table 2, we see that the convergence rate of the flux
is O(h) in the same norm.
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Table 2 ‖F − Fh‖∞ for the problem (3.9) with the exact solution u(x) = x3(1 − x)3, k(x) = x/2 + 2 and
h = 1/2n

θ α n Rate

5 6 7 8 9 10

0.2 1.2 2.41e−5 6.39e−6 1.65e−6 4.19e−7 1.06e−7 2.65e−8 ≈ 2.00

1.5 9.87e−5 2.67e−5 6.98e−6 1.79e−6 4.56e−7 1.15e−7 ≈ 1.99

1.8 2.19e−4 6.00e−5 1.60e−5 4.17e−6 1.08e−6 2.76e−7 ≈ 1.96

0.7 1.2 4.21e−5 1.07e−5 2.69e−6 6.76e−7 1.70e−7 4.21e−8 ≈ 2.01

1.5 1.10e−4 2.92e−5 7.56e−6 1.93e−6 4.90e−7 1.24e−7 ≈ 1.99

1.8 2.21e−4 6.05e−5 1.61e−5 4.20e−6 1.09e−6 2.79e−7 ≈ 1.96

1.0 1.2 9.00e−5 2.24e−5 5.58e−6 1.40e−6 3.49e−7 8.64e−8 ≈ 2.01

1.5 1.60e−4 4.04e−5 1.02e−5 2.58e−6 6.50e−7 1.63e−7 ≈ 2.00

1.8 2.46e−4 6.51e−5 1.71e−5 4.44e−6 1.14e−6 2.93e−7 ≈ 1.96

5.2 Example 2

Let the diffusion coefficient be k(x) = (x + 4)/2, and the exact solution [10]

u(x) = xσ (1 − x)(α−σ).

The corresponding right hand side is

f (x) = − sin(απ)�(α)

sin(σπ) + sin[(α − σ)π] (αx + 3α/2 + σ/2), (5.3)

and the flux F(x) is

F(x) = −k(x)DD−β
θ u(x) = − sin(απ)�(α)

sin(σπ) + sin[(α − σ)π] (αx − α + σ)(x/2 + 2).

Tables 3 and 4 show that the Galerkin method (4.1) has O(hmin{σ,α−σ }+1/2) convergence
in L2 norm and O(hmin{σ,α−σ }+1/2−α/2) convergence in Hα/2 norm, respectively. Table 5
shows the small convergence rate for the flux in L2 norm because the numerical flux has
oscillation around the left boundary point for the one-sided case θ = 1 (see Fig. 1).

5.3 Two-Dimensional Case

Consider the following two-dimensional problem

−∂x

(
k(x, y)

[
∂

−β
θ ∂xu(x, y)

]) − ∂y

(
k(x, y)

[
∂−γ
χ ∂yu(x, y)

]) = f (x, y), (x, y) ∈ 	,

(5.4)

u(x, y) = 0, (x, y) ∈ ∂	, (5.5)

where	 = (0, 1)×(0, 1), γ ∈ (0, 1) andχ ∈ [0, 1], ∂−γ
χ = χ 0∂

−γ
y +(1−χ) y∂

−γ
1 is defined

similarly as x direction. By the product rule, the problem (5.4)–(5.5) can be reformulated as

−∂x
[
∂

−β
θ ∂xu(x, y)

] − ∂y[∂−γ
χ ∂yu(x, y)

] − K1(x, y)
[
∂

−β
θ ∂xu(x, y)

]

−K2(x, y)
[
∂−γ
χ ∂yu(x, y)

] = f̃ (x, y), (x, y) ∈ 	, (5.6)
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Table 3 ‖u − uh‖L2 for the problem (3.9) with the right hand side (5.3), k(x) = x/2 + 2 and h = 1/2n

θ α, σ n Rate

5 6 7 8 9 10

0.5 1.2, 0.60 1.75e−2 8.22e−3 3.87e−3 1.82e−3 8.55e−4 4.03e−4 ≈ 1.09

1.5, 0.75 1.04e−2 4.43e−3 1.88e−3 8.00e−4 3.41e−4 1.46e−4 ≈ 1.23

1.8, 0.90 6.24e−3 2.38e−3 9.07e−4 3.45e−4 1.31e−4 5.02e−5 ≈ 1.39

0.7 1.2, 0.32 3.63e−2 2.05e−2 1.16e−2 6.61e−3 3.75e−3 2.13e−3 ≈ 0.82

1.5, 0.63 1.23e−2 5.52e−3 2.49e−3 1.13e−3 5.14e−4 2.34e−4 ≈ 1.13

1.8, 0.86 6.37e−3 2.45e−3 9.42e−4 3.62e−4 1.39e−4 5.38e−5 ≈ 1.37

1.0 1.2, 0.20 7.56e−2 4.64e−2 2.85e−2 1.76e−2 1.08e−2 6.65e−3 ≈ 0.70

1.5, 0.50 1.87e−2 9.30e−3 4.64e−3 2.32e−3 1.16e−3 5.79e−4 ≈ 1.00

1.8, 0.80 7.01e−3 2.79e−3 1.12e−3 4.47e−4 1.79e−4 7.22e−5 ≈ 1.31

Table 4 ‖u − uh‖Hα/2 for the problem (3.9) with the right hand side (5.3), k(x) = x/2 + 2 and h = 1/2n

θ α, σ n Rate

5 6 7 8 9 10

0.5 1.2, 0.60 4.93e−3 3.45e−3 2.42e−3 1.71e−3 1.20e−3 8.51e−4 ≈ 0.50

1.5, 0.75 3.00e−3 2.14e−3 1.51e−3 1.07e−3 7.57e−4 5.35e−4 ≈ 0.50

1.8, 0.90 6.69e−4 5.08e−4 3.73e−4 2.68e−4 1.91e−4 1.36e−4 ≈ 0.49

0.7 1.2, 0.32 9.11e−2 7.76e−2 6.64e−2 5.69e−2 4.89e−2 4.20e−2 ≈ 0.22

1.5, 0.63 1.13e−2 8.45e−3 6.41e−3 4.89e−3 3.75e−3 2.88e−3 ≈ 0.38

1.8, 0.86 1.37e−3 9.31e−4 6.55e−4 4.69e−4 3.38e−4 2.45e−4 ≈ 0.47

1.0 1.2, 0.20 7.52e−1 6.93e−1 6.42e−1 5.97e−1 5.56e−1 5.19e−1 ≈ 0.10

1.5, 0.50 1.08e−1 8.92e−2 7.43e−2 6.22e−2 5.22e−2 4.38e−2 ≈ 0.25

1.8, 0.80 8.76e−3 6.32e−3 4.66e−3 3.49e−3 2.63e−3 1.98e−3 ≈ 0.40

Table 5 ‖F − Fh‖L2 for the problem (3.9) with the right hand side (5.3), k(x) = x/2 + 2 and h = 1/2n

θ α, σ n Rate

5 6 7 8 9 10

0.5 1.2, 0.60 1.17e−3 6.58e−4 3.61e−4 1.96e−4 1.06e−4 5.67e−5 ≈ 0.88

1.5, 0.75 1.94e−3 1.20e−3 7.23e−4 4.33e−4 2.58e−4 1.54e−4 ≈ 0.75

1.8, 0.90 7.77e−4 5.58e−4 3.83e−4 2.58e−4 1.72e−4 1.14e−4 ≈ 0.59

0.7 1.2, 0.32 1.73e−2 1.09e−2 7.03e−3 4.55e−3 2.95e−3 1.92e−3 ≈ 0.62

1.5, 0.63 4.13e−3 2.55e−3 1.61e−3 1.02e−3 6.57e−4 4.23e−4 ≈ 0.64

1.8, 0.86 9.94e−4 6.41e−4 4.23e−4 2.81e−4 1.88e−4 1.26e−4 ≈ 0.58

1.0 1.2, 0.20 1.55e−1 1.06e−1 7.33e−2 5.13e−2 3.61e−2 2.55e−2 ≈ 0.50

1.5, 0.50 4.11e−2 2.82e−2 1.96e−2 1.37e−2 9.68e−3 6.83e−3 ≈ 0.51

1.8, 0.80 6.00e−3 4.01e−3 2.76e−3 1.92e−3 1.35e−3 9.50e−4 ≈ 0.51
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Fig. 1 The numerical flux for α = 1.1 and h = 2−8. Case 1: k(x) = 1, f (x) = 1.

u(x, y) = 0, (x, y) ∈ ∂	, (5.7)

where K1(x, y) = ∂x k(x,y)
k(x,y) , K2(x, y) = ∂yk(x,y)

k(x,y) , and f̃ (x, y) = f (x,y)
k(x,y) . In this example, we

take θ = χ = 1, β = γ, k(x, y) = exp(x+ y) and the exact solution is x3−β(1−x)y3−β(1−
y). Define the bilinear form in two dimensional case as follows:

â(u, v) :=
(
∂

−β
θ ∂xu, ∂xu

)
+

(
K1∂

−β
θ ∂xu, v

)
+

(
∂

−β
θ ∂yu, ∂yu

)
+

(
K2∂

−β
θ ∂yu, v

)
.

We obtain the Galerkin formulation: find uh ∈ Xh such that

â(uh, v) = ( f̃ , v), ∀v ∈ Xh . (5.8)

We construct two-dimensional basis functions by using the tensor product of one-
dimensional basis functions. More precisely,

Xh = Vh ⊗ Vh = span{φi (x)φ j (y) : i, j = 1, 2, . . . , N − 1}.
Table 6 shows that the scheme (5.8) can achieveO(h2) convergence. The analysis provided

in this paper can be extended to two-dimensional case.

5.4 Numerical Flux for f(x) = 1

Flux is one of the important variables in many problems including transport in porous media.
We compute the approximate flux of the problem (3.1) with f (x) = 1, and two different
diffusion coefficients: k1(x) = 1. Since the solution is symmetrical with respect to θ = 0.5,
we consider the case for θ ∈ [0.5, 1]. As shown in Fig. 1, for α = 1.1 the approximate flux
has oscillations around the left boundary point. However, for α = 1.9, no oscillations are
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Table 6 ‖u − uh‖∞ for the problem (5.8) with θ = χ = 1, β = γ, k(x, y) = exp(x + y) and the exact
solution is u(x, y) = x3−β(1 − x)y3−β(1 − y). (h = 1/2n )

α n Rate

3 4 5 6 7

1.25 4.88e−3 9.28e−4 1.69e−4 3.87e−5 9.69e−6 ≈ 2.00

1.5 1.34e−3 3.39e−4 8.50e−5 2.13e−5 5.35e−6 ≈ 1.99

1.75 8.39e−4 2.16e−4 5.51e−5 1.40e−5 3.54e−6 ≈ 1.97
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Fig. 2 The numerical flux for α = 1.9 and h = 2−8. Case 1: k(x) = 1, f (x) = 1.

observed in Fig. 2. For α = 1.1, the numerical flux is negative in most points, however, for
α = 1.9, Fh is almost symmetrical around x = 0.5. In addition, it seems that the numerical
flux variation is smaller for θ = 0.5, comparing with the results obtained for θ = 1, and 0.7.

6 Concluding Remarks

In this paper, we have investigated the Galerkin approach to discretize two-sided fractional
differential equations with variable-coefficients.We reformulated the problem into the equiv-
alent one by introducing an extra low-order fractional term, and proved the wellpossedness
of the Dirichlet problem of the equations by deriving a required condition for the diffusion
coefficient. Based on the new reformulation, we have introduced the Galerkin approach and
proved its error estimates under a reasonable regularity assumption for the adjoint problem

It is of immense interest to study two-sided fractional equations, especially with variable
coefficients. There are some remarks we need to point out here. First, an obvious advantage
of Galerkin approach developed in this paper over Petrov–Galerkin formulation proposed in
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[25,28,29] is that it can be straightforwardly extended to a class of two-dimensional variable
coefficient problems. Second, we claim that high order methods are not expected to obtain
high order accuracy due to the limited regularity of the problem,which has been demonstrated
by numerical examples. Note that the singularity only occurs at end points. Although adaptive
methods are natural to enhance the convergence rate, it will also make the computational cost
grow up quickly. Because the nice Toeplitz-like structure of resultingmatrix will be destroyed
if the nonuniform mesh is taken. Other alternatives such as enriched finite element methods,
singularity reconstruction techniques will be better choices. We will address this issue in our
future work.
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