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In Cai, He, and Zhang (2017), we studied an improved Zienkiewicz-Zhu (ZZ) a posteriori 
error estimator for conforming linear finite element approximation to diffusion problems. 
The estimator is more efficient than the original ZZ estimator for non-smooth problems, 
but with comparable computational costs. This paper extends the improved ZZ estimator 
for discontinuous linear finite element approximations including both nonconforming and 
discontinuous elements. In addition to post-processing a flux, we further explicitly recover 
a gradient in the H(curl) conforming finite element space. The resulting error estimator 
is proved, theoretically and numerically, to be efficient and reliable with constants 
independent of the jump of the coefficient regardless of its distribution.

© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

By recovering a gradient/flux in the conforming C0 linear vector finite element space from the numerical gradient/flux, 
the recovery type Zienkiewicz-Zhu (ZZ) a posteriori error estimator (see [29]) is defined as the L2 norm of the difference 
between the recovered and the numerical gradients/fluxes. Since its introduction in 1987, the ZZ estimator has been widely 
adopted in the engineering practice and has been the subject of mathematical study due to its simplicity, generality, and 
asymptotic exactness (see, e.g., [11,18,23–28,30,31]). However, it is also well known that the ZZ estimator is inefficient for 
non-smooth problems. The counterexamples in [5] for elliptic interface problems show that the ZZ estimator is arbitrarily 
large while the true error is zero. We identify the problem for ZZ error estimator is that it recovers both the gradient and 
flux in the H1 space while the flux and gradient only belongs to H(div) and H(curl) spaces, respectively.

For the conforming finite element approximation, to circumvent this drawback of the ZZ estimator, we can simply recover 
a flux in the H(div) conforming finite element space such as the Raviart-Thomas (RT) or Brezzi-Douglas-Marini (BDM) 
elements by a global L2 projection (see [8]). This recovery procedure is further simplified by an explicit scheme developed 
recently in [5] and applicable to problems with full diffusion tensor. The resulting (improved ZZ) estimator is shown to be 
efficient and reliable theoretically and numerically for interface problems. Moreover, the efficiency and reliability constants 
are independent of the jump of the diffusion coefficients provided that the distribution of the coefficient is quasi-monotone.
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For the nonconforming and discontinuous linear finite element approximations, it is well known that flux recovery is 
not sufficient since the numerical solution is “broken”, i.e., not in the H1 space. Therefore, in addition to the flux recovery, 
one needs either recover a gradient in the H(curl) conforming finite element space in [9,7] or a solution in the H1 space 
[1,2] for the nonconforming and discontinuous linear finite element approximations. We note that the recovery procedures 
in [9,7] consist of both implicit and explicit schemes. The implicit one requires to solve a global L2 projection (which 
is computationally costive), while the explicit one (with computation cost comparative to ZZ) is limited to the piecewise 
“constant” vector space for the gradient and to scaler diffusion coefficient.

The purpose of this paper is to employ the general approach introduced in [5] to explicitly construct a gradient in 
the H(curl; �) conforming subspace of either the piecewise “constant” or the higher order vector spaces for the diffusion 
problem with both scaler and full tensor diffusion coefficient. In this paper, these spaces are chosen as the H(curl; �) con-
forming first and second types of Nédélec spaces. Also, the diffusion coefficient could undergo large jumps across interfaces. 
With the recovered gradients and fluxes, the improved ZZ estimators then consist of two parts measuring the so-called 
conforming and nonconforming errors. The error estimators are further analyzed by establishing their global reliability and 
local efficiency bounds.

We note that both the reliability and the efficiency constants for the error estimators are theoretically proved indepen-
dent of the jump of the diffusion coefficients. Moreover, unlike the conforming case which requires the quasi-monotone 
assumption [21] to ensure the robustness, we are able to prove the same robust result regardless the distribution of the co-
efficient. The first robustness result without restrictive assumption was proved in [4] for the residual type a posteriori error 
estimators of nonconforming and DG finite element methods. In this paper, we prove the same unconditional robustness for 
our recovery type a posteriori error estimation.

Compared with the classical residual-based error estimation, one main advantage of the recovery-type a posteriori error 
estimation is the asymptotic exactness when the mesh is fine enough. It is well known that residual-type error estimator 
[6,22,13] does not share asymptotic exactness and often the constants are polynomial order dependent. In the last decade, 
the equilibrate-type error estimation with guaranteed upper bound (reliability constant is one and thus polynomial order 
robust) was intensively explored, see [1,2,16,19,17]. To ensure the reliability constant being one, the equilibrate-type error 
estimator usually recovers a H1 function for the nonconforming error. This applied to the diffusion problem will result 
in the fact that constants can only proved to be robust with respect to the jump of the diffusion coefficient when it is 
quasi-monotone. We note that to ensure the guaranteed upper bound for the nonconforming error, one can also recover a 
gradient that is curl free. In principle, we can apply the methods introduced in [10,17] to obtain such a gradient. However, 
this requires to solve local implicit star-patch problems and therefore increases algorithmic complexity.

Thanks to its generality, our idea serves as a good candidate for the development of the recovery type explicit a pos-
teriori error estimation for higher order finite elements and non-simplicial meshes, e.g., quad-meshes with hanging nodes. 
Moreover, the idea can be easily adapted to other types of finite element methods.

Numerical results for the Kellogg test problem and a L-shape Poisson problem are presented to verify our theoretically 
results.

This paper is organized as follows. Section 2 describes both nonconforming and discontinuous Galerkin finite element 
approximations to diffusion problems. The improved ZZ a posteriori error estimators are introduced in Section 3 and the 
reliability and efficiency bounds independent of the jump of coefficients are established in Section 4. In Section 5, we 
provide explicit formulas for the recovered flux and gradient. Finally, the numerical results are presented in Section 6.

2. Finite element approximations to diffusion problem

Let � be a bounded polygonal domain in R2, with boundary ∂� = �D ∪ �N , �D ∩ �N = ∅, meas (�D) �= 0, and let n be 
the outward unit vector normal to the boundary. Consider diffusion problem

−∇ · (A(x)∇u) = f in � (2.1)

with boundary conditions

−A∇u · n = gN on �N and u = gD on �D , (2.2)

where the ∇· and ∇ are the divergence and gradient operators, respectively; f ∈ L2(�), gN ∈ H−1/2(�N ), gD ∈ H1/2(�D); 
and A is a piecewise symmetric, positive and definite tensor function. In this paper, we restrict our discussion in two 
dimensions for notation simplicity. The algorithm and analysis can be extended to three dimensions.

Let

H1
g,D(�) = {v ∈ H1(�) : v = gD on �D

}
and H1

D(�) = H1
0,D(�).

Then the corresponding variational problem of (2.1) is to find u ∈ H1
g,D(�) such that

a(u, v) := (A∇u,∇v) = f (v), ∀ v ∈ H1 (�) (2.3)
D
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with the linear form f (v) := ( f , v) − (gN , v)�N , where (·, ·)ω is the L2 inner product over the domain ω. The subscript ω
is omitted when ω = �.

Let T = {K } be a triangulation of the domain � with only triangular elements and denote by hK the diameter of the 
element K . Assume that the triangulation is regular and that the physical interfaces

� := {∂�i ∩ ∂� j : i, j = 1, · · · ,n
}

do not cut through any element K ∈ T , where {�i}n
i=1 are disjoint polygonal subdomains of � such that �̄ = ∪n

i=1�̄i .
For simplicity, with respect to T , assume that f is a piecewise constant function on �, that gD is piecewise affine on 

�D , and that gN is piecewise constant on �N . Furthermore, assume that A is locally and mildly anisotropic in the sense 
that there exists a moderate size constant κ > 0 such that

λmax,K

λmin,K
≤ κ, ∀ K ∈ T , (2.4)

where λmax,K and λmin,K are the respective maximal and minimal eigenvalues of AK := A
∣∣

K . Note that this assumption 
permits possible large value of λmax/λmin , where λmax and λmin are the respective global maximal and minimal eigenvalues 
of A. We note that the simplified assumption on data can be extended to generic cases with extra data oscillation terms in 
the error analysis. Moreover, the oscillation terms will be of higher order when the data functions possess proper regularity.

Denote the set of all vertices of the triangulation by N :=NI ∪ND ∪NN , where NI is the set of all interior nodes and 
ND and NN are the sets of all boundary vertices belonging to the respective �D and �N . Denote the set of all edges of 
the triangulation by E := EI ∪ ED ∪ EN , where EI is the set of all interior element edges and ED and EN are the sets of all 
boundary edges belonging to the respective �D and �N . For each F ∈ EI , denote by nF := (n1,F , n2,F )t an unit vector normal 
to F ; then tF = (−n2,F , n1,F )t is an unit vector tangent to F ; let K −

F and K +
F be the two elements sharing the common edge 

F such that the unit outward vector normal to ∂ K −
F coincides with nF . For each F ∈ ED ∪EN , nF is the unit outward vector 

normal to ∂� and denote the element by K −
F . For each K ∈ T denote by hK the diameter of K and by EK and NK the set 

of all edges and vertices of K , respectively.
Denote the Crouziex-Raviart (CR) nonconforming finite element space [15] by

Scr(T ) =
⎧⎨
⎩v ∈ L2(�) : v|K ∈ P1(K ), ∀ K ∈ T , and

∫
F

�v�F ds = 0, ∀ F ∈ EI

⎫⎬
⎭ ,

where Pk(K ) is the space of polynomial of order not greater than k on the element K , �·�F is the jump over edge F defined 
by �v�F = v−

F − v+
F for all F ∈ EI and v−

F for all F ∈ ED ∪ EN and v±
F := (v|K ±

F
)|F . Also let

Scr
g,D(T )=

⎧⎨
⎩v ∈ Scr(T ) :

∫
F

v ds =
∫
F

gDds, ∀ F ∈ ED

⎫⎬
⎭ .

The nonconforming finite element approximation is to find ucr ∈ Scr
g,D such that

(A∇hucr, ∇h v) = ( f , v) − (gN , v)�N , ∀ v ∈ Scr
0,D(T ), (2.5)

where ∇h is the discrete gradient operator, i.e., (∇h v)|K = ∇(v|K ) for all K ∈ T .
In the remainder of this section, we describe discontinuous Galerkin finite element method using notations in [7]. To 

this end, for each element K ∈ T , define a function αK on EK such that

αK (F ) = nt
F (A|K )nF , ∀ K ∈ T .

It is obvious that λmin,K ≤ αK (F ) ≤ λmax,K for all F ∈ EK . Due to the mildly anisotropic assumption, other choices of αK (F )

in the interval [λmin,K , λmax,K ] will not affect the robustness of our methods. The reason of choosing the current version 
instead of the minimum or maximum eigenvalue is that it can be computed explicitly.

For each F ∈ EI , let α±
F = αK ±

F
(F ), and w+

F and w−
F be weights defined on F such that

w±
F = α∓

F

α−
F + α+

F

. (2.6)

Define the following weighted averages

{v(x)}F
w =

{
w−

F v−
F + w+

F v+
F for F ∈ EI ,

v|− for F ∈ E ∪ E and {v(x)}w
F =

{
w+

F v−
F + w−

F v+
F for F ∈ EI ,

0 for F ∈ E ∪ E .
F D N D N
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The notations of {}F
w and {}w

F will be replaced by the respective {}w and {}w when the indication of F is obvious. It is easy 
to verify that

�v w�F = {v}w�w� + �v�{v}w .

Denote the arithmetic and harmonic averages of {α+
F , α−

F } on F ∈ E by

αF ,A =

⎧⎪⎨
⎪⎩

α+
F + α−

F

2
F ∈ EI ,

α−
F F ∈ ED ,

and αF ,H =

⎧⎪⎨
⎪⎩

2α+
F α−

F

α+
F + α−

F

, F ∈ EI ,

α−
F F ∈ ED ,

respectively, which are equivalent to its respective maximum and minimum.
Denote the discontinuous finite element space of the first order on the triangulation T by

Sdg(T ) =
{

v ∈ L2(�) : v|K ∈ P1(K ) ∀ K ∈ T
}

.

The discontinuous Galerkin finite element method is to seek udg ∈ Sdg(T ) such that

adg(udg, v) = f (v) ∀ v ∈ Sdg(T ) (2.7)

where the bilinear form adg(·, ·) is given by

adg(u, v) =(A∇hu,∇h v) +
∑

F∈EI ∪ED

∫
F

γ
αF ,H

hF
�u��v�ds

−
∑

F∈EI ∪ED

∫
F

{A∇u · nF }w�v�ds −
∑

F∈EI ∪ED

∫
F

{A∇v · nF }w�u�ds,
(2.8)

and the linear form f (·) is given by

f (v) = ( f , v) +
∑

F∈ED

γ
αF ,H

hF

∫
F

gD v ds −
∑

F∈ED

∫
F

gD (A∇v · nF ) ds −
∑

F∈EN

∫
F

gN v ds.

The γ is a positive constant that is large enough and only depending on the shape of elements.
According to [7], the exact solution of (2.3) satisfies the equation (2.7). Hence we have the following error equation:

adg(u − udg, v) = 0 ∀ v ∈ Sdg(T ). (2.9)

Define the jump semi-norm and the DG norm by

|v| J ,F =
√

αF ,H

hF
‖�v�‖0,F and ‖v‖dg =

(
‖A1/2∇h v‖2

0,� +
∑
F∈E

|v|2J ,F

)1/2

.

3. Improved ZZ estimator

In this section, we set up the framework for the gradient recovery. We refer to [5] for the flux recovery. In two dimen-
sions, for a vector-valued function τ = (τ1, τ2), define the divergence and curl operators by

∇ · τ = ∂τ1

∂x1
+ ∂τ2

∂x2
and ∇ × τ = ∂τ2

∂x1
− ∂τ1

∂x2
,

respectively. For a scaler-valued function v , define the adjoint curl operator ∇⊥ by

∇⊥v = Q ∇v =
(

− ∂v

∂x2
,

∂v

∂x1

)t

with Q =
[

0 −1
1 0

]
.

We shall use the following Hilbert spaces:

H(div;�) =
{
τ ∈ L2(�)2 : ∇ · τ ∈ L2(�)

}
and H(curl;�) =

{
τ ∈ L2(�)2 : ∇ × τ ∈ L2(�)

}
equipped with the norms

‖τ‖H(div;�) =
(
‖τ‖2

0,� + ‖∇ · τ‖2
0,�

)1/2
and ‖τ‖H(curl;�) =

(
‖τ‖2

0,� + ‖∇ × τ‖2
0,�

)1/2
,
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respectively. Note that H1(�)2 ⊂ H(div; �) ∩ H(curl; �) and that the inverse inclusion is valid only for the convex domain 
or the domain with smooth boundary [14]. Let

H g,N(div;�) = {τ ∈ H(div;�) : τ · n|F = gN , ∀ F ∈ EN}
and

H g,D(curl;�) = {τ ∈ H(curl;�) : τ · t|F = ∂ gD/∂t, ∀ F ∈ ED} .

3.1. Gradient recovery

Denote the H(curl; �) conforming first and second types of Nédélec spaces of the lowest order by

NE = {τ ∈ H(curl;�) : τ |K ∈ NE(K ), ∀ K ∈ T },
and ND = {τ ∈ H(curl;�) : τ |K ∈ ND(K ), ∀ K ∈ T },

respectively, where NE(K ) =P0(K )2 + (x2, −x1)P0(K ) and ND(K ) =P1(K )2. Let

NEg,D = {τ ∈ NE : τ · tF |F = g′
D,F , ∀ F ∈ ED},

and NDg,D = {τ ∈ ND : τ · tF |F = g′
D,F , ∀ F ∈ ED},

where g′
D,F := ∂(gD |F )/∂t .

For each edge F ∈ E, denote by sF and eF the globally fixed initial and terminal points of F , respectively, such that 
eF − sF = |F | tF . Denote by ζ F the global nodal basis function of NE associated with F such that

(ζ F · tF ′)|F ′ = δF F ′ |F |−1, ∀ F ′ ∈ E (3.10)

and by ξ s,F and ξ e,F the global basis functions of ND associated with F satisfying

(ξ s,F · tF ′)|F ′ = δF F ′ |F |−1λsF and (ξ e,F · tF ′)|F ′ = δF F ′ |F |−1λeF , (3.11)

respectively, where δ is the Kronecker delta function and λ is the barycentric basis function. For each F ∈ E, define

NEF = span{ζ F } and NDF = span{ξ s,F , ξ e,F }.
Since g′

D,F is piecewise constant on �D , for any τ ∈ NDg,D or NEg,D , it can be written as

τ =
∑

F∈EI ∪EN

τ F +
∑

F∈ED

g′
D,F

|F | ζ F with τ F ∈ NDF or NEF . (3.12)

Given the numerical solution, denoted by uT := ucr or udg , define its numerical gradient by ρ̃T = ∇huT . For any K ∈ T , the 
restriction of ρ̃T on K is a constant vector and therefore has the following representation in NE(K ):

ρ̃T |K =
∑

F∈EK

ρ̃F ,K |F |(ζ F |K ),

where ρ̃F ,K := (ρ̃T |K · tF
) |F is the tangential component of ρ̃T |K on F . On each interior edge F ∈ EI , the tangential com-

ponent of the numerical gradient has two values

ρ̃−
F := ρ̃F ,K −

F
and ρ̃+

F := ρ̃F ,K +
F
.

Denote by ζ−
F and ζ+

F the restriction of ζ F on K −
F and K +

F , respectively. Then the numerical gradient also has the following 
edge representation:

ρ̃T =
∑
F∈E

ρ̃ F with ρ̃ F =
{

ρ̃−
F |F |ζ−

F + ρ̃+
F |F |ζ+

F , ∀ F ∈ EI ,

ρ̃−
F |F |ζ−

F , ∀ F ∈ ED ∪ EN .
(3.13)

For any τ ∈ NEg,D or NDg,D , (3.12) and (3.13) give

τ − ρ̃T =
∑
F∈EI

(
τ F − ρ̃ F

)+ ∑
F∈EN

(
τ F − ρ̃−

F |F | ζ−
F

)+ ∑
F∈ED

(
g′

D,F
− ρ̃−

F

)
|F |ζ−

F ,

which, together with the triangle inequality and the choice of τ F = ρ̃− |F |ζ− for all F ∈ EN , implies
F F
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min
τ∈Vg,D

∥∥∥A1/2 (τ − ρ̃T
)∥∥∥

0,�
≤
∑
F∈EI

min
τ∈VF

∥∥∥A1/2 (τ − ρ̃ F

)∥∥∥
0,ωF

+
∑

F∈ED

∥∥∥A1/2
(

g′
D,F

− ρ̃−
F

)
|F |ζ−

F

∥∥∥
0,K −

F

, (3.14)

where V= NE or ND and ωF = K +
F ∪ K −

F .
For each F ∈ EI , let ρ̂ F ∈VF = NEF or NDF be the solution of the following local minimization problem, i.e.,∥∥∥A1/2 (ρ̂ F − ρ̃ F

)∥∥∥
0,ωF

= min
τ∈VF

∥∥∥A1/2 (τ − ρ̃ F

)∥∥∥
0,ωF

, (3.15)

and, on the boundary edges, define

ρ̂ F =
{

ρ̃ F , ∀ F ∈ EN ,

g′
D,F

|F |ζ−
F , ∀ F ∈ ED .

Finally we define the recovered gradient ρ̂T ∈ NEg,D or NDg,D as follows:

ρ̂T =
∑
F∈E

ρ̂ F . (3.16)

Based on the recovered gradient we define the local element based indicators and global estimator related to the gradient 
recovery by

ηρ,K =
∥∥∥A1/2(ρ̂T − ρ̃T )

∥∥∥
0,K

, ∀ K ∈ T and ηρ =
∥∥∥A1/2(ρ̂T − ρ̃T )

∥∥∥
0,�

, (3.17)

respectively.

3.2. Flux recovery

Denote the H(div, �) conforming Raviart-Thomas (RT) and Brezzi-Douglas-Marini (BDM) spaces of the lowest index by

RT = {τ ∈ H(div;�) : τ |K ∈ RT(K ) ∀ K ∈ T }
and BDM = {τ ∈ H(div;�) : τ |K ∈ BDM(K ) ∀ K ∈ T } ,

respectively, where RT (K ) =P0(K )2 + (x1, x2)P0(K ) and BDM(K ) =P1(K )d . Let

RTg,N = RT ∩ H g,N(div;�) and BDMg,N = BDM ∩ H g,N(div;�).

Using the numerical flux σ̃ T := −A∇uT , we may reconstruct a flux

σ̂T ∈ RTg,N or BDMg,N (3.18)

by employing the same procedure introduced in [5]. The corresponding local element based indicators and global estimator 
are then defined by

ησ,K =
∥∥∥A−1/2(σ̂T − σ̃T )

∥∥∥
0,K

, ∀ K ∈ T and ησ =
∥∥∥A−1/2(σ̂T − σ̃T )

∥∥∥
0,�

, (3.19)

respectively.

3.3. Error estimators

For the Crouziex-Raviart finite element solution ucr , the local error indicators and global estimator are defined by

ηcr
K =

((
ησ,K

)2 + (ηρ,K
)2)1/2

, ∀ K ∈ T and ηcr =
(∑

K∈T

(
ηcr

K

)2)1/2

, (3.20)

respectively. For the DG finite element solution udg , the local error indicators and global estimator are defined by

η̃
dg
K =

((
ησ,K

)2 + (ηρ,K
)2)1/2

, ∀ K ∈ T and η̃dg =
(∑

K∈T

(
η̃

dg
K

)2
)1/2

, (3.21)

respectively. Unfortunately, we are not able to establish its reliability bound due to the lack of equivalence between the 
solution jumps across neighboring elements and the ηρ,K ’s. For theoretical reason, we also consider the following local 
error indicators and global estimator that simply replaces ηρ,K by the jumps of solutions:
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η
dg
K =

⎛
⎝η2

σ ,K +
∑

F∈EI ∪EK

1

2

∣∣∣udg
∣∣∣2

j,F
+

∑
F∈ED ∪EK

∣∣∣udg
∣∣∣2

j,F

⎞
⎠

1/2

, ∀ K ∈ T and ηdg =
(∑

K∈T

(
η

dg
K

)2
)1/2

, (3.22)

respectively.

Remark 3.1. By an inverse inequality, it can be easily seen that η̃dg
K � η

dg
K . In our numerical results, the estimators ηdg and 

η̃dg (see Figs. 6 and 10) are very close for the first order discontinuous finite element method.

4. Reliability and efficiency

This section establishes efficiency and reliability bounds of the indicators and estimators defined in (3.20) and (3.22), for 
the diffusion problem with the coefficient matrix A satisfying the mildly anisotropic assumption.

Define the jumps of the tangential component of the gradient and the normal component of the flux on edges by

jt,F =

⎧⎪⎪⎨
⎪⎪⎩

�∇huT · tF �, ∀ F ∈ EI ,

0, ∀ F ∈ EN ,

∇huT · tF − g′
D,F

, ∀ F ∈ ED ,

and jn,F =

⎧⎪⎪⎨
⎪⎪⎩

�A∇huT · nF �, ∀ F ∈ EI ,

A∇huT · nF − gN,F , ∀ F ∈ EN ,

0, ∀ F ∈ ED .

Lemma 4.1. Let uT be the finite element solution of (2.5) or (2.7), and let σ̂ T and ρ̂T be the recovered flux and gradient from uT
given in (3.16) and (3.18), respectively. Then the following results hold⎛

⎝ ∑
F∈EI ∪ED

hF αF ,H
∥∥ jt,F

∥∥2
0,F

⎞
⎠

1/2

≤ C
∥∥∥A1/2(ρ̂T − ρ̃T )

∥∥∥
0,�

, (4.23)

and ⎛
⎝ ∑

F∈EI ∪EN

hF

αF ,A

∥∥ jn,F
∥∥2

0,F

⎞
⎠

1/2

≤ C
∥∥∥A−1/2(σ̂T − σ̃T )

∥∥∥
0,�

, (4.24)

where the positive constant C depends on the shape regularity of T and κ , but not on 
λmax

λmin
.

Proof. To the validity of (4.23), it suffices to prove that

h1/2
F α

1/2
F ,H

∥∥ jt,F
∥∥

0,F ≤ C
∥∥A1/2(ρ̂T − ρ̃T )

∥∥
0,ωF

, ∀ F ∈ EI ∪ ED , (4.25)

where ωF = K +
F ∪ K −

F . Without loss of generality, we prove (4.25) for each F ∈ EI . Applying the fact that ‖�ρ̂ F · tF �‖0,F = 0
for all F ∈ EI , the triangle, trace and inverse inequalities, and (2.4) yields

h1/2
F α

1/2
F ,H

∥∥ jt,F
∥∥

0,F = h1/2
F α

1/2
F ,H‖�ρ̃T − ρ̂T � · tF ‖0,F

≤ h1/2
F α

1/2
F ,H

(∥∥∥(ρ̂T − ρ̃T )|K −
F

· tF

∥∥∥
0,F

+
∥∥∥(ρ̂T − ρ̃T )|K +

F
· tF

∥∥∥
0,F

)

≤ Cα
1/2
F ,H

(∥∥ρ̂T − ρ̃T
∥∥

0,K −
F

+ ∥∥ρ̂T − ρ̃T
∥∥

0,K +
F

)
≤ C

(∥∥∥A1/2(ρ̂T − ρ̃T )

∥∥∥
0,K −

F

+
∥∥∥A1/2(ρ̂T − ρ̃T )

∥∥∥
0,K +

F

)
.

This completes the proof of (4.25) and, hence, (4.23). (4.24) may be proved in a similar fashion. This completes the proof of 
the lemma. �
4.1. Reliability and efficiency for the nonconforming method

Define

ηres =
(∑ h2

K

λmax,K
‖ f K ‖2

0,K

)1/2
K∈T
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for the error related to the element residual where f K = f |K .
In the following theorem, we prove the reliability property for the CR element through the existing reliability result of 

a classical properly weighted residual based error estimation [4]. Doing this enables our estimators to inherit the uncondi-
tional robustness as the properly weighted residual based estimator.

Theorem 4.1. The estimator ηcr defined in (3.20) satisfies the following reliability bound:

∥∥∥A1/2∇h(u − ucr)

∥∥∥
0,�

≤ C

(
η2

cr + η2
res

)1/2

, (4.26)

where the positive constant C depends on the shape regularity of T and κ , but not on 
λmax

λmin
.

Proof. Firstly, the residual based error estimator for CR elements reads that (see Theorem 3.5 in [4]) there exists a constant 

C > 0 that depends on the shape regularity of T and κ , but not on 
λmax

λmin
or the mesh size such that

∥∥∥A1/2∇h(u − ucr)

∥∥∥
0,�

≤ C

⎛
⎝ ∑

F∈EI ∪ED

αF ,H

hF

∥∥�uT �
∥∥2

0,F +
∑

F∈EI ∪EN

hF

αF ,A

∥∥ jn,F
∥∥2

0,F + (ηres)
2

⎞
⎠

1/2

,

which, together with the fact that√
αF ,H

hF

∥∥�uT �
∥∥

0,F =
√

αF ,H hF

12

∥∥ jt,F
∥∥

0,F , ∀ F ∈ EI ∪ ED ,

Lemma 4.1 and the Young’s inequality, gives (4.26). This completes the proof the theorem. �
Remark 4.1. When the mesh size is relatively small, the element residual error can be eliminated in the error estimation 
(see, e.g., [12,7]). Numerical results without the element residual also exhibit a better approximation to the true error (see 
Fig. 8).

We now prove the local efficiency for the error indicator.

Theorem 4.2. The local element-based indicators ηcr
K defined in (3.20) are efficient, i.e.,

ηcr
K ≤ C

∥∥∥A1/2∇h(u − ucr)

∥∥∥
0,ωK

, ∀ K ∈ T , (4.27)

where ωK is the union of all elements that shares at least one edge with K and the positive constant C depends on the shape regularity 

of T and κ , but not on 
λmax

λmin
or the mesh size.

Proof. By the definition in (3.20),

ηcr
K =

(∥∥∥A−1/2(σ̂T − σ̃T )

∥∥∥2

0,K
+
∥∥∥A1/2(ρ̂T − ρ̃T )

∥∥∥2

0,K

)1/2

.

It follows from (3.13), (3.16), and the triangle inequality that∥∥∥A1/2(ρ̂T − ρ̃T )

∥∥∥
0,K

≤
∑

F∈EK

∥∥∥A1/2(ρ̂ F − ρ̃ F )

∥∥∥
0,K

≤
∑

F∈EK

∥∥∥A1/2(ρ̂ F − ρ̃ F )

∥∥∥
0,ωF

. (4.28)

Without loss of generality, assume that K is an interior element and that α−
F ≤ α+

F for each F ∈ EK . By (3.15), the mildly 
anisotropic assumption on A, and the facts that

ρ̃+
F |F |ζ F ∈VF = NEF or NDF and ‖ζ F ‖0,K −

F
≤ C,

we have
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∥∥∥A1/2(ρ̂ F − ρ̃ F )

∥∥∥
0,ωF

= min
τ∈VF

∥∥∥A1/2(τ − ρ̃ F )

∥∥∥
0,ωF

≤
∥∥∥A1/2 (ρ̃+

F |F |ζ F − ρ̃ F

)∥∥∥
0,ωF

=
∥∥∥A1/2(ρ̃+

F − ρ̃−
F )|F |ζ−

F

∥∥∥
0,K −

F

≤C
√

αF ,H hF ‖ jt,F ‖0,F .

(4.29)

We also have the following classical efficiency bound for the tangential jump on edges (see e.g., Theorem 5.1 in [6]):√
αF ,H hF ‖ jt,F ‖0,F ≤ C

∥∥∥A1/2∇h(u − ucr)

∥∥∥
0,ωF

, ∀ F ∈ EI ∪ EN . (4.30)

Combining (4.28) - (4.30) gives∥∥∥A1/2(ρ̂T − ρ̃T )

∥∥∥
0,K

≤ C
∥∥∥A1/2∇h(u − ucr)

∥∥∥
0,ωK

, ∀ K ∈ T . (4.31)

Similarly, we can prove that∥∥∥A−1/2(σ̂T − σ̃T )

∥∥∥
0,K

≤ C
∥∥∥A1/2∇h(u − ucr)

∥∥∥
0,ωK

. (4.32)

(4.27) is then a direct consequence of (4.31) and (4.32). This completes the proof of the theorem. �
4.2. Reliability and efficiency for the linear discontinuous Galerkin method

To prove the estimator reliability for DG element, we again use the classical weighted residual based error estimator as 
a bridge in order to inherit the unconditional robustness.

Theorem 4.3. Let u ∈ H1(�) and udg be the solution of (2.1) and (2.7), respectively. Then the estimator ηdg for the discontinuous 
element approximation satisfies the following robust reliability bound:∥∥∥u − udg

∥∥∥
dg,�

≤ C ηdg, (4.33)

where the positive constant C depends on the shape regularity of T and κ , but not on 
λmax

λmin
.

Proof. For the residual based error estimator, we have the following reliability result (see Theorem 4.3 in [4]):

‖A1/2∇(u − udg)‖0,� ≤ C

⎛
⎝ ∑

F∈EI ∪ED

∣∣∣udg
∣∣∣2

j,F
+

∑
F∈EI ∪EN

hF

αF ,A
‖ jn,F ‖2

0,F

⎞
⎠

1/2

, (4.34)

where the positive constant C depends on the shape regularity of T and κ , but not on 
λmax

λmin
. The theorem is then a direct 

consequence of the (4.34) and Lemma 4.1. �
Theorem 4.4. The local element-based indicators ηdg

K and η̃dg
K defined in (3.22) are efficient, i.e.,

η
dg
K ≤ C‖u − udg‖dg,ωK (4.35)

and

η̃
dg
K ≤ C‖u − udg‖dg,ωK , (4.36)

where the positive constant C depends on the shape regularity of T and κ , but not on 
λmax

λmin
.

Proof. By the inverse inequality, we have that

η̃
dg
K ≤ η

dg
K ∀ K ∈ T .

It is therefore sufficient to prove (4.35). The rest of the theorem can be proved similarly to the Theorem 4.2. �
Remark 4.2. For both the nonconforming and DG methods, the a posteriori error estimation is robust with respect to the 

jump of the coefficient, i.e., both the reliability and efficiency constants are both independent of 
λmax

λmin
, regardless of its 

distribution.
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5. Explicit formulas

In this section we present the explicit formulas for the recovered gradient in (3.16) and its corresponding error indicators 
and estimator in (3.17). For simplicity we assume that A = α I where α is piecewise constant. The formula can be easily 
updated for A being a matrix tensor. The quantities of interest are explicitly expressed in terms of the numerical solution 
and the geometric information of the mesh. It is easy to see that the recovered gradient is a weighted average of the 
numerical gradient. The overall explicit computation confirms the easy implementation and low computing cost.

Given an edge F ∈ E denote by x±
F the opposite vertices of F in K ±

F , respectively. Given a vector v = (v1, v2), let 
v⊥ = (−v2, v1). Denote by λsF and λeF the nodal basis functions of the continuous linear element associated with vertices 
sF and eF , respectively.

5.1. Formulas for the recovered gradient in NEg,D

For the NE space of the lowest index, the nodal basis function associated with F ∈ E is given by

ζ F = λsF ∇λeF − λeF ∇λsF

which satisfies

ζ F · t
F ′ = |F |−1δF F ′ .

For all F ∈ EI , let

γ ne,±
F = (αζ F , ζ F

)
K ±

F
and wne

F = γ ne,−
F

γ ne,−
F + γ ne,+

F

.

Using the basis function ζ F defined above, a straightforward calculation gives

γ ne,±
F = 1

48| K ±
F |

⎛
⎜⎜⎝ ∑

F ′⊂∂ K ±
F

∥∥∥∥α1/2
(

x±
F ′ − x±

F

)⊥∥∥∥∥
2

+

∥∥∥∥∥∥∥α
1/2

⎛
⎜⎝ ∑

F ′⊂∂ K ±
F

x±
F ′ − 3x±

F

⎞
⎟⎠

⊥∥∥∥∥∥∥∥
2 ⎞⎟⎟⎠ .

Recall that solving the local problem in (3.15) with VF = NEF yields the following representation for the recovered gradient 
in NEg,D :

ρ̂ne
T =

∑
F∈EI

ρ̂F |F |ζ F +
∑

F∈EN

ρ̃F |F |ζ−
F +

∑
F∈ED

gD,F |F |ζ−
F .

Now solving (3.15) gives that

ρ̂F = wne
F ρ̃−

F + (1 − wne
F

)
ρ̃+

F .

Note that the recovered gradient is indeed a weighted average of the numerical flux.

5.2. Formulas for the recovered gradient NDg,D

For the ND space of the lowest index, two basis functions associated with the edge F ∈ E are given

ξ s,F = λsF ∇λeF and ξ e,F = −λeF ∇λsF ,

respectively, which satisfy

(
ξ s,F · tF ′

) ∣∣∣
F ′ = λsF δF F ′/|F | and

(
ξ e,F · tF ′

) ∣∣∣
F ′ = λeF δF F ′/|F |

for any F ′ ∈ E.
For all F ∈ EI and for i, j ∈ {s, e}, let

β
nd,±
i j,F = (αξ i,F , ξ j,F

)
K ±

F
and βnd

i j,F = β
nd,−
i j,F + β

nd,+
i j,F ,

and let
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wnd
s,F =

(
β

nd,−
ss,F + β

nd,−
se,F

)
βnd

ee,F −
(
β

nd,−
se,F + β

nd,−
ee,F

)
βnd

se,F

βnd
ss,F βnd

ee,F −
(
βnd

se,F

)2

and wnd
e,F =

(
β

nd,−
se,F + β

nd,−
ee,F

)
βnd

ss,F −
(
β

nd,−
ss,F + β

nd,−
se,F

)
βnd

se,F

βnd
ss,F βnd

ee,F −
(
βnd

se,F

)2
.

Using the definition for basis functions ξ s,F and ξ e,F , a straightforward calculation gives that

β
nd,±
ss,F = 1

24|K ±
F |
∥∥∥α1/2(x±

F − sF )⊥
∥∥∥2

, β
nd,±
ee,F = 1

24|K ±
F |
∥∥∥α1/2(x±

F − eF )⊥
∥∥∥2

and β
nd,±
se,F =

(
(x±

F − sF )⊥
)t

αK (x±
F − eF )⊥

48 |K ±
F | .

Recall that solving the local problems in (3.15) with VF = NDF yields the following representation for the recovered gradient 
in NDD :

ρ̂nd
T =

∑
F∈EI

(
ρ̂s,F ξ s,F + ρ̂e,F ξ e,F

) |F | +
∑

F∈EN

ρ̃F |F |ζ−
F +

∑
F∈ED

g′
D,F |F |ζ−

F .

Now solving (3.15) gives that

ρ̂s,F = wnd
s,F ρ̃−

F +
(

1 − wnd
s,F

)
ρ̃+

F and ρ̂e,F = wnd
e,F ρ̃−

F +
(

1 − wnd
e,F

)
ρ̃+

F .

6. Numerical experiments

In this section, we report numerical results for the Kellogg [3] and L-shaped benchmark test problems approximated by 
the Crouziex-Raviart and DG finite element methods.

Example 1 (Kellogg’s problem). Let � = (−1, 1)2 and

u(r, θ) = rβμ(θ)

in the polar coordinates at the origin with

μ(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos((π/2 − σ)β) · cos((θ − π/2 + ρ)β) if 0 ≤ θ ≤ π/2,

cos(ρβ) · cos((θ − π + σ)β) if π/2 ≤ θ ≤ π,

cos(σβ) · cos((θ − π − ρ)β) if π ≤ θ ≤ 3π/2,

cos((π/2 − ρ)β) · cos((θ − 3π/2 − σ)β) if 3π/2 ≤ θ ≤ 2π,

where σ and ρ are numbers. The function u(r, θ) satisfies the diffusion equation in (2.1) with A = α I , �N = ∅, f = 0, and

α =
{

R in (0,1)2 ∪ (−1,0)2,

1 in � \ ([0,1]2 ∪ [−1,0]2).

In the test problem, we choose β = 0.1 which is corresponding to

R ≈ 161.4476387975881, ρ = π

4
, and σ ≈ −14.92256510455152.

Note that the solution u(r, θ) is only in H1+β−ε(�) for some ε > 0 and, hence, it is very singular for small β at the origin. 
This suggests that refinements should be centered mostly around the origin.

In the adaptive mesh refinement (AMR) procedure, we first use the Crouziex-Raviart nonconforming finite element 
method with indicators given in (3.20) and set the stopping criteria such that the relative error (the ratio between the 
energy norms of the true error and the true solution) less than 10%. We start with a uniform mesh with 8 elements (right 
diagonal). In each step, we mark all elements with the top 10% error. Each marked element is then divided into four el-
ements by joining its mid-points. Necessary further steps are performed to remove the hanging nodes. Note that for the 
Kellogg problem ησ,K vanishes because f = 0 (see [20]). Then for the Kellogg problem, we have
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Fig. 1. Example 1. Mesh generated by ηcr
K .

Fig. 2. Example 1. Comparison between true error and estimator ηcr .

Fig. 3. Example 1. Mesh generated by η
ρ
zz,K .

ηK = ηρ,K , ∀ K ∈ T .

With the recovered gradient in the NE space, the final mesh is obtained at the 47th step, see Fig. 1. The refinements are 
centered around the origin and there is no over refinement along the interfaces. The comparison between the true error in 
the energy norm and the error estimator based on the recovered gradient in the NE space is shown in the log-log plot (see 

Fig. 2). The slope of the 
log(error)

log(number of dofs)
for both the estimator and the energy norm of the true error is very close to 

−1/2, which indicates the optimal decay of the error with respect to the number of the unknowns. The efficiency index is 
defined by

eff-index = η

‖A1/2∇(u − uT )‖0,�

,

where η is the estimator. The efficiency index of the estimator is approximately equal to 1.08. Recovering a gradient in the 
N D space produces very similar results.
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Fig. 4. Example 1. Mesh generated by ησ
zz,K .

Fig. 5. Example 1. Mesh generated by η̃
dg
K .

Fig. 6. Example 1. Comparison between true error and estimators.

Now we compare our error estimator with the classical ZZ error estimator that recover the flux and gradient in the 
continuous spaces. Let ρ zz and σ zz be the L2 projection of the respective numerical gradient ρ̃T and flux σ̃T in the 
continuous piecewise linear space, i.e.,

(ρzz,v) = (ρ̃cr
T ,v) and (σ zz,v) = (σ̃ cr

T ,v) ∀v ∈ P 1(T )2,

where P 1(T ) = {v ∈ H1(�) : v|K ∈P 1(K ) ∀K ∈ T }. We then define the corresponding error estimators as

ηzz
ρ,K = ‖A1/2(ρzz − ρ̃cr

T )‖K and ηzz
σ ,K = ‖A−1/2(σ zz − σ̃ cr

T )‖K , ∀K ∈ T .

Figs. 3 and 4 show the meshes generated by the respective ηzz
ρ,K and ηzz

σ ,K . It can be seen that unnecessary refinements 
are added along the entire interfaces. This is due to the artificial error created by enforcing the flux and gradient into the 
continuous space while the true ones are not continuous.

We also present numerical results for the Kellogg problem using the DG method. We choose γ = 50 in (2.8) for this 
example. Due to the big jump of the diffusion coefficient, γ value should be big enough to ensure the stability of the 
numerical scheme. With the same stopping criteria, the final mesh generated by η̃dg and obtained at the 40th step is given 
K
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Fig. 7. Example 2. Mesh generated by ηcr
K .

Fig. 8. Example 2. Comparison between true error and estimators.

Fig. 9. Example 2. Mesh generated by η̃
dg
K .

in Fig. 5. We used the recovered flux and gradient in the respective RT and NE spaces. Again, refinements are centered 
around the origin and there is no over refinement along the interface. The efficiency index for the η̃dg

K is around 1.07. The 
quantities ηdg and η̃dg for the linear case are very close. This indicates that, numerically, η̃dg is a good error estimator. 
Numerical results using B DM and N D spaces to recover the flux and gradient are very similar.

Example 2 (L-shape problem). In this example, we test the following problem:

u(r, θ) = r2/3 sin(2θ/3) + r2/2, θ ∈ [0, 3π/2]
on the L-shaped domain � = (−1, 1)2 \ [0, 1] × [−1, 0]. Note that this function satisfies (2.1) with A(x) = I and f = −2.

We again test both the Crouzeix-Raviart and DG methods. For the DG method, we set γ = 10 in (2.8). We start with 
an initial uniform mesh with 96 elements (right diagonal). With the stopping criteria that the relative error be less than 
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Fig. 10. Example 2. Comparison between true error and estimators.

one percent, the meshes generated by the indicator ηcr
K and η̃dg

K with the recovered gradient and flux in the respective NE
and RT spaces are depicted in Figs. 7 and 9, respectively. It takes 25 steps for the Crouzeix-Raviart method and 23 steps 
for the DG method to reach the stopping criteria. The problem has an angular singularity around the origin and we observe 
that refinements are much more dense around the singular point. The corresponding comparisons between the true error 
in the energy norm and the error estimators are shown in the log-log Figs. 8 and 10. All estimators converge with the 
optimal order. The estimator has the efficiency index around 1.15 for ηcr and 1.09 for η̃dg . In Fig. 8, we also compare the 

estimator 
√

η2
cr + η2

res for the Crouzeix-Raviart method. Its efficiency index is around 6.80 which makes it a less effective 
error estimator. Again, for the DG method the quantities ηdg and η̃dg are very close.
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