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In this paper, we present a class of discontinuous Galerkin finite element methods for advection-diffusion-reaction 
problems and establish a priori error estimates when the solution is only in 𝐻1+𝑠(Ω) with 𝑠 ∈ (0, 1∕2].
1. Introduction

Discontinuous Galerkin methods for elliptic partial boundary prob-

lems have been studied since the late 1970s. Most DG methods are 
derived by imposing a proper stabilization term, e.g., Ayuso and Marini 
in [1] derived the DG formulations by the so-called weighted resid-

ual approach which gives a linear relationship between the residual in 
the elements and the jump between across the element boundaries. For 
problems with discontinuous coefficients, this stabilization term and se-

lection of the weights need careful treatments to be robust. Robustness 
means the constant in the a priori error estimate is independent of the 
jump of the coefficients. Cai, Ye and Zhang in [9] developed a non-

standard DG formulation by carefully defining duality pairs on element 
interfaces for interface problems. For comments and remarks on various 
DG methods studied by many researchers, we refer readers to [1,2,9,10]

and references therein.

Standard a priori error estimate for DG methods (see, e.g., [1,2]) re-

quires the underlying problems to be sufficiently smooth, i.e., at least 
piece-wise 𝐻𝑠(Ω) with 𝑠 > 3∕2, so there is an error equation. The fol-

lowing a priori error estimate was established in [1]:

⦀𝑢− 𝑢ℎ⦀ ≤ 𝐶(Ω)ℎ𝑠−1𝐶(𝜖, 𝛽, 𝜌)|𝑢|𝑠,Ω (1.1)

provided that the solution 𝑢 is at least piece-wise 𝐻𝑠 with 𝑠 > 3∕2. For 
advection-diffusion-reaction problems with discontinuous coefficients, 
it is well known that the solutions of such problems may belong to 
𝐻1+𝑠(Ω) with possibly very small positive 𝑠 (see, e.g., [12]) in elements 
near singularities and are very smooth away from singularities. This 
kind of error estimate is also not optimal with respect to the local regu-

larity since 𝑘 is a global exponent.
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The purposes of this paper are to present a class of DG methods and 
to establish optimal a priori error estimates of these methods when the 
underlying problem is not piece-wise 𝐻3∕2(Ω) regular. First, we derive 
a non-standard variational formulation for advection-diffusion-reaction 
problems. The formulation is defined in an appropriate function space 
that permits discontinuity across element interfaces and does not re-

quire piece-wise 𝐻𝑠(Ω), 𝑠 ≥ 3∕2, smoothness. Hence, both continuous 
and discontinuous (including Crouzeix-Raviart) finite element spaces 
may be used and are conforming with respect to this variational formu-

lation. The derivation may be regarded as the extension of the formula-

tion in [9,10] for the interface problem, which leads an error equation 
naturally by carefully defining the duality pairs on element interfaces 
for problems with low regularity. Second, we establish the a priori error 
bound, and the constant in the estimate is independent of the parame-

ters of the underlying problem and is optimal with respect to the local 
regularity. In the final section, we consider coefficient ℎ−1𝑒 in the sta-

bilization term may cause problems in the convergence analysis, and 
modified the DG finite element formulation and space by introducing 
the tangential derivative along edge 𝑒.

1.1. Notations

Throughout the paper, we will use the standard notations for the 
norms and seminorms in Sobolev Space. For a domain Ω, denote the 
Sobolev space by 𝑊 𝑠,𝑟(Ω) equipped with the standard Sobolev norm ‖ ⋅ ‖𝑠,𝑟,Ω and seminorm | ⋅ |𝑠,𝑟,Ω, where 𝑠 is a real number and 1 ≤ 𝑟 ≤∞. 
When 𝑟 = 2, 𝑊 𝑠,2(Ω) is a Hilbert space and is denoted by 𝐻𝑠(Ω) with the 
norm ‖ ⋅ ‖𝑠,Ω and seminorm | ⋅ |𝑠,Ω. (We omit the subscript Ω from the 
inner product and norm designation when there is no risk of confusion.) 
https://doi.org/10.1016/j.camwa.2022.11.005
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To keep the homogeneity of dimensions, on a domain Ω with diameter 
𝐿, define

‖𝑣‖2
𝑘,Ω ∶=

𝑘∑
𝑠=0

𝐿2𝑠|𝑣|2
𝑠,Ω for 𝑣 ∈𝐻𝑘(Ω), 𝑘 ≥ 0 (1.2)

and

‖𝑣‖𝑘,∞,Ω ∶=
𝑘∑

𝑠=0
𝐿𝑠|𝑣|𝑠,∞,Ω for 𝑣 ∈𝑊 𝑘,∞(Ω), 𝑘 ≥ 0. (1.3)

The paper is organized as follows. Section 2 introduces the advection-

diffusion-reaction problem with discontinuous coefficients and the as-

sumptions. Section 3 introduces the derivation of the variational for-

mulations. In section 4, we derive the discontinuous finite element 
formulation and prove the stability in a strong norm. Section 5 gives 
the a priori error estimate analysis. Finally, section 6 presents a new dis-

continuous Galerkin methods in the modified DG finite element space.

2. Advection-diffusion-reaction problem and preliminaries

Let Ω be a bounded polygonal domain in ℜ2 with boundary 𝜕Ω =
Γ̄𝐷 ∪ Γ̄𝑁 and Γ𝐷 ∩ Γ𝑁 = ∅ and let 𝒏 = (𝑛1, 𝑛2) be the outward unit vector 
normal to the boundary. Let 𝜷 = (𝛽1, 𝛽2)𝑡 ∈ 𝑊 1,∞(Ω)2 be the velocity 
vector field defined on Ω. Define inflow and outflow boundaries of 𝜕Ω
by

Γ− = {𝑥 ∈ 𝜕Ω ∶ 𝜷(𝑥) ⋅ 𝒏(𝑥) < 0} and Γ+ = {𝑥 ∈ 𝜕Ω ∶ 𝜷(𝑥) ⋅ 𝒏(𝑥) > 0}

respectively, and let

Γ±
𝐷
= Γ𝐷 ∩ Γ± and Γ±

𝑁
= Γ𝑁 ∩ Γ±.

Consider the following advection-diffusion-reaction problem with 
discontinuous diffusion coefficients:

−∇ ⋅ (𝛼(𝑥)∇𝑢− 𝜷𝑢) + 𝛾𝑢 = 𝑓 in Ω (2.1)

with boundary conditions

𝑢 = 𝑔
𝐷

on Γ𝐷 and 𝒏 ⋅
(
𝜷𝑢𝜒Γ−

𝑁
− 𝛼∇𝑢

)
= 𝑔

𝑁
on Γ𝑁, (2.2)

where 𝑓 ∈ 𝐿2(Ω), 𝑔
𝐷
∈𝐻1∕2(Γ𝐷), and 𝑔

𝑁
∈𝐻−1∕2(Γ𝑁 ) are given func-

tions; 𝜒Γ−
𝑁

is the characteristic function of the set Γ−
𝑁

; and the diffusion 
coefficient 𝛼(𝑥) is non-negative and piece-wise constant on polygonal 
subdomains of Ω with possible large jumps across subdomain bound-

aries (interfaces):

𝛼(𝑥) = 𝛼𝑖 ≥ 0 in Ω𝑖 for 𝑖 = 1, ..., 𝑛.

Here, {Ω𝑖}𝑛𝑖=1 is a partition of the domain Ω with Ω𝑖 being an open 
polygonal domain. For the stability and error analysis, the assumptions 
on the coefficients introduced in [1,11] are adopted in this paper:

(1) There exists a constant 𝜌0 ≥ 0 such that

𝜌(𝑥) = 1
2
∇ ⋅ 𝜷 + 𝛾 ≥ 𝜌0 ≥ 0, in Ω; (2.3)

(2) The advection field has no closed curves and stationary points. This 
implies that there exists a function 𝜂 ∈𝑊 1,∞(Ω) such that

𝜷 ⋅∇𝜂 ≥ 2𝑏0 ∶= 2
‖𝜷‖0,∞,Ω

𝐿
, in Ω; (2.4)

(3) There exists a constant 𝑐𝛽 > 0 such that

|𝜷(𝑥)| ≥ 𝑐𝛽‖𝜷‖1,∞,Ω, 𝑎.𝑒.in Ω; (2.5)

(4) There exists a constant 𝑐𝜌 > 0 such that

‖𝜌‖0,∞,𝐾 ≤ 𝑐𝜌(min
𝐾

𝜌(𝑥) + 𝑏0), ∀𝐾 ∈ ℎ, (2.6)

where ℎ = {𝐾} is a given shape-regular triangulation of Ω.
2

Remark 2.1. Assumption (2.3) guarantees the stability of the advection-

reaction part. Assumption (2.4) is based on the regularity of 𝜷 ∈
𝑊 1,∞(Ω)2 and the conditions that 𝜷 has no closed curves and that |𝜷(𝒙)| ≠ 𝟎 for almost all 𝑥 ∈ Ω. Assumptions (2.5) and (2.6) exclude 
the situations of a small but a highly oscillatory advection field. Also, 
the following useful inequality is deduced from (2.5)

|𝜷|1,∞,Ω ≤ ‖𝜷‖1,∞,Ω

𝐿
≤ 1

𝑐𝛽

‖𝜷‖0,∞,Ω

𝐿
=

𝑏0
𝑐𝛽

. (2.7)

2.1. Jumps and averages

Let ℎ = {𝐾} be a finite element triangulation of the domain Ω. Let 
ℎ𝐾 be the diameter of the element 𝐾 and ℎ = max

𝐾∈ℎ
ℎ𝐾 . Assume that 

the triangulation ℎ is regular and also the interfaces 𝐹 = {𝜕Ω𝑖 ∩ 𝜕Ω𝑗 ∶
𝑖, 𝑗 = 1, ..., 𝑛} do not cut through any element 𝐾 ∈ ℎ. Let 𝐾 be the set 
of three edges of element 𝐾 ∈ ℎ. Denote the set of all edges of the 
triangulation ℎ by

 ∶= 
𝐼
∪ 

𝐷
∪ 

𝑁
,

where 
𝐼

is the set of all interior element edges, and 
𝐷

and 
𝑁

are the 
sets of all boundary edges belonging to the respective boundaries Γ𝐷
and Γ𝑁 . And define

Γ± ∶=  ∩ Γ±.

For each 𝑒 ∈  , let ℎ𝑒 be the length of the edge 𝑒 and 𝒏𝑒 be a unit 
normal vector to 𝑒. For each interior edge 𝑒 ∈ 𝐼 , choose 𝒏𝑒 such that 
𝜷 ⋅ 𝒏𝑒 > 0 and let 𝐾−

𝑒 and 𝐾+
𝑒 be the two elements sharing the common 

edge 𝑒 such that the unit outward normal vector of 𝐾−
𝑒 coincides with 

𝒏𝑒. When 𝑒 ∈ Γ± , 𝒏𝑒 is the unit outward normal vector and denote the 
element by 𝐾±

𝑒 . Denote by 𝑣|−𝑒 and 𝑣|+𝑒 , respectively, the traces of a 
function 𝑣 over 𝑒. Define jumps over edges by

�𝑣�𝑒 ∶=
⎧⎪⎨⎪⎩
𝑣|−𝑒 − 𝑣|+𝑒 𝑒 ∈ 𝐼 ,
𝑣|−𝑒 𝑒 ∈ Γ− ,
𝑣|+𝑒 𝑒 ∈ Γ+ .

Let 𝑤+
𝑒 and 𝑤−

𝑒 be weights defined on 𝑒 satisfying

𝑤+
𝑒 (𝑥) +𝑤−

𝑒 (𝑥) = 1,

and define the following weighted averages by

{𝑣(𝑥)}𝑒𝑤 =
⎧⎪⎨⎪⎩
𝑤−

𝑒 𝑣
−
𝑒 +𝑤+

𝑒 𝑣
+
𝑒 𝑒 ∈ 𝐼 ,

𝑣|−𝑒 𝑒 ∈ Γ− ,
𝑣|+𝑒 𝑒 ∈ Γ+ ,

and

{𝑣(𝑥)}𝑤𝑒 =
⎧⎪⎨⎪⎩
𝑤+

𝑒 𝑣
−
𝑒 +𝑤−

𝑒 𝑣
+
𝑒 𝑒 ∈ 𝐼 ,

𝑣|+𝑒 𝑒 ∈ Γ− ,
𝑣|−𝑒 𝑒 ∈ Γ+

for all 𝑒 ∈  . Denote by {𝑣(𝑥)}𝑒 the weighted average of 𝑣 with 𝑤+
𝑒 =

𝑤−
𝑒 = 1

2 . When there is no ambiguity, the subscript or superscript 𝑒 in 
the designation of the jump and the weighted averages will be dropped. 
A simple calculation leads to the following identity:

�𝑢𝑣�𝑒 = {𝑣}𝑤𝑒 �𝑢�𝑒 + {𝑢}𝑒𝑤 �𝑣�𝑒. (2.8)

Let 𝑒 be the sharing edge of elements 𝐾+
𝑒 and 𝐾−

𝑒 , i.e., 𝑒 = 𝜕𝐾+
𝑒 ∩ 𝜕𝐾−

𝑒 , 
and denote by 𝛼+𝑒 and 𝛼−𝑒 the diffusion coefficients on 𝐾+

𝑒 and 𝐾−
𝑒 , 

respectively. Denote by 𝑊𝑒 = {𝛼}𝑒𝑤 the weighted average of 𝛼 on edge 
𝑒. For boundary edges, set

𝑤±
𝑒 = 1 and 𝑊𝑒 = 𝛼±𝑒 if 𝑒 ∈ Γ±.
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In this paper, we take harmonic weights 𝑤±
𝑒 = 𝛼∓𝑒

𝛼−𝑒 +𝛼+𝑒
. Let 𝛼𝑒,min =

min{𝛼+𝑒 , 𝛼−𝑒 } and 𝛼𝑒,max = max{𝛼+𝑒 , 𝛼−𝑒 }, thus

𝑊𝑒 =
2𝛼+𝑒 𝛼

−
𝑒

𝛼+𝑒 + 𝛼−𝑒
and 𝛼𝑒,min ≤𝑊𝑒 ≤ 2𝛼𝑒,min. (2.9)

3. Variational formulations

Following [9], we derive a variational formulation of problem (2.1)

- (2.2) held for piece-wise smooth test functions. The key of this deriva-

tion is the introduction of a proper solution space in which integrals 
over inter-edges are well-defined. Moreover, the proper solution space 
is crucial for a priori error estimates of the underlying problem with low 
regularity.

Let 𝑢 be the solution of problem (2.1) - (2.2), then it is well known 
from the regularity estimate in [3] that 𝑢 belongs to 𝐻1+𝑠(Ω) for some 
positive 𝑠 which could be very small. Since 𝑓 ∈ 𝐿2(Ω), it is easy to see 
that divergences of the diffusion and advection fluxes, 𝛼∇𝑢 and 𝜷𝑢, are 
square integrable, i.e.,

𝛼∇𝑢, 𝑢𝜷 ∈𝐻(div;Ω) ≡ {𝝉 ∈𝐿2(Ω)2 ∶ ∇ ⋅ 𝝉 ∈𝐿2(Ω)}. (3.1)

Consider the following solution space

𝑉 1+𝜖(ℎ) = {𝑣 ∈𝐻1+𝜖(ℎ) ∶ ∇ ⋅ (𝛼∇𝑣) ∈𝐿2(𝐾), ∀𝐾 ∈ ℎ}
for 0 < 𝜖 ≪ 1, where 𝐻𝑠(ℎ) is the broken Sobolev space of degree 𝑠 > 0
with respect to ℎ:

𝐻𝑠(ℎ) = {𝑣∈𝐿2(Ω) ∶ 𝑣|𝐾 ∈𝐻𝑠(𝐾), ∀𝐾 ∈ ℎ}.
Denote the discrete gradient and divergence operators by

(∇ℎ𝑣)|𝐾 =∇(𝑣|𝐾 ) and (∇ℎ ⋅ 𝝉)|𝐾 =∇ ⋅ (𝝉|𝐾 ),
for all 𝐾 ∈ ℎ, respectively.

Multiplying equation (2.1) by a test function 𝑣 ∈ 𝑉 1+𝜖(ℎ), inte-

grating by parts, and using boundary conditions (2.2), we have the 
following:

(𝑓, 𝑣) = (𝛼∇ℎ𝑢,∇ℎ𝑣) −
∑

𝑒∈𝐼∪𝐷 ∫𝑒
�𝛼∇𝑢 ⋅ 𝒏𝑒𝑣�+

∑
𝑒∈𝑁 ∫

𝑒

𝑔
𝑁
𝑣

+ (𝑢, −𝜷 ⋅∇ℎ𝑣+ 𝛾𝑣) +
∑

𝑒∈𝐼∪Γ+ ∫𝑒
�𝛽𝑒𝑢𝑣�+

∑
𝑒∈𝐷−

∫
𝑒

𝛽𝑒𝑔𝐷𝑣,

where 𝐷− = 𝐷 ∩ Γ− and 𝛽𝑒 = 𝜷 ⋅ 𝒏𝑒. Note that the Dirichlet boundary 
condition is used on the inflow boundary. By (3.1), it is easy to see that 
the normal components of the diffusion and advection fluxes are con-

tinuous across the internal edges. Then for any 𝑒 ∈ 𝐼 and 𝑣 ∈ 𝑉 1+𝜖(ℎ),

∫
𝑒

�𝛼∇𝑢 ⋅ 𝒏𝑒�{𝑣}𝑤 𝑑𝑠 = 0 and ∫
𝑒

�𝑢𝜷 ⋅ 𝒏𝑒�{𝑣}𝑤 𝑑𝑠 = 0.

By identity (2.8) and the Dirichlet boundary condition in (2.2), we have 
that for all 𝑣 ∈ 𝑉 1+𝜖(ℎ),
(𝛼∇ℎ𝑢,∇ℎ𝑣) + (𝑢, −𝜷 ⋅∇ℎ𝑣+ 𝛾𝑣) −

∑
𝑒∈𝐼∪𝐷 ∫𝑒

{𝛼∇𝑢 ⋅ 𝒏𝑒}𝑤�𝑣�

+
∑

𝑒∈𝐼∪Γ+∫𝑒
{𝛽𝑒𝑢}𝑤�𝑣� = (𝑓, 𝑣) −

∑
𝑒∈Γ𝑁

∫
𝑒

𝑔
𝑁
𝑣−
∑

𝑒∈𝐷−
∫
𝑒

𝛽𝑒𝑔𝐷𝑣. (3.2)

Since the derivation does not make use of the continuity of the solu-

tion, one needs to impose such a continuity in order to achieve stability. 
To do so, it is natural and well-known to stabilize the diffusion and the 
advection operators by adding proper jump terms of the solution. Fol-

lowing the idea of [2] (also see [9]), we stabilize the diffusion operator 
by adding the following equation:
3

∑
𝑒∈𝐼∪𝐷∫𝑒

𝛾
𝜃
ℎ−1𝑒 𝑊𝑒�𝑢��𝑣�𝑑𝑠 =

∑
𝑒∈𝐷

𝛾
𝜃
ℎ−1𝑒 𝑊𝑒∫

𝑒

𝑔
𝐷
𝑣𝑑𝑠, ∀𝑣 ∈ 𝑉 1+𝜖(ℎ).

(3.3)

Since the diffusion operator is self-adjoint, it is natural to symmetrize 
the diffusion part by adding the following equation:

𝜃
∑

𝑒∈𝐼∪𝐷∫𝑒
{𝛼∇𝑣 ⋅ 𝒏𝑒}𝑤�𝑢�𝑑𝑠 = 𝜃

∑
𝑒∈𝐷∫𝑒

𝑔
𝐷
(𝛼∇𝑣 ⋅ 𝒏𝑒)𝑑𝑠, ∀𝑣 ∈ 𝑉 1+𝜖(ℎ)

(3.4)

with 𝜃 = {−1, 0, 1}. Both (3.3) and (3.4) follow from the continuity of 
𝑢 ∈ 𝐻1+𝑠(Ω) and the Dirichlet boundary condition. When 𝜃 = 1, (3.4)

plays a role of stabilization and, hence, (3.3) is not needed.

For the advection-reaction term, introduce the following general up-

wind average:

{𝛽𝑒𝑢}𝑒𝑢𝑝 = 𝛽𝑒𝜉
−
𝑒 𝑢

− + 𝛽𝑒𝜉
+
𝑒 𝑢

+, where 𝜉−𝑒 + 𝜉+𝑒 = 1 and 𝜉−𝑒 > 1∕2, (3.5)

which is more general than that in [1] since 𝜉+𝑒 could be negative. When 
𝜉−𝑒 = 1, (3.5) is the classic upwind.

For 𝑢, 𝑣 ∈ 𝑉 1+𝜖(ℎ), define the diffusion and advection-reaction bi-

linear forms by

𝑎𝑑,𝜃(𝑢, 𝑣) = (𝛼∇ℎ𝑢,∇ℎ𝑣) + 𝜃
∑

𝑒∈𝐼∪𝐷 ∫
𝑒

{𝛼∇𝑣 ⋅ 𝒏𝑒}𝑤�𝑢�𝑑𝑠 (3.6)

−
∑

𝑒∈𝐼∪𝐷∫𝑒
{𝛼∇𝑢 ⋅ 𝒏𝑒}𝑤�𝑣�𝑑𝑠+

∑
𝑒∈𝐼∪𝐷∫𝑒

𝛾
𝜃
ℎ−1𝑒 𝑊𝑒�𝑢��𝑣�𝑑𝑠

for 𝜃 ∈ {−1, 0, 1} and

𝑎𝑐(𝑢, 𝑣) = (𝑢, −𝜷 ⋅∇ℎ𝑣+ 𝛾𝑣) +
∑
𝑒∈𝐼∫𝑒

{𝛽𝑒𝑢}𝑢𝑝�𝑣�𝑑𝑠+
∑

𝑒∈Γ+∫𝑒
𝛽𝑒𝑢𝑣𝑑𝑠, (3.7)

respectively. And also for 𝑣 ∈ 𝑉 1+𝜖(ℎ), define the linear form by

𝑓
𝜃
(𝑣) = (𝑓, 𝑣) +

∑
𝑒∈𝐷

𝛾
𝜃
ℎ−1𝑒 𝑊𝑒 ∫

𝑒

𝑔
𝐷
𝑣𝑑𝑠+

∑
𝑒∈𝑁 ∫

𝑒

𝑔
𝑁
𝑣𝑑𝑠

+𝜃
∑
𝑒∈𝐷 ∫

𝑒

𝑔
𝐷
(𝑘∇𝑣 ⋅ 𝒏𝑒)𝑑𝑠−

∑
𝑒∈𝐷−

∫
𝑒

(𝜷 ⋅ 𝒏𝑒)𝑔𝐷 𝑣𝑑𝑠.

The weak solution of (2.1) - (2.2) satisfies the following variational 
problem: to find 𝑢 ∈ 𝑉 1+𝜖(ℎ) such that

𝑎𝜃(𝑢, 𝑣) = 𝑓𝜃(𝑣), ∀𝑣 ∈ 𝑉 1+𝜖(ℎ) (3.8)

with

𝑎𝜃(𝑢, 𝑣) = 𝑎𝑑,𝜃(𝑢, 𝑣) + 𝑎𝑐(𝑢, 𝑣).

4. Discontinuous finite element approximation

Let 𝑃𝑘(𝐾) be the space of polynomials of degree at most 𝑘 on element 
𝐾 ∈ ℎ. Denote the discontinuous finite element space associated with 
the triangulation ℎ by

 𝑘
ℎ
= {𝑣 ∈𝐿2(Ω) ∶ 𝑣|𝐾 ∈ 𝑃𝑘(𝐾), ∀𝐾 ∈ ℎ}.
Discontinuous Galerkin (DG) finite element method is to find 𝑢ℎ ∈

 𝑘
ℎ
⊂ 𝑉 1+𝜖(ℎ) such that

𝑎𝜃(𝑢ℎ, 𝑣ℎ) = 𝑓𝜃(𝑣ℎ), ∀ 𝑣ℎ ∈ 𝑘
ℎ
. (4.1)

The method corresponding to 𝜃 = −1 and the classic upwind was intro-

duced and analyzed recently in [2] for different boundary conditions. 
When 𝛼(𝑥) = 𝜖, the methods corresponding to 𝜃 = 0, 1 and the classic 
upwind reproduce the first two methods in [1]; the third (introduced 
in [5]) and fourth methods in [1] are corresponding to (4.1) with the 
respective classic and general upwind averages for both the diffusion 
and advection terms. A priori error bounds for DG methods had been 
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established by various researchers (see [1,2] and references therein) 
provided that the solution is at least piece-wise 𝐻3∕2+𝜖 smooth and that 
𝛾
𝜃

is large enough.

In the remainder of this section, we prove the stability that implies 
the well-posedness of (4.1). To this end, define the DG norms for the 
diffusion and advection-reaction parts by

⦀𝑣⦀2𝑑 = ‖𝛼1∕2∇ℎ𝑣‖20,Ω + ‖𝑣‖2𝑗 (4.2)

with

‖𝑣‖2𝑗 = ℎ−1𝑒 𝑊𝑒‖�𝑣�‖20,𝑒
and

⦀𝑣⦀2𝑐 = ‖(𝜌+ 𝑏0)1∕2𝑣‖20,Ω +
∑
𝑒∈
‖𝑐1∕2𝑒 �𝑣�‖20,𝑒 (4.3)

respectively, where 𝑏0 = ‖𝜷‖0,∞∕𝐿, 𝜌 is a piece-wise constant function 
defined as

𝜌𝐾 (𝑥) = min
𝑥∈𝐾

𝜌𝐾 (𝑥) = min
𝑥∈𝐾

(1
2
∇ ⋅ 𝜷 + 𝛾

)
𝐾
, ∀𝐾 ∈ ℎ (4.4)

and

𝑐𝑒 =

⎧⎪⎪⎨⎪⎪⎩

(
𝜉−𝑒 − 1

2

)
𝛽𝑒, on 𝑒 ∈ 𝐼 ,

1
2𝛽𝑒, on 𝑒 ∈ Γ+ ,
−1

2 𝛽𝑒, on 𝑒 ∈ Γ− .
(4.5)

The DG norm is defined as

⦀𝑣⦀
𝐷𝐺

=
(⦀𝑣⦀2𝑑 + ⦀𝑣⦀2𝑐)1∕2 (4.6)

4.1. Stability

In this section, we will prove the stability of the bilinear form 𝑎𝜃 (⋅, ⋅)
with respect to the DG norm ⦀ ⋅⦀𝐷𝐺 . First, we consider the diffusion part 
𝑎𝑑,𝜃(⋅, ⋅) with respect to ⦀ ⋅ ⦀𝑑 . To this end, we introduce the following 
lemmas.

Lemma 4.1. For any 𝜇ℎ ∈ 𝑘
ℎ

and 𝑣 ∈ 𝑉 1+𝜖(ℎ), there exists a positive con-

stant 𝐶𝑔 , depending only on the polynomial degree 𝑘 and the triangulation 
ℎ, such that∑

𝑒∈𝐼∪𝐷 ∫𝑒
||||{𝛼∇ℎ𝜇ℎ ⋅ 𝒏𝑒}𝑤�𝑣�

||||𝑑𝑠 ≤ 𝐶𝑔‖𝛼1∕2∇𝜇ℎ‖0,Ω‖𝑣‖𝑗
and

∑
𝑒∈𝐼∪𝐷 ∫𝑒

||||{𝛼𝜇ℎ}𝑤�𝑣�
||||𝑑𝑠 ≤ 𝐶𝑔‖𝛼1∕2𝜇ℎ‖0,Ω‖𝑣‖𝑗 .

Proof. It follows from the definition of 𝑤𝑒 and 𝑊𝑒 in (2.9) that

𝑤±
𝑒

√
𝛼±𝑒 =

𝛼∓𝑒

𝛼+𝑒 + 𝛼−𝑒

√
𝛼±𝑒 =

√
𝛼∓𝑒

𝛼+𝑒 + 𝛼−𝑒

√
𝑊𝑒

2
≤
√
2
2
√
𝑊𝑒.

Together with the inverse and the Cauchy-Schwarz inequalities, it gives 
that∑
𝑒∈𝐼∪𝐷∫𝑒

||||{𝛼∇𝜇ℎ ⋅ 𝒏𝑒}𝑤�𝑣�
||||𝑑𝑠

=
∑

𝑒∈𝐼∪𝐷∫𝑒
||||(𝑤+

𝑒 𝛼
+
𝑒 ∇𝜇ℎ ⋅ 𝑛

+
𝑒 +𝑤−

𝑒 𝛼
−
𝑒 ∇𝜇ℎ ⋅ 𝑛

−
𝑒 )�𝑣�

||||𝑑𝑠
≤ 𝑐1

∑
𝑒∈𝐼∪𝐷

ℎ
−1∕2
𝑒 𝑊

1∕2
𝑒 ‖�𝑣�‖0,𝑒 ∑

𝜔=+,−
‖𝛼1∕2∇𝜇ℎ‖0,𝐾𝜔

≤ 𝐶1‖𝛼1∕2∇𝜇ℎ‖0,Ω‖𝑣‖𝑗 ,

4

where 𝐶1 may depend on the polynomial degree 𝑘 and the triangulation 
ℎ, and is independent of 𝛼 and ℎ. In a similar way, we obtain that∑
𝑒∈𝐼∪𝐷∫𝑒

||||{𝛼𝜇ℎ}𝑤�𝑣�
||||𝑑𝑠 = ∑

𝑒∈𝐼∪𝐷∫𝑒
||||(𝑤+

𝑒 𝛼
+
𝑒 𝜇

+
ℎ
+𝑤−

𝑒 𝛼
−
𝑒 𝜇

−
ℎ )�𝑣�

||||𝑑𝑠
≤ 𝑐2

∑
𝑒∈𝐼∪𝐷

ℎ
−1∕2
𝑒 𝑊

1∕2
𝑒 ‖�𝑣�‖0,𝑒 ∑

𝜔=+,−
‖𝛼1∕2𝜇ℎ‖0,𝐾𝜔

≤ 𝐶2‖𝛼1∕2𝜇ℎ‖0,Ω‖𝑣‖𝑗 ,
where 𝐶2 may depend only on the triangulation ℎ and the polyno-

mial degree 𝑘. Let 𝐶𝑔 =max{𝐶1, 𝐶2} and this completes the proof of the 
lemma. □

Lemma 4.2. For any function 𝜇ℎ ∈ 𝑘
ℎ

, there exists a positive constant 𝐶𝑝, 
depending on the minimum angel of the triangulation ℎ of Ω, such that

‖𝛼1∕2𝜇ℎ‖0,Ω ≤ 𝐶𝑝𝐿
(‖𝛼1∕2∇ℎ𝜇ℎ‖20,Ω + ‖𝜇ℎ‖2𝑗)1∕2 , (4.7)

where 𝐿 is the diameter of the domain Ω.

Proof. For any piece-wise 𝐻1 function 𝑣, the following Poincaré-

Friedrichs inequality is proved in [4]:

‖𝑣‖0,Ω ≤ 𝐶𝐿

(‖∇ℎ𝑣‖20,Ω +
∑

𝑒∈𝐼∪𝐷
ℎ−1𝑒 ‖�𝑣�‖20,𝑒

)1∕2

, (4.8)

where 𝐶 is a positive constant depending on the minimum angle of the 
triangulation ℎ of Ω. Since the diffusion coefficient 𝛼 is piece-wise con-

stant, then for any function 𝜇ℎ ∈ 𝑘
ℎ

, 𝛼1∕2𝜇ℎ is a piece-wise 𝐻1 function. 
So it follows from (4.8) that

‖𝛼1∕2𝜇ℎ‖0,Ω ≤ 𝐶𝐿

(‖𝛼1∕2∇ℎ𝜇ℎ‖20,Ω +
∑

𝑒∈𝐼∪𝐷
ℎ−1𝑒 ‖�𝛼1∕2𝜇ℎ�‖20,𝑒

)1∕2

.

To show the validity of (4.7), it suffices to prove that∑
𝑒∈𝐼∪𝐷

ℎ−1𝑒 ‖�𝛼1∕2𝜇ℎ�‖20,𝑒 ≤ 𝐶
(‖𝛼1∕2∇ℎ𝜇ℎ‖20,Ω + ‖𝜇ℎ‖2𝑗) . (4.9)

To this end, without loss of generality, let 𝛼𝑒,𝑚𝑖𝑛 = 𝛼−𝑒 < 𝛼+𝑒 . It follows 
from the trace inequality and (2.9) that for each 𝑒 ∈ 𝐼 ∪ 𝐷 ,

‖�𝛼1∕2𝜇ℎ�‖20,𝑒 = ‖√𝛼−𝑒 𝜇
−
ℎ −
√

𝛼+𝑒 𝜇
+
ℎ
‖20,𝑒

= ‖√𝛼−𝑒 (𝜇
−
ℎ − 𝜇+

ℎ
) + (
√
𝛼−𝑒 −

√
𝛼+𝑒 )𝜇+

ℎ
‖20,𝑒

≤ 2
(‖𝛼1∕2𝑒,𝑚𝑖𝑛�𝜇ℎ�‖20,𝑒 + ‖√𝛼+𝑒 𝜇

+
ℎ
‖20,𝑒)

≤ 𝐶
(
𝑊𝑒‖�𝜇ℎ�‖20,𝑒 + ℎ

𝐾
+
𝑒
‖√𝛼∇ℎ𝜇ℎ‖20,𝐾+

)
.

Multiplying by ℎ−1𝑒 and summing up over 𝑒 ∈ 𝐼 ∪ 𝐷 imply (4.9). This 
completes the proof of the lemma. □

To establish the stability of the bilinear form 𝑎𝜃 (⋅, ⋅) in the DG norm, 
we follow the idea in [1]. To this end, introduce the weight function

𝜑 = 𝑒−𝜂 + ∶= 𝜒 +, (4.10)

where 𝜂 is defined in (2.4) and  is a positive constant. Since 𝜂 ∈
𝑊 1,∞(Ω), there exist positive constants 𝜒1, 𝜒2, and 𝜒3 such that

𝜒1 ≤ 𝜒 ≤ 𝜒2 and ‖∇𝜒‖∞ ≤ 𝜒3. (4.11)

Choose the constant  such that

𝜒1 + > 6(1 +𝐶𝑔)𝐶𝑝𝐿𝜒3 and 2(𝜒1 +) > 𝜒2 + (4.12)

with 𝐶𝑔 and 𝐶𝑝 defined in Lemma 4.1 and Lemma 4.2, respectively.
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Lemma 4.3. Let 𝑎𝑑,𝜃(⋅, ⋅) and 𝑎𝑐 (⋅, ⋅) be the bilinear forms defined in (3.6)

and (3.7), respectively, with 𝛾𝜃 ≥ 𝛾0 > max{9𝐶2
𝑔 , 1}. For any 𝑣ℎ ∈ 𝑘

ℎ
, the 

following inequalities hold:

𝑎𝑑,𝜃(𝑣ℎ,𝜑𝑣ℎ) ≥ 𝜒1 +
6

⦀𝑣ℎ⦀2𝑑 , 𝑎𝑐 (𝑣ℎ,𝜑𝑣ℎ) ≥ 𝜒1⦀𝑣ℎ⦀2𝑐 (4.13)

and

⦀𝜑𝑣ℎ⦀𝐷𝐺 ≤√5(𝜒1 +)⦀𝑣ℎ⦀𝐷𝐺. (4.14)

Proof. By the definition of the bilinear form 𝑎𝑑,𝜃 and the continuity of 
𝜑, we have

𝑎𝑑,𝜃(𝑣ℎ,𝜑𝑣ℎ)

= (𝛼∇ℎ𝑣ℎ,𝜑∇ℎ𝑣ℎ) + (𝛼∇ℎ𝑣ℎ, 𝑣ℎ∇𝜑) + 𝜃
∑

𝑒∈𝐼∪𝐷 ∫𝑒
(∇𝜑 ⋅ 𝒏𝑒){𝛼𝑣ℎ}𝑤�𝑣ℎ�

+(𝜃 − 1)
∑

𝑒∈𝐼∪𝐷 ∫𝑒
𝜑{𝛼∇𝑣ℎ ⋅ 𝒏𝑒}𝑤�𝑣ℎ�+

∑
𝑒∈𝐼∪𝐷 ∫𝑒

𝛾
𝜃
ℎ−1𝑒 𝑊𝑒𝜑�𝑣ℎ�

2.

It follows from the Cauchy-Schwarz inequality, (4.11), and Lemmas 4.1

and 4.2 that

(𝛼∇ℎ𝑣ℎ, 𝑣ℎ∇𝜑) ≤ 𝜒3‖𝛼1∕2∇ℎ𝑣ℎ‖0,Ω‖𝛼1∕2𝑣ℎ‖0,Ω ≤ 𝜒3𝐶𝑝𝐿⦀𝑣ℎ⦀2𝑑 ,
and that∑
𝑒∈𝐼∪𝐷 ∫

𝑒

(∇𝜑 ⋅ 𝒏𝑒){𝛼𝑣ℎ}𝑤�𝑣ℎ� ≤ 𝜒3𝐶𝑔‖𝛼1∕2𝑣ℎ‖0,Ω⦀𝑣ℎ⦀𝑑
≤ 𝜒3𝐶𝑔𝐶𝑝𝐿⦀𝑣ℎ⦀2𝑑 .

By Lemma 4.1, (4.12), and the assumption that 𝛾𝜃 ≥ 𝛾0 > max{9𝐶2
𝑔 , 1}, 

we have∑
𝑒∈𝐼∪𝐷 ∫

𝑒

𝜑{𝛼∇𝑣ℎ ⋅ 𝒏𝑒}𝑤�𝑣ℎ� ≤ (𝜒2 +)𝐶𝑔‖𝛼1∕2∇ℎ𝑣ℎ‖0,Ω‖𝑣ℎ‖𝑗
≤ (𝜒1 +)

3

(‖𝛼1∕2∇ℎ𝑣ℎ‖20,Ω + 𝛾0‖𝑣ℎ‖2𝑗) .
For 𝜃 ∈ {−1, 0, 1}, combining the above equality and inequalities gives 
that

𝑎𝑑,𝜃(𝑣ℎ,𝜑𝑣ℎ) ≥ (𝜒1 +)
(‖𝛼1∕2∇ℎ𝑣ℎ‖20,Ω + 𝛾0‖𝑣ℎ‖2𝑗)− 𝜒3𝐶𝑝𝐿⦀𝑣ℎ⦀2𝑑

−𝜒3𝐶𝑔𝐶𝑝𝐿⦀𝑣ℎ⦀2𝑑 − 2(𝜒1 +)
3

(‖𝛼1∕2∇ℎ𝑣ℎ‖20,Ω + 𝛾0‖𝑣ℎ‖2𝑗)
≥
(
𝜒1 +

3
− (1 +𝐶𝑔)𝜒3𝐶𝑝𝐿

)⦀𝑣ℎ⦀2𝑑
≥ 𝜒1 +

6
⦀𝑣ℎ⦀2𝑑 .

The last inequality used (4.12). This proves the first inequality in (4.13).

For the advection-reaction part, it follows from the identity that

𝑣ℎ∇𝑣ℎ =
1
2
∇ℎ(𝑣2ℎ),

integration by parts, and the continuity of 𝜙 and 𝜷 that

(𝑣ℎ,−𝜷 ⋅∇ℎ(𝜑𝑣ℎ)) = −1
2 ∫

Ω

𝜑𝜷 ⋅∇ℎ(𝑣2ℎ) − ∫
Ω

(𝜷 ⋅∇𝜑)𝑣2ℎ

= 1
2 ∫

Ω

𝑣2ℎ∇ ⋅ (𝜑𝜷) − 1
2
∑
𝐾∈ℎ ∫𝜕𝐾

𝜑𝑣2ℎ𝜷 ⋅ 𝒏− ∫
Ω

(𝜷 ⋅∇𝜑)𝑣2ℎ

= 1
2 ∫

Ω

(∇ ⋅ 𝜷)𝜑𝑣2ℎ −
1
2 ∫

Ω

(𝜷 ⋅∇𝜑)𝑣2ℎ −
1
2
∑
𝑒∈ ∫𝑒

𝛽𝑒𝜑�𝑣2ℎ�.

With the definition of 𝑐𝑒 in (4.5), a simple computation gives that
5

−1
2
∑
𝑒∈ ∫𝑒

𝛽𝑒𝜑�𝑣2ℎ�+
∑
𝑒∈𝐼 ∫𝑒

{𝛽𝑒𝑣ℎ}𝑢𝑝�𝜑𝑣ℎ�+
∑

𝑒∈Γ+ ∫𝑒
𝛽𝑒𝜑𝑣

2
ℎ

= −1
2
∑
𝑒∈𝐼 ∫𝑒

𝛽𝑒𝜑(𝑣+ℎ + 𝑣−ℎ )�𝑣ℎ�−
1
2
∑

𝑒∈Γ− ∫𝑒
𝛽𝑒𝜑𝑣

2
ℎ +

1
2
∑

𝑒∈Γ+ ∫𝑒
𝛽𝑒𝜑𝑣

2
ℎ

+
∑
𝑒∈𝐼 ∫𝑒

𝛽𝑒𝜑(𝜉+𝑒 𝑣
+
ℎ
+ 𝜉−𝑒 𝑣

−
ℎ )�𝑣ℎ� =

∑
𝑒∈ ∫𝑒

𝑐𝑒𝜑�𝑣ℎ�
2.

Combining these two identities gives that

𝑎𝑐(𝑣ℎ,𝜑𝑣ℎ) = (𝑣ℎ,−𝜷 ⋅∇ℎ(𝜑𝑣ℎ) + 𝛾𝜑𝑣ℎ)

+
∑
𝑒∈𝐼 ∫𝑒

{𝛽𝑒𝑣ℎ}𝑢𝑝�𝜑𝑣ℎ�+
∑

𝑒∈Γ+∫𝑒
𝛽𝑒𝜑𝑣

2
ℎ

= ∫
Ω

(𝛾 + 1
2
∇ ⋅ 𝜷)𝜑𝑣2ℎ −

1
2 ∫

Ω

(𝜷 ⋅∇𝜑)𝑣2ℎ +
∑
𝑒∈ ∫𝑒

𝑐𝑒𝜑�𝑣ℎ�
2.

From (2.4) and (4.11), we have

−𝜷 ⋅∇𝜑 = (𝜷 ⋅∇𝜂)𝑒−𝜂 ≥ 2𝑏0𝑒−𝜂 ≥ 2𝑏0𝜒1.

Together with the definition of 𝜌 in (2.3), we obtain that

𝑎𝑐(𝑣ℎ,𝜑𝑣ℎ) ≥ (𝜒1 +)∫
Ω

𝜌𝑣2ℎ + 𝜒1 ∫
Ω

𝑏0𝑣
2
ℎ + (𝜒1 +)

∑
𝑒∈ ∫𝑒

𝑐𝑒�𝑣ℎ�
2

≥ 𝜒1‖(𝜌+ 𝑏0)1∕2𝑣ℎ‖20,Ω + 𝜒1
∑
𝑒∈
‖𝑐1∕2𝑒 �𝑣ℎ�‖20,𝑒

≥ 𝜒1⦀𝑣ℎ⦀2𝑐 ,
which proves the second inequality in (4.13).

To estimate the upper bound of the DG norm of 𝜑𝑣ℎ , Lemma 4.2, 
(4.11), and (4.12) give that

⦀𝜑𝑣ℎ⦀2𝑑 = ‖𝛼1∕2𝜑∇ℎ𝑣ℎ‖20,Ω + ‖𝛼1∕2𝑣ℎ∇𝜑‖20,Ω +
∑

𝑒∈𝐼∪𝐷 ∫
𝑒

ℎ−1𝑒 𝑊𝑒𝜑
2�𝑣ℎ�

2

≤ ((𝜒2 +)2 + 𝜒2
3𝐶

2
𝑝𝐿

2)⦀𝑣ℎ⦀2𝑑
≤ 5(𝜒1 +)2⦀𝑣ℎ⦀2𝑑 ,

and that

⦀𝜑𝑣ℎ⦀2𝑐 = ‖(𝜌+ 𝑏0)1∕2𝜑𝑣ℎ‖20,Ω +
∑
𝑒∈
‖𝑐1∕2𝑒 𝜑�𝑣ℎ�‖20,𝑒

≤ (𝜒2 +)2⦀𝑣ℎ⦀2𝑐 ,
which implies that

⦀𝜑𝑣ℎ⦀𝐷𝐺 ≤ (5(𝜒1 +𝐾)2⦀𝑣ℎ⦀2𝑑 + (𝜒2 +)2⦀𝑣ℎ⦀2𝑐 )1∕2
≤√5(𝜒1 +)⦀𝑣ℎ⦀𝐷𝐺,

which proves (4.14) and, hence, completes the proof of the lemma. □

The following lemma is about the approximation results of the 𝐿2-

projection in the DG space, which have been proved in [6] and [7].

Lemma 4.4. Let 𝜑 ∈𝑊 1,∞(Ω) be the function defined in (4.10). For any 
𝑣ℎ ∈ 𝑘

ℎ
, let 𝜑𝑣ℎ be the 𝐿2-projection of 𝜑𝑣ℎ into  𝑘

ℎ
, then the following 

estimates hold:

‖𝜑𝑣ℎ −𝜑𝑣ℎ‖𝑝,2,Ω ≤ 𝐶ℎ1−𝑝‖𝜒‖1,∞,Ω‖𝑣ℎ‖0,Ω∕𝐿, 𝑝 = 0,1

and(∑
𝑒∈
‖𝜑𝑣ℎ −𝜑𝑣ℎ‖20,𝑒

)1∕2

≤ 𝐶ℎ1∕2‖𝜒‖1,∞,Ω‖𝑣ℎ‖0,Ω∕𝐿,
where 𝐶 is a positive constant independent of  and 𝐿 is the diameter of Ω.
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With Lemma 4.4, we estimate the upper bounds of the norms ⦀𝜑𝑣ℎ−
𝜑𝑣ℎ⦀𝑑 and ⦀𝜑𝑣ℎ −𝜑𝑣ℎ⦀𝑐 in the following lemma.

Lemma 4.5. For any 𝑣ℎ ∈ 𝑘
ℎ

, then the following estimates hold:

⦀𝜑𝑣ℎ −𝜑𝑣ℎ⦀𝑑 ≤ 𝐶𝐶𝑝‖𝜒‖1,∞⦀𝑣ℎ⦀𝑑
and

⦀𝜑𝑣ℎ −𝜑𝑣ℎ⦀𝑐 ≤ 𝐶
(
ℎ

𝐿

)1∕2 ‖𝜒‖1,∞‖(𝜌+ 𝑏0)1∕2𝑣ℎ‖0,Ω.
Proof. For any function 𝑣ℎ ∈ 𝑘

ℎ
, since 𝛼 is a piece-wise constant func-

tion, then 𝛼1∕2𝑣ℎ ∈ 𝑘
ℎ

and 𝛼1∕2𝜑𝑣ℎ is the 𝐿2 projection of 𝛼1∕2𝜑𝑣ℎ into 
 𝑘

ℎ
. Lemma 4.4 gives that

‖𝛼1∕2𝜑𝑣ℎ − 𝛼1∕2𝜑𝑣ℎ‖𝑝,2,Ω ≤ 𝐶ℎ1−𝑝‖𝜒‖1,∞‖𝛼1∕2𝑣ℎ‖0,Ω∕𝐿, 𝑝 = 0,1

and that(∑
𝑒∈
‖𝛼1∕2𝜑𝑣ℎ − 𝛼1∕2𝜑𝑣ℎ‖20,𝑒

)1∕2

≤ 𝐶ℎ1∕2‖𝜒‖1,∞,Ω‖𝛼1∕2𝑣ℎ‖0,Ω∕𝐿.
Together with the definition of d-norm in (4.2), the fact that 𝛼𝑒,min ≤
𝑊𝑒 ≤ 2𝛼𝑒,min, and Lemma 4.2, we have

⦀𝜑𝑣ℎ −𝜑𝑣ℎ⦀2𝑑 = ‖𝛼1∕2∇ℎ(𝜑𝑣ℎ −𝜑𝑣ℎ)‖20,Ω
+
∑

𝑒∈𝐼∪𝐷
ℎ−1𝑒 𝑊𝑒‖�𝜑𝑣ℎ −𝜑𝑣ℎ�‖20,𝑒

≤ 𝐶2‖𝜒‖21,∞‖𝛼1∕2𝑣ℎ‖20,Ω∕𝐿2

≤ 𝐶2𝐶2
𝑝‖𝜒‖21,∞⦀𝑣ℎ⦀2𝑑 ,

which proves the first inequality.

In a similar way, by the fact that 𝜌 + 𝑏0 is a piece-wise constant 
function and Lemma 4.4, we have that

‖(𝜌+ 𝑏0)1∕2(𝜑𝑣ℎ −𝜑𝑣ℎ‖𝑝,2,Ω
≤ 𝐶ℎ1−𝑝‖𝜒‖1,∞‖(𝜌+ 𝑏0)1∕2𝑣ℎ‖0,Ω∕𝐿, 𝑝 = 0,1.

Together with the inequality that

|𝑐𝑒| ≤ ‖𝜷‖0,∞ ≤ 𝑏0𝐿, ∀𝑒 ∈ 
and the fact that ℎ∕𝐿 ≤ 1, we obtain that

⦀𝜑𝑣ℎ −𝜑𝑣ℎ⦀𝑐
=

(‖(𝜌+ 𝑏0)1∕2(𝜑𝑣ℎ −𝜑𝑣ℎ)‖20,Ω +
∑
𝑒∈
‖𝑐1∕2𝑒 �𝜑𝑣ℎ −𝜑𝑣ℎ�‖20,𝑒

)1∕2

≤
(
𝐶2 ℎ

2

𝐿2 ‖𝜒‖21,∞‖(𝜌+ 𝑏0)1∕2𝑣ℎ‖20,Ω + 𝑏0𝐿𝐶
2 ℎ

𝐿2 ‖𝜒‖21,∞‖𝑣ℎ‖20,Ω)1∕2

≤ 𝐶
(
ℎ

𝐿

)1∕2 ‖𝜒‖1,∞‖(𝜌+ 𝑏0)1∕2𝑣ℎ‖0,Ω,
which proves the second inequality and, hence, completes the proof of 
the lemma. □

Lemma 4.6. Under the same hypotheses of Lemma 4.3, for any 𝑣ℎ ∈ 𝑘
ℎ

, 
there exist constants 𝜒4 and 𝜒5 independent of , such that

𝑎𝑑 (𝑣ℎ,𝜑𝑣ℎ −𝜑𝑣ℎ) ≤ 𝜒4⦀𝑣ℎ⦀2𝑑 (5.15a)

and that

𝑎𝑐(𝑣ℎ,𝜑𝑣ℎ −𝜑𝑣ℎ) ≤ 𝜒5(ℎ∕𝐿)1∕2⦀𝑣ℎ⦀2𝑐 . (5.15b)
6

Proof. By the definition of 𝑎𝑑,𝜃 in (3.6), the Cauchy-Schwarz in-

equality, the assumption that 𝛾𝜃 ≥ 𝛾0 > max{9𝐶2
𝑔 , 1}, Lemma 4.1, and 

Lemma 4.4, we have that

𝑎𝑑,𝜃(𝑣ℎ,𝜑𝑣ℎ −𝜑𝑣ℎ)

= (𝛼∇ℎ𝑣ℎ,∇ℎ(𝜑𝑣ℎ −𝜑𝑣ℎ)) +
∑

𝑒∈𝐼∪𝐷 ∫𝑒
𝛾𝜃ℎ

−1
𝑒 𝑊𝑒�𝑣ℎ��𝜑𝑣ℎ −𝜑𝑣ℎ�𝑑𝑠

−
∑

𝑒∈𝐼∪𝐷∫𝑒
{𝛼∇ℎ𝑣ℎ ⋅ 𝑛𝑒}𝑤�𝜑𝑣ℎ −𝜑𝑣ℎ�𝑑𝑠

+𝜃
∑

𝑒∈𝐼∪𝐷∫𝑒
{𝛼∇ℎ(𝜑𝑣ℎ −𝜑𝑣ℎ) ⋅ 𝑛𝑒}𝑤�𝑣ℎ�𝑑𝑠

≤ 𝛾
𝜃
⦀𝑣ℎ⦀𝑑⦀𝜑𝑣ℎ −𝜑𝑣ℎ⦀𝑑 +𝐶𝑔‖𝛼1∕2∇𝑣ℎ‖0,Ω‖𝜑𝑣ℎ −𝜑𝑣ℎ‖𝑗

+𝐶
‖𝜒‖1,∞

𝐿
‖𝛼1∕2𝑣ℎ‖0,Ω‖𝑣ℎ‖𝑗

≤ (𝛾
𝜃
+𝐶𝑔 +𝐶𝐶𝑝‖𝜒‖1,∞,Ω

)⦀𝑣ℎ⦀𝑑⦀𝜑𝑣ℎ −𝜑𝑣ℎ⦀𝑑 .
This proves the validity of (5.15a) with 𝜒4 = 𝛾

𝜃
+ 𝐶𝑔 + 𝐶𝐶𝑝‖𝜒‖1,∞,Ω, 

independent of .

Rewriting the advection - reaction part by integration by parts and 
using (2.8) give that, for any 𝑢, 𝑣 ∈ 𝑉 1+𝜖(ℎ),
𝑎𝑐(𝑢, 𝑣) = (𝑢, 𝛾𝑣) + (∇ℎ(𝑢𝜷), 𝑣) −

∑
𝑒∈∫𝑒

𝛽𝑒�𝑢𝑣�+
∑
𝑒∈𝐼∫𝑒

𝛽𝑒{𝑢}𝑢𝑝�𝑣�+
∑
𝑒∈Γ+

∫
𝑒

𝛽𝑒𝑢𝑣

= (𝑢, (𝛾 +∇ ⋅ 𝜷)𝑣) + (𝜷 ⋅∇ℎ𝑢, 𝑣) −
∑
𝑒∈𝐼∫𝑒

𝛽𝑒{𝑣}𝑢𝑝�𝑢�−
∑
𝑒∈Γ−

∫
𝑒

𝛽𝑒𝑢𝑣

= (𝑢, (𝛾 +∇ ⋅ 𝜷)𝑣) + (𝜷 ⋅∇ℎ𝑢, 𝑣) +
∑
𝑒∈𝐼∫𝑒

𝑐𝑒�𝑢��𝑣�−
∑

𝑒∈Γ−∪𝐼∫𝑒
𝛽𝑒�𝑢�{𝑣}.

Let 𝑃𝜷 be the 𝐿2 projection of 𝜷 onto  0
ℎ

, i.e., the space of piece wise 
constant with respect to ℎ with the following approximation property 
holds:

‖𝜷 − 𝑃𝜷‖0,∞,Ω ≤ 𝐶ℎ|𝜷|1,∞,Ω. (4.15)

Since 𝑃𝜷 ⋅∇ℎ𝑣ℎ ∈ 𝑘
ℎ

, the definition of 𝜑𝑣ℎ gives that

∫
Ω

𝑃𝜷 ⋅∇ℎ𝑣ℎ(𝜑𝑣ℎ −𝜑𝑣ℎ) = 0.

Combining the identities gives that

𝑎𝑐(𝑣ℎ,𝜑𝑣ℎ −𝜑𝑣ℎ)

= ∫
Ω

(𝛾 +∇ ⋅ 𝜷)𝑣ℎ(𝜑𝑣ℎ −𝜑𝑣ℎ) +∫
Ω

(𝜑𝑣ℎ −𝜑𝑣ℎ)(𝜷 − 𝑃𝜷) ⋅∇ℎ𝑣ℎ

+
∑
𝑒∈𝐼∫𝑒

𝑐𝑒�𝑣ℎ��𝜑𝑣ℎ −𝜑𝑣ℎ�−
∑

𝑒∈Γ−∪𝐼∫𝑒
𝛽𝑒�𝑣ℎ�{𝜑𝑣ℎ −𝜑𝑣ℎ}

∶= 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 + 𝐼𝑉 .

It follows from (2.6), (2.7) and Lemma 4.4 that

𝐼 = ∫
Ω

𝜌𝑣ℎ(𝜑𝑣ℎ −𝜑𝑣ℎ) +
1
2 ∫

Ω

∇ ⋅ 𝜷𝑣ℎ(𝜑𝑣ℎ −𝜑𝑣ℎ)

≤ 𝑐𝜌‖(𝜌+ 𝑏0)1∕2𝑣ℎ‖Ω‖(𝜌+ 𝑏0)1∕2(𝜑𝑣ℎ −𝜑𝑣ℎ)‖Ω
+

𝑏0
2𝑐𝜷
‖𝑣ℎ‖Ω‖𝜑𝑣ℎ −𝜑𝑣ℎ‖Ω

≤ (𝑐𝜌 +
1
2𝑐𝛽

)𝐶 ℎ

𝐿
‖𝜒‖1,∞‖(𝜌+ 𝑏0)1∕2𝑣ℎ‖20,Ω.

Using (4.15), (2.7), Lemma 4.4 and the inverse inequality gives that



JID:CAMWA AID:10972 /FLA [m5GeSdc; v1.330] P.7 (1-9)

Z. Cai and J. Yang Computers and Mathematics with Applications ••• (••••) •••–•••
𝐼𝐼 ≤ 𝐶ℎ|𝜷|1,∞‖∇ℎ𝑣ℎ‖ ℎ𝐿‖𝜒‖1,∞‖𝑣ℎ‖ ≤ 𝐶
ℎ

𝐿

𝑏0
𝑐𝜷
‖𝜒‖1,∞,Ω‖𝑣ℎ‖20,Ω.

By (2.4), Lemma 4.4 and the Cauchy-Schwarz inequality, we have

𝐼𝐼𝐼 + 𝐼𝑉 ≤ 𝐶

(∑
𝑒∈
‖𝑐1∕2𝑒 �𝑣ℎ�‖0,𝑒)(ℎ1∕2

𝐿
‖𝜷‖1∕20,∞‖𝜒‖1,∞‖𝑣ℎ‖)

≤ 𝐶
(
ℎ

𝐿

)1∕2 ‖𝜒‖1,∞(∑
𝑒∈
‖𝑐1∕2𝑒 �𝑣ℎ�‖20,𝑒 + 𝑏0‖𝑣ℎ‖20,Ω

)
.

Together with the fact that ℎ∕𝐿 < 1, we obtain that

𝑎𝑐(𝑣ℎ,𝜑𝑣ℎ −𝜑𝑣ℎ) ≤ (1 + 𝑐𝜌 +
2
𝑐𝛽

)𝐶‖𝜒‖𝑘+1,∞,Ω

(
ℎ

𝐿

)1∕2 ⦀𝑣ℎ⦀2𝑐 ,
which completes the proof with 𝜒5 = (1 + 𝑐𝜌 +

2
𝑐𝛽
)𝐶‖𝜒‖𝑘+1,∞,Ω. □

Next theorem gives the stability of the variational form.

Theorem 4.7. Let 𝑎𝑑,𝜃(⋅, ⋅) and 𝑎𝑐 (⋅, ⋅) be the bilinear forms defined in (3.6)

and (3.7), respectively, with 𝛾𝜃 ≥ 𝛾0 >max{9𝐶2
𝑔 , 1}. Then there exist positive 

constants 𝑎0 and ℎ0 such that for all ℎ < ℎ0 and 𝑣ℎ ∈ 𝑘
ℎ

,

sup
𝑤ℎ∈ 𝑘

ℎ

𝑎𝜃(𝑣ℎ,𝑤ℎ)⦀𝑤ℎ⦀𝐷𝐺

≥ 𝑎0⦀𝑣ℎ⦀𝐷𝐺. (4.16)

Proof. For any 𝑣ℎ ∈ 𝑘
ℎ

, let 𝑤ℎ = 𝜑𝑣ℎ ∈ 𝑘
ℎ

be the 𝐿2 projection of 𝜑𝑣ℎ
into  𝑘

ℎ
. First it follows from the triangle inequality and Lemma 4.3

and Lemma 4.5 that

⦀𝜑𝑣ℎ⦀𝐷𝐺 ≤ (⦀𝜑𝑣ℎ −𝜑𝑣ℎ⦀𝐷𝐺 + ⦀𝜑𝑣ℎ⦀𝐷𝐺) ≤ 𝐶⦀𝑣ℎ⦀𝐷𝐺.

To show the validity of (4.16), it suffices to show that

𝑎𝜃(𝑣ℎ,𝑤ℎ) ≥ 𝐶⦀𝑣ℎ⦀2𝐷𝐺. (4.17)

To this end, by Lemmas 4.3 and 4.6, we have that

𝑎𝑑,𝜃(𝑣ℎ,𝜑𝑣ℎ) = 𝑎𝑑,𝜃(𝑣ℎ,𝜑𝑣ℎ −𝜑𝑣ℎ) + 𝑎𝑑,𝜃(𝑣ℎ,𝜑𝑣ℎ)

≥
(
𝜒1 +

6
− 𝜒4

)⦀𝑣ℎ⦀2𝑑 .
Note that in Lemma 4.6, the constant 𝜒4 is independent of , so we can 
choose  such that 𝜒1 + is bigger than 12𝜒4. Then it follows that

𝑎𝑑,𝜃(𝑣ℎ,𝜑𝑣ℎ) ≥ 𝜒4⦀𝑣ℎ⦀2𝑑 .
In a similar way, then for ℎ < ℎ0 we have that

𝑎𝑐(𝑣ℎ,𝜑𝑣ℎ) ≥ 𝑐⦀𝑣ℎ⦀2𝑐 ,
with 𝑐 only depending on 𝜒1 and 𝜒5. Combining the two inequalities 
gives (4.17) and, hence, completes the proof of the theorem. □

5. A priori error estimate

In this section, we establish a priori error estimate in the DG norm 
defined in (4.6) for the discontinuous finite element methods.

Let 𝑃ℎ be the 𝐿2-projection onto  𝑘
ℎ

. The standard approximation 
argument in [8,9] gives that: for 𝑢 ∈ 𝑉 1+𝜖(ℎ) ∩𝐻1+𝑠(ℎ) with 𝜖 ≤ 𝑠 ≤ 1,

‖𝛼1∕2∇(𝑢− 𝑃ℎ𝑢)‖𝜖,Ω ≤ 𝐶
⎛⎜⎜⎝
∑
𝐾∈ℎ

ℎ
2(𝑠−𝜖)
𝐾

‖𝛼1∕2∇𝑢‖2𝑠,𝐾⎞⎟⎟⎠
1∕2

, (5.1)

‖𝑢− 𝑃ℎ𝑢‖𝑟,𝑝,𝐾 ≤ 𝐶ℎ𝑠+1−𝑟|𝑢|𝑠+1,𝑝,𝐾 , 𝑟 = 0,1, 1 ≤ 𝑝 ≤∞, 𝐾 ∈ ℎ. (5.2)

Together with the trace inequality, the following estimate holds:

‖𝑢− 𝑃ℎ𝑢‖0,𝑒 ≤ 𝐶ℎ
𝑠+1∕2|𝑢|𝑠+1,𝐾 , ∀𝑒 ∈  . (5.3)

𝐾𝑒 𝑒

7

Let 𝑓𝑘 be the 𝐿2 projection of 𝑓 onto  𝑘
ℎ

, define

𝑜𝑠𝑐(𝑓,𝐾) =
ℎ𝐾√
𝛼𝐾
‖𝑓 − 𝑓𝑘−1‖0,𝐾 and 𝑎𝑠𝑐(𝑓 ) =

⎛⎜⎜⎝
∑
𝐾∈ℎ

𝑜𝑠𝑐(𝑓,𝐾)2
⎞⎟⎟⎠
1∕2

.

Remark 5.1. The symbol ≲ used in this section denotes smaller than 
or equal to, up to a positive constant depending only on the triangu-

lation ℎ, the domain Ω, the polynomial degree 𝑘, independent of the 
coefficients of the problem and ℎ.

The next lemma proved in [10] gives a trace inequality of functions 
with low regularities.

Lemma 5.2. For any 𝐾 ∈ ℎ, assume that 𝑣 ∈ 𝑉 1+𝑠(𝐾) and 𝑤ℎ ∈ 𝑃𝑘(𝐾), 
then the following trace inequality holds:

∫
𝑒

(∇𝑣 ⋅ 𝒏)𝑤ℎ𝑑𝑠 ≲ ℎ
−1∕2
𝑒 ||𝑤ℎ||0,𝑒(||∇𝑣||0,𝐾 + ℎ𝐾 ||△ 𝑣||0,𝐾 ).

Lemma 5.3. Let 𝑢 ∈ 𝑉 1+𝑠(ℎ) ⋂𝐻1+𝜖(Ω) be the solution of (2.1) with 
boundary conditions (2.2). For any 𝑣 ∈  𝑘

ℎ
, let 𝜉 = 𝑢 − 𝑣, then on any 

𝐾 ∈ ℎ, the following estimate holds:

ℎ𝐾‖𝛼1∕2Δ𝜉‖0,𝐾 ≲ ‖𝛼1∕2∇𝜉‖0,𝐾 +
ℎ𝐾√
𝛼𝐾
‖∇ ⋅ (𝜷𝜉) + 𝛾𝜉‖0,𝐾 + 𝑜𝑠𝑐(𝑓,𝐾).

Proof. For any 𝑣 ∈ 𝑘
ℎ

, denote the element residual of 𝑣 over 𝐾 ∈ ℎ
by

𝑟𝐾 =
[
−∇ ⋅ (𝛼∇𝑣) + ∇ ⋅ (𝜷𝑣) + 𝛾𝑣− 𝑓𝑘−1

]
𝐾

=
[
∇ ⋅ (𝛼∇𝜉) − ∇ ⋅ (𝜷𝜉) − 𝛾𝜉 + 𝑓 − 𝑓𝑘−1

]
𝐾
.

Let 𝜓𝐾 be the cubic element bubble function on 𝐾 , then it follows from 
integration by parts, and the Cauchy-Schwarz, the triangle, and the in-

verse inequalities that

‖𝑟𝐾‖20,𝐾 ≲ ∫
𝐾

𝑟2𝐾𝜓𝐾 = ∫
𝐾

(
∇ ⋅ (𝛼∇𝜉) − ∇ ⋅ (𝜷𝜉) − 𝛾𝜉 + 𝑓 − 𝑓𝑘−1

)
𝑟𝐾𝜓𝐾

= −∫
𝐾

𝛼∇𝜉 ⋅∇(𝑟𝐾𝜓𝐾 ) + ∫
𝐾

(𝑓 − 𝑓𝑘−1 −∇ ⋅ (𝜷𝜉) − 𝛾𝜉) 𝑟𝐾𝜓𝐾

≲ ‖𝛼∇𝜉‖0,𝐾 |𝑟𝐾𝜓𝐾 |1,𝐾
+
(‖∇ ⋅ (𝜷𝜉) + 𝛾𝜉‖0,𝐾 + ‖𝑓 − 𝑓𝑘−1‖0,𝐾)‖𝑟𝐾𝜓𝐾‖0,𝐾

≲
(
ℎ−1𝐾 ‖𝛼∇𝜉‖0,𝐾 + ‖∇ ⋅ (𝜷𝜉) + 𝛾𝜉‖0,𝐾 + ‖𝑓 − 𝑓𝑘−1‖0,𝐾)‖𝑟𝐾‖0,𝐾 ,

which implies

‖𝑟𝐾‖0,𝐾 ≲ ℎ−1𝐾 ‖𝛼∇𝜉‖0,𝐾 + ‖∇ ⋅ (𝜷𝜉) + 𝛾𝜉‖0,𝐾 + ‖𝑓 − 𝑓𝑘−1‖0,𝐾 .
Now, the lemma is a direct consequence of the fact that

Δ𝜉 = 𝛼−1𝐾
(
𝑟𝐾 + 𝑓𝑘−1 − 𝑓 +∇ ⋅ (𝜷𝜉) + 𝛾𝜉

)
𝐾

and the triangle inequality. □

Theorem 5.4. Let 𝑢 ∈ 𝑉 1+𝑠(ℎ) ⋂𝐻1+𝜖(Ω) be the solution of (2.1) with 
boundary conditions (2.2), and 𝑢|𝐾 ∈ 𝐻1+𝑠𝐾 (𝐾) be the restriction on 
𝐾 ∈ ℎ. Let 𝑢ℎ be the solution of discrete problem (4.1). There exists a 
positive constant C, depending on the domain, the triangulation ℎ and the 
polynomial degree (but independent of mesh size ℎ and the coefficients of 
the problem), such that

⦀𝑢− 𝑢ℎ⦀𝐷𝐺 ≤ 𝐶
∑
𝐾∈ℎ

𝐶𝐾,𝛼,𝜌,𝛽ℎ
𝑠𝐾
𝐾
|𝛼1∕2∇𝑢|𝑠𝐾 ,𝐾 + 𝑜𝑠𝑐(𝑓 ), (5.4)

where
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𝐶𝐾,𝛼,𝛽,𝜌 = 1 +
ℎ
1∕2
𝐾

𝛼
1∕2
𝐾

(‖𝜷‖1∕20,∞,Ω + ℎ
1∕2
𝐾
‖𝜌‖1∕20,∞,Ω

)
+
ℎ𝐾
𝛼𝐾

(‖𝜷‖0,∞,Ω + ℎ𝐾‖𝜌‖0,∞,Ω

)
.

Proof. Let

𝐸 = 𝑢− 𝑃ℎ𝑢 and 𝐸ℎ = 𝑢ℎ − 𝑃ℎ𝑢.

By the triangle inequality and the standard approximation argument of 
𝑃ℎ, (5.1), (5.2) and (5.3), to show the validity of (5.4), we need to prove 
that

⦀𝐸ℎ⦀𝐷𝐺 ≤ 𝐶
∑
𝐾∈ℎ

𝐶𝐾,𝛼,𝜌,𝛽ℎ
𝑠𝐾
𝐾
|𝛼1∕2∇𝑢|𝑠𝐾 ,𝐾 + 𝑜𝑠𝑐(𝑓 ).

By Theorem 4.7 and the error equation, we have

𝑎0⦀𝐸ℎ⦀𝐷𝐺 ≤ 𝑎𝜃(𝐸ℎ, 𝑣ℎ)⦀𝑣ℎ⦀𝐷𝐺

=
𝑎𝜃(𝐸,𝑣ℎ)⦀𝑣ℎ⦀𝐷𝐺

.

Hence, it suffices to show that

𝑎𝑑,𝜃(𝐸,𝑣ℎ)⦀𝑣ℎ⦀𝐷𝐺

≤ 𝐶
∑
𝐾∈ℎ

𝐶𝐾,𝛼,𝜌,𝛽ℎ
𝑠𝐾
𝐾
|𝛼1∕2∇𝑢|𝑠𝐾 ,𝐾 + 𝑜𝑠𝑐(𝑓 ) (5.5)

and
𝑎𝑐(𝐸,𝑣ℎ)⦀𝑣ℎ⦀𝐷𝐺

≤ 𝐶
∑
𝐾∈ℎ

𝐶𝐾,𝛼,𝜌,𝛽ℎ
𝑠𝐾
𝐾
|𝛼1∕2∇𝑢|𝑠𝐾 ,𝐾 + 𝑜𝑠𝑐(𝑓 ). (5.6)

To this end, the definition of 𝑎𝑑,𝜃 gives that

𝑎𝑑,𝜃(𝐸,𝑣ℎ) = (𝛼∇ℎ𝐸,∇ℎ𝑣ℎ) + 𝜃
∑

𝑒∈𝐼∪𝐷 ∫𝑒
{𝛼∇𝑣ℎ ⋅ 𝒏𝑒}𝑤�𝐸�

−
∑

𝑒∈𝐼∪𝐷∫𝑒
{𝛼∇𝐸 ⋅ 𝒏𝑒}𝑤�𝑣ℎ�+

∑
𝑒∈𝐼∪𝐷 ∫

𝑒

𝛾
𝜃
ℎ−1𝑒 𝑊𝑒�𝐸��𝑣ℎ�

∶= 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4

It is clear that Lemma 4.1 and the Cauchy-Schwarz inequality imply

𝐼1 + 𝐼2 + 𝐼4 ≲ ⦀𝐸⦀𝑑⦀𝑣ℎ⦀𝑑 .
Using Lemma 5.2, Lemma 5.3, and the Cauchy-Schwarz inequality, we 
have

𝐼3 ≤ ∑
𝑒∈𝐼 ⋃𝐷

ℎ
−1∕2
𝑒 𝑊

1∕2
𝑒 ‖�𝑣ℎ�‖0,𝑒

×
∑

𝜔=+,−

(‖𝛼1∕2∇𝐸‖0,𝐾𝜔 + ℎ𝐾𝜔‖𝛼1∕2 △𝐸‖0,𝐾𝜔

)
≤ ‖𝑣ℎ‖𝑗(‖𝛼1∕2∇ℎ𝐸‖0,Ω +

∑
𝐾∈ℎ

ℎ𝐾‖𝛼1∕2𝐾
△𝐸‖0,𝐾)

≤ ⦀𝑣ℎ⦀𝑑(⦀𝐸⦀𝑑 + ∑
𝐾∈ℎ

ℎ𝐾√
𝛼𝐾
‖∇ ⋅ (𝜷𝐸) + 𝛾𝐸‖0,𝐾 + 𝑜𝑠𝑐(𝑓 )

)
.

Summing up all the terms gives that

𝑎𝑑,𝜃(𝐸,𝑣ℎ) ≲ ⦀𝑣ℎ⦀(⦀𝐸⦀𝑑 + ∑
𝐾∈ℎ

ℎ𝐾√
𝛼𝐾
‖∇ ⋅ (𝜷𝐸) + 𝛾𝐸‖0,𝐾 + 𝑜𝑠𝑐(𝑓 )

)
.

It follows from (2.5), (2.7), (5.1)-(5.3) and the fact that ℎ∕𝐿 < 1 that

‖∇ ⋅ (𝜷𝐸) + 𝛾𝐸‖0,𝐾 = ‖𝜌𝐸 +𝐸∇ ⋅ 𝜷∕2 + 𝜷 ⋅∇𝐸‖0,𝐾
≲ (‖𝜌‖0,∞,Ω + |𝜷|1,∞)‖𝐸‖0,𝐾 + ‖𝜷‖0,∞,Ω|𝐸|1,𝐾
≲ ℎ1+𝑠𝐾 ‖𝜌‖0,∞,Ω|𝑢|1+𝑠𝐾 ,𝐾 + ℎ𝑠𝐾 ‖𝜷‖0,∞,Ω|𝑢|1+𝑠𝐾 ,𝐾

and that

⦀𝐸⦀𝑑 ≲ ∑
𝐾∈

ℎ
𝑠𝐾
𝐾
|𝛼1∕2∇𝑢|𝑠𝐾 ,𝐾 ,
ℎ
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which implies (5.5).

Next we show the validity of (5.6). The definition of 𝑎𝑐 gives

𝑎𝑐(𝐸,𝑣ℎ) = (𝐸, −𝜷 ⋅∇ℎ𝑣ℎ + 𝛾𝑣ℎ) +
∑
𝑒∈𝐼∫𝑒

{𝛽𝑒𝐸}𝑢𝑝�𝑣ℎ�+
∑

𝑒∈Γ+∫𝑒
𝛽𝑒𝐸 𝑣ℎ.

Since 𝑃ℎ
(
𝜷 ⋅∇ℎ𝑣ℎ

)
∈ 𝑘

ℎ
, we have

∫
Ω

𝑃ℎ
(
𝜷 ⋅∇ℎ𝑣ℎ

)
𝐸 𝑑𝑥 = ∫

Ω

𝑃ℎ
(
𝜷 ⋅∇ℎ𝑣ℎ

)
(𝑢− 𝑃ℎ 𝑢)𝑑𝑥 = 0.

Together with (2.7), the inverse inequality, and (5.1)-(5.2), we have

∫
Ω

−𝜷 ⋅∇ℎ𝑣ℎ𝐸 = ∫
Ω

(𝑃ℎ𝜷 − 𝜷) ⋅∇ℎ𝑣ℎ𝐸

≲ ℎ|𝜷|1,∞,Ω‖∇ℎ𝑣ℎ‖0,Ω‖𝐸‖0,Ω
≲ ‖𝑏1∕20 𝑣ℎ‖0,Ω‖𝑏1∕20 𝐸‖0,Ω
≲ ⦀𝑣ℎ⦀𝑐 ∑

𝐾∈ℎ
ℎ
1+𝑠𝐾
𝐾

‖𝜷‖1∕20,∞,Ω|𝑢|1+𝑠𝐾 ,𝐾 .

Applying 𝛾 = 𝜌 − 1
2∇ ⋅ 𝜷, (2.6), (2.7), and (5.1)-(5.3) gives that

(𝐸, 𝛾𝑣ℎ) = ∫
Ω

(𝜌− 1
2
∇ ⋅ 𝜷)𝐸 𝑣ℎ 𝑑𝑥

≲ 𝑐𝜌‖𝐸‖0,Ω‖(𝜌+ 𝑏0)𝑣ℎ‖0,Ω +
𝑏0
𝑐𝛽
‖𝐸‖0,Ω‖𝑣ℎ‖0,Ω

≲ ⦀𝑣ℎ⦀𝑐 ∑
𝐾∈ℎ

(‖𝜌‖0,Ω + ‖𝜷‖0,∞,Ω
)1∕2

ℎ
1+𝑠𝐾
𝐾

|𝑢|1+𝑠𝐾 ,𝐾

and that∑
𝑒∈𝐼 ∫𝑒

{𝛽𝑒𝐸}𝑢𝑝�𝑣ℎ�+
∑

𝑒∈Γ+ ∫𝑒
𝛽𝑒𝐸𝑣ℎ

≲ ⦀𝑣ℎ⦀𝑐 ∑
𝐾∈ℎ

ℎ
1∕2+𝑠𝐾
𝐾

‖𝜷‖1∕20,∞,Ω|𝑢|1+𝑠𝐾 ,𝐾 .

Now, (5.6) is a direct consequence of the above three inequalities. This 
completes the proof of the theorem. □

6. A new discontinuous Galerkin method

In section 4, we stabilize the diffusion operator by adding the fol-

lowing equation:∑
𝑒∈𝐼∪𝐷∫𝑒

𝛾
𝜃
ℎ−1𝑒 𝑊𝑒�𝑢��𝑣�𝑑𝑠 =

∑
𝑒∈𝐷

𝛾
𝜃
ℎ−1𝑒 𝑊𝑒∫

𝑒

𝑔
𝐷
𝑣𝑑𝑠, ∀𝑣 ∈ 𝑉 1+𝜖(ℎ).

The order ℎ−1𝑒 may lead to the difficulty in the convergence analysis.

Considering this, for any 𝑣 ∈ 𝑉 1+𝜖(ℎ), denote the tangential deriva-

tive along edge 𝑒 by

𝛾𝑒(∇𝑣) =
𝜕𝑣

𝜕𝒕
.

And for any 𝑣 ∈ 𝑉 1+𝜖(ℎ), we add the following term to stabilize:∑
𝑒∈𝐼∪𝐷∫𝑒

𝛾
𝜃
ℎ𝑒𝑊𝑒�𝛾𝑒(∇𝑢)��𝛾𝑒(∇𝑣)�𝑑𝑠 =

∑
𝑒∈𝐷

𝛾
𝜃
ℎ𝑒𝑊𝑒 ∫

𝑒

𝛾𝑒(∇𝑔𝐷 )𝛾𝑒(∇𝑣)𝑑𝑠.

Now, define the new bilinear form for 𝑢, 𝑣 ∈ 𝑉 1+𝜖(ℎ) by

𝑎𝑑,𝜃(𝑢, 𝑣) = (𝛼∇ℎ𝑢,∇ℎ𝑣) +
∑

𝑒∈𝐼∪𝐷∫𝑒
𝛾
𝜃
ℎ𝑒𝑊𝑒�𝛾𝑒(∇𝑢)��𝛾𝑒(∇𝑣)�𝑑𝑠

+𝜃
∑

𝑒∈𝐼∪𝐷 ∫𝑒
{𝛼∇𝑣 ⋅ 𝒏𝑒}𝑤�𝑢�𝑑𝑠−

∑
𝑒∈𝐼∪𝐷∫𝑒

{𝛼∇𝑢 ⋅ 𝒏𝑒}𝑤�𝑣�𝑑𝑠

for 𝜃 ∈ {−1, 0, 1}. And define the new linear form for 𝑣 ∈ 𝑉 1+𝜖(ℎ) by
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𝑓
𝜃
(𝑣) = (𝑓, 𝑣) +

∑
𝑒∈𝐷

𝛾
𝜃
ℎ𝑒𝑊𝑒 ∫

𝑒

𝛾𝑒(∇𝑔𝐷 )𝛾𝑒(∇𝑣)𝑑𝑠+
∑
𝑒∈𝑁 ∫

𝑒

𝑔
𝑁
𝑣𝑑𝑠

+𝜃
∑
𝑒∈𝐷 ∫

𝑒

𝑔
𝐷
(𝑘∇𝑣 ⋅ 𝒏𝑒)𝑑𝑠−

∑
𝑒∈𝐷−

∫
𝑒

(𝜷 ⋅ 𝒏𝑒)𝑔𝐷 𝑣𝑑𝑠.

The new variational formulation is to find �̂� ∈ 𝑉 1+𝜖(ℎ) such that

𝑎𝜃(�̂�, 𝑣) ≡ 𝑎𝑑,𝜃(�̂�, 𝑣) + 𝑎𝑐 (�̂�, 𝑣) = 𝑓𝜃(𝑣), ∀𝑣 ∈ 𝑉 1+𝜖(ℎ).
To discretize the problem, modify the DG finite element space asso-

ciated with the triangulation ℎ as

̂ 𝑘
ℎ
= {𝑣 ∈𝐿2(Ω) ∶ 𝑣|𝐾 ∈ 𝑃𝑘(𝐾), ∀𝐾 ∈ ℎ and �𝑣�𝑒 = 0, ∀𝑒 ∈ 𝐼},

where 𝑣𝑒 =
1|𝑒| ∫𝑒 𝑣 𝑑𝑠 is the average of 𝑣 on 𝑒.

The new DG finite element method is to find �̂�ℎ ∈ ̂ 𝑘
ℎ

such that

𝑎𝜃(�̂�ℎ, 𝑣) = 𝑓𝜃(𝑣), ∀ 𝑣 ∈ ̂ 𝑘
ℎ
.

For any 𝑣 ∈ ̂ 𝑘
ℎ

, define the norm for the modified DG space by

⦀𝑣⦀2𝑑𝑔 = ‖𝛼1∕2∇ℎ𝑣‖20,Ω + ‖𝑣‖2𝑑𝑗 + ⦀𝑣⦀2𝑐 ,
where

‖𝑣‖2𝑑𝑗 ∶= ∑
𝑒∈𝐼∪𝐷

ℎ𝑒𝑊𝑒‖�𝛾𝑒(∇𝑣)�‖20,𝑒.
The following lemma implies the equivalence between ‖�𝑢�‖ and 

ℎ𝑒‖�𝛾𝑒(∇𝑢)�‖ in the DG finite element space.

Lemma 6.1. For any 𝑣 ∈ ̂ 𝑘
ℎ

and any 𝑒 ∈ 𝐼 , ‖�𝑣�‖0,𝑒 and ℎ𝑒‖�𝛾𝑒(∇𝑢)�‖
are equivalent, i.e., there exist positive constants 𝑐𝑚 and 𝑐𝑀 such that

𝑐𝑚‖�𝑣�‖0,𝑒 ≤ ℎ𝑒‖�𝛾𝑒(∇𝑢)�‖ ≤ 𝑐𝑀‖�𝑣�‖0,𝑒.
Proof. By a scaling argument, it suffices to prove that ‖�𝛾𝑒(∇𝑣)�‖ = 0
implies that 𝑣 ≡ 0 on 𝑒. It follows that

�𝛾𝑒(∇𝑣�𝑒 = �
𝜕𝑣

𝜕𝒕𝑒
�𝑒 =

𝜕

𝜕𝒕𝑒
�𝑣�𝑒 = 0.

Hence, �𝑣�𝑒 is a constant, which implies that

�𝑣�𝑒 = �𝑣�𝑒 =
1|𝑒| ∫

𝑒

�𝑣�𝑒 𝑑𝑠 = �𝑣�𝑒 = 0.

This completes the proof of the lemma. □

Corollary 6.2. For any 𝑣 ∈ ̂ 𝑘
ℎ

, 𝑎𝑑,𝜃(𝑣, 𝑣) and 𝑎𝑑,𝜃(𝑣, 𝑣) are equivalent.

Data availability
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