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Abstract. In this paper, we propose a structure-guided Gauss-Newton (SgGN) method for solving least squares4
problems using a shallow ReLU neural network. The method effectively takes advantage of both the least squares5
structure and the neural network structure of the objective function. By categorizing the weights and biases of the6
hidden and output layers of the network as nonlinear and linear parameters, respectively, the method iterates back7
and forth between the nonlinear and linear parameters. The nonlinear parameters are updated by a damped Gauss-8
Newton method and the linear ones are updated by a linear solver. Moreover, at the Gauss-Newton step, a special9
form of the Gauss-Newton matrix is derived for the shallow ReLU neural network and is used for efficient iterations.10
It is shown that the corresponding mass and Gauss-Newton matrices in the respective linear and nonlinear steps11
are symmetric and positive definite under reasonable assumptions. Thus, the SgGN method naturally produces an12
effective search direction without the need of additional techniques like shifting in the Levenberg-Marquardt method13
to achieve invertibility of the Gauss-Newton matrix. The convergence and accuracy of the method are demonstrated14
numerically for several challenging function approximation problems, especially those with discontinuities or sharp15
transition layers that pose significant challenges for commonly used training algorithms in machine learning.16
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1. Introduction. When a neural network (NN) is used as a model for least-squares data20

fitting, the procedure for determining the values of the NN parameters is a high-dimensional non-21

convex optimization problem. This optimization problem tends to be computationally intensive22

and complicated. Popular and widely used optimization algorithms (iterative solvers) in machine23

learning are generally first-order gradient-based methods (see, e.g., survey papers [3, 11, 24]) because24

of their moderate computational cost per iteration and their ease for implementation. However, their25

efficiency depends heavily on hyper-parameters, the learning rate is cumbersome to tune, and the26

methods usually converge slowly. Moreover, they exhibit the so-called plateau phenomenon in many27

training tasks (see, e.g., [1]).28

Recently, there has been a lot of interest in using second-order methods such as BFGS [4, 10,29

12, 22] to solve optimization problems that arise from NN-based machine learning applications. For30

attractive features and recent progress in overcoming the challenges of second-order methods, see31

survey papers [3, 11, 24]. The Gauss-Newton (GN) method is a popular and widely used optimization32

technique for solving general least-squares problems, as described in [9, 21]. Originating from the33

classical Newton’s method, this approach makes use of the least squares structure and approximates34

the Hessian matrix by its principal part. In recent years, the GN method has found practical appli-35

cations in the realm of machine learning. The Kronecker-factored approximate curvature (KFAC)36

method [17] enhances the optimization process of neural networks by leveraging the Kronecker-37

factored approximation of the curvature matrix to mitigate computational challenges associated38

with second-order optimization techniques. Building upon this foundation, the GN method was39

advanced in KFRA [2] for deep learning with various practical aspects addressed, such as the com-40

putational efficiency, the recursion relationship between layers, and step-size choices. The authors41

∗Submitted to the editors DATE.
Funding: This work of Zhiqiang Cai and Min Liu was supported in part by the National Science Foundation

under grant DMS-2110571. The work of Jianlin Xia was supported in part by the National Science Foundation under
grant DMS-2111007.

†Department of Mathematics, Purdue University, West Lafayette, IN (caiz@purdue.edu, ding158@purdue.edu,,
liu1957@purdue.edu, xiaj@purdue.edu).

‡School of Mechanical Engineering, Purdue University, West Lafayette, IN (liu66@purdue.edu)

1

This manuscript is for review purposes only.

mailto:caiz@purdue.edu
mailto:ding158@purdue.edu
mailto:liu1957@purdue.edu
mailto:xiaj@purdue.edu
mailto:liu66@purdue.edu


demonstrated the potential of the GN method to provide a more reliable and efficient alternative42

to conventional first-order optimization techniques for training deep neural networks.43

The purpose of this paper is to design and investigate a novel structure-guided Gauss-Newton44

(SgGN) iterative method for solving least squares optimization problems using shallow ReLU NN.45

The method utilizes both the least squares structure and the ReLU NN structure. Following the46

study of the set of approximating functions generated by shallow ReLU NN and the establishment47

of the linearly independence of neurons, we set up a least-squares optimization problem and the48

corresponding algebraic systems for the stationary points. To quickly and accurately solve the49

optimization problem, we categorize the NN parameters into linear parameters (the weights c and50

bias α of the output layer) and nonlinear parameters (the weights w and bias b of the hidden layer),51

denoted by (c,α) and r = (b,wT )T , respectively. Such a classification leads to a natural block52

iterative process for solving the optimization problem by iterating back and forth between (c,α)53

and r. (c,α) and r are updated by a linear solver and a damped Gauss-Newton nonlinear iterative54

solver, respectively.55

At each SgGN iteration, the linear solver involves a mass matrix A (r) defined in (3.4) below.56

The nonlinear Gauss-Newton iterative solver is based on the following newly derived form of a57

Gauss-Newton matrix for shallow ReLU NN:58 (
D(c)⊗ Id+1

)
H(r)

(
D(c)⊗ Id+1

)
,59

where d is the input data dimension, Id+1 is the order-(d + 1) identity matrix, D(c) is a diagonal60

matrix consisting of the linear parameter c, and H(r) depends on r and is referred as the layer61

Gauss-Newton matrix. A specific form of H(r) is given in (4.2). Both A (r) and H(r) are functions62

of the nonlinear parameter r and are independent of the linear parameters (c,α).63

Theoretically, we show that both A (r) and H(r) are symmetric and positive definite under the64

condition that all neurons are linearly independent (see Lemmas 3.1 and 4.2). Hence, a significant65

distinction between the SgGN method and the usual Gauss-Newton method is that there is no need66

to use additional techniques like shifting in the Levenberg-Marquardt method [14, 16] to achieve67

invertibility of the Gauss-Newton matrix.68

The SgGN method provides an innovative way to effectively take advantage of both the qua-69

dratic structure and the NN structure in least-squares optimization problems arising from shallow70

ReLU NN approximations. The natural positive definiteness of A (r) and H(r) means many effi-71

cient direct/iterative linear solvers may be used for updating linear parameters (see (4.4)) and for72

computing search directions of nonlinear parameters (see (4.5)).73

The SgGN method works for both continuous and discrete least-squares approximations. Its74

convergence and accuracy are demonstrated numerically for several one and two dimensional prob-75

lems, especially those with discontinuities or sharp transition layers that pose significant challenges76

for commonly used training algorithms in machine learning such as BFGS [4, 10, 12, 22] and Adam77

[13]. The loss curves for all test problems clearly show that the SgGN method significantly outper-78

forms those methods in terms of the convergence and accuracy. This conclusion is further enhanced79

by examining the ability of the methods in effectively moving the breaking hyper-planes (points for80

one dimension and lines for two dimensions). The breaking hyper-planes are determined by the non-81

linear parameters (weights and biases of the hidden layer). A data fitting application is also tested82

to show that the SgGN method can be naturally extended to discrete least-squares optimization,83

which makes it useful for many data science applications.84

The paper is organized as follows. Section 2 introduces the set of approximating functions85

generated by shallow ReLU neural networks and establishes linear independence of neurons. The86

least-squares optimization problem and the corresponding nonlinear algebraic system for stationary87

points are described in Section 3. In Section 4, the structure of the Gauss-Newton matrix for the88

nonlinear parameters is derived and the resulting SgGN method is proposed. Section 5 presents the89

SgGN method for discrete least-squares optimization. Numerical results are given in Section 6 for90
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various function approximations and data science applications, following by some conclusions and91

discussions in Section 7.92

2. Shallow ReLU Neural Network. This section describes shallow ReLU NN as a set of93

continuous piece-wise linear functions from Rd to R and discusses some analytical and geomet-94

rical properties of the network. Here the output dimension is restricted to one for simplicity of95

presentation since the extension of materials covered by the paper to higher output dimensions is96

straightforward.97

ReLU refers to the rectified linear activation function defined by98

(2.1) σ(t) = max{0, t} =

{
t, t > 0,

0, t ≤ 0.
99

Its first- and second-order derivatives are the Heaviside (unit) step and the Dirac delta functions100

given by101

(2.2) H(t) = σ′(t) =

{
1, t > 0,

0, t < 0
and δ(t) = σ′′(t) = H ′(t) =

{
∞, t = 0,

0, t ̸= 0,
102

respectively.103

Let Ω be a connected, bounded open domain in Rd. For any x = (x1, . . . , xd)
T ∈ Ω ⊂ Rd,104

by appending 1 to the inhomogeneous (x1, . . . , xd)-coordinates, we have the following homogeneous105

coordinates:106

yT =
(
1,xT

)
= (1, x1, . . . , xd).107

A standard shallow ReLU neural network with n neurons may be viewed as the set of continuous108

piece-wise linear functions from Ω ⊂ Rd to R as follows:109

(2.3)

M̂n(Ω) =

{
n∑

i=1

ciσ(ri · y) + α0 : x ∈ Ω, ci ∈ R, rTi = (bi,w
T
i ), bi ∈ R, wi ∈ Sd−1, α0 ∈ R

}
,110

where c = (c1, . . . , cn)
T and α0 are the respective output weight and bias, ri = (bi,w

T
i ) ∈ Rd+1 is111

for the parameters of the ith neuron with bi and wi the respective bias and weight of the neuron,112

and Sd−1 is the unit sphere in Rd. The constraint that the weight of each neuron belongs to the113

unit sphere is a consequence of normalization for the ReLU activation function (see [15]) and may114

narrow down the solution set of a given approximating problem. For convenience, denote115

(2.4) rT =
(
rT1 , . . . , r

T
n

)
=
(
b1,w

T
1 , . . . , bn,w

T
n

)
.116

Notice that the ReLU activation function σ(t) is a continuous piece-wise linear function with117

one breaking point at t = 0. Hence each ridge function σ(ri y) = σ(wi · x + bi) is a continuous118

piece-wise linear function with a breaking hyper-plane (see [5, 15]):119

(2.5) Pi(ri) =
{
x ∈ Ω ⊂ Rd : wi · x+ bi = 0

}
.120

For the set M̂n(Ω) of neural network functions defined in (2.3) with fixed weights and biases r,121

there are n breaking hyper-planes {Pi(ri)}ni=1. Together with the boundary of the domain Ω, these122

hyper-planes form a physical partition, denoted by K(r), of Ω [8, 15]. This partition K(r) consists123

of irregular, polygonal sub-domains of Ω (see Figures 6.6(e) and 6.6(i) below for some examples).124

Each function in M̂n(Ω) is then a continuous piece-wise linear function with respect to K(r).125
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Below, we discuss linear independence of some ridge functions for fixed parameter r in (2.4).126

To this end, let σ0(x) = 1 and for i = 1, . . . , n, let127

σi(x) = σ(ri · y) and Hi(x) = H(ri · y),128

where σ and H are the ReLU activation and Heaviside step functions given in (2.1) and (2.2),129

respectively. It is already known from Lemma 2.1 in [15] that the set of functions {σi(x)}ni=0 is130

linearly independent if the hyper-planes {Pi(ri)}ni=1 are distinct. We further have the following131

result.132

Lemma 2.1. For fixed r in (2.4), assume that the hyper-planes {Pi(ri)}ni=1 are distinct. Then133

the set of functions {Hi(x), x1Hi(x), . . . , xdHi(x)}ni=1 is linearly independent.134

Proof. For each i = 1, . . . , n, the linear independence of {1, x1, . . . , xd} implies that the set of135

functions136 {
Hi(x), x1Hi(x), . . . , xdHi(x)

}
= Hi(x){1, x1, . . . , xd}137

is linearly independent. Now, the linear independence of
{
Hi(x), x1Hi(x), . . . , xdHi(x)

}n
i=1

follows138

from the assumption on the distinct hyper-planes.139

We conclude this section in discussing a possible restriction on the biases of all neurons in140

M̂n(Ω). For each ri, there are two ridge functions:141

σ(wi · x+ bi) and σ(−wi · x− bi).142

They share the same breaking hyper-plane Pi(ri) and are linearly independent. Nevertheless, the143

following identity is well known:144

σ(wi · x+ bi)− σ(−wi · x− bi) = wi · x+ bi145

for all x ∈ Rd. This identity implies that clearly only one of the two ridge functions is needed in146

M̂n(Ω), if M̂n(Ω) contains all linear functions147

P1 = span {ϕi(x)}di=0 with ϕ0(x) = 1, ϕi(x) = xi.148

Hence, we may assume that bi ∈ R+
0 = [0,+∞) for all i to further narrow down the solution set.149

In general, M̂n(Ω) does not contain P1. Nevertheless, this may be resolved by either expanding150

M̂n(Ω) to contain P1 or fixing the weights and biases of d neurons in M̂n(Ω) such that the cor-151

responding d hyper-planes are linearly independent and do not intersect with the domain Ω. For152

convenience, in this paper we choose the former. That is, we use the following set of approximating153

functions:154

Mn(Ω) =

{
n∑

i=1

ciσi(x) +

d∑
i=0

αiϕi(x) : x ∈ Ω, ci ∈ R, αi ∈ R, bi ∈ R+
0 , wi ∈ Sd−1

}
.155

The SgGN method developed in this paper can be applied to the standard shallow ReLU neural156

network M̂n(Ω) directly without enforcing bi ∈ R+
0 .157

3. Continuous Least-Squares Optimization Problems. Given a function u(x) defined on158

Ω, the best least-squares approximation to u inMn(Ω) is to find un(x) ∈Mn(Ω) such that159

(3.1) Jµ(un) = min
v∈Mn(Ω)

Jµ(v) with Jµ(v) =
1

2
∥v − u∥2µ160
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where ∥ · ∥µ is the weighted L2(Ω) norm given by161

∥f∥µ =

(∫
Ω

µ(x)f2(x) dx

)1/2

.162

The corresponding weighted L2(Ω) inner product is denoted by ⟨·, ·⟩µ.163

Below, we use the optimality condition to derive the corresponding systems of algebraic equa-164

tions. To this end, let165

un(x) =

n∑
i=1

ciσi(x) +

d∑
i=0

αiϕi(x)166

be a solution of (3.1). Then the linear parameter167

ĉ = (c,α)T = (c1, . . . , cn, α0, . . . , αd)
T

168

and the nonlinear parameter r defined in (2.4) are critical points of the loss function Jµ(un). That169

is, ĉ and r satisfy the following systems of algebraic equations170

(3.2) ∇ĉJµ (un) = 0 and ∇rJµ (un) = 0,171

where ∇ĉ and ∇r denote the gradients with respect to the respective parameters ĉ and r.172

In the following, we derive specific forms of the algebraic equations in (3.2). Notice that173

∇ĉun(x) = (σ1, . . . , σn, ϕ0, . . . , ϕd)
T .174

Let175 
aij(r) = ⟨σj , σi⟩ , fi(r) = ⟨u, σi⟩ , for i, j = 1, . . . , n,

bij = ⟨ϕj , ϕi⟩ , gi = ⟨u, ϕi⟩ , for i, j = 0, 1, . . . , d,

cij(r) = ⟨ϕj , σi⟩ , for i = 1, . . . , n, j = 0, 1, . . . , d,

176

and let177

A11(r) =
[
aij(r)

]
n×n

, A12(r) =
[
cij(r)

]
n×d

, A22 =
[
bij
]
d×d

, f1(r) =
[
fi(r)

]
n×1

, f2 =
[
gi
]
d×1

.178

It is easy to see that the first equation in (3.2) implies179

(3.3) A(r) ĉ = f(r),180

where A(r) and f(r) are the mass matrix and the right-hand side vector given by181

(3.4) A(r) =

[
A11(r) A12(r)

AT
12(r) A22

]
and f(r) =

[
f1(r)

f2

]
,182

respectively.183

Lemma 3.1. Under the assumption of Lemma 2.1, additionally assume that for all i = 1, . . . , n184

(3.5) bi ≥ 0 and Pi(ri) ∩ Ω ̸= ∅,185

where Pi(ri) is the breaking hyper-plane defined in (2.5). Then the mass matrix A(r) is symmetric186

and positive definite.187
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Proof. Obviously, A(r) is symmetric. For any ĉ = (cT ,αT )T ∈ Rn+d+1, it is easy to see that188

ĉTA(r) ĉ =

∥∥∥∥∥
n∑

i=1

ciσi(x) +

d∑
i=0

αiϕi(x)

∥∥∥∥∥
2

µ

.189

Hence, in order to show the positive definiteness of A(r), it suffices to prove that190

{σi(x)}ni=1

⋃
{ϕi(x)}di=0191

is linearly independent. This can be done through proof by induction. To do so, first notice192

that the second assumption in (3.5) implies that σi(x) vanishes in a non-empty subdomain Ωi193

of Ω. The linear independence of {σ1(x)}
⋃
{ϕi(x)}di=0 is a direct consequence of the fact that194

σ1(x)|Ω1
≡ 0 and the linear independence of {ϕi(x)}di=0 in Ω\Ω1. Similarly, the linear independence195

of {σi(x)}ki=1

⋃
{ϕi(x)}di=0 follows from the fact that σk(x)|Ωk

≡ 0 and the assumption on the linear196

independence of {σi(x)}k−1
i=1

⋃
{ϕi(x)}di=0. This completes the proof of the lemma.197

Next, we calculate∇rJµ (un). To simplify expression of formulas, we use the Kronecker product,198

denoted by ⊗, of two matrices. Let199

H(x) =
(
H1 (x) , . . . ,Hn (x)

)T
.200

For i, j = 1, . . . , n, the fact that201

∇riσj (x) =

{
0, i ̸= j,

Hj(x)y, i = j
202

implies203

(3.6) ∇run(x) = (D(c)⊗ Id+1) (H(x)⊗ y) ,204

where D(c) = diag(c1, . . . , cn) is the diagonal matrix with the ith-diagonal element ci.205

Let206

(3.7) G(c,α, r) =

∫
Ω

µ(x)
(
un(x)− u(x)

)
H(x)⊗ y dx.207

It is easy to check that the second equation in (3.2) becomes208

(3.8) ∇rJµ (un) = (D(c)⊗ Id+1)G(c,α, r) = 0.209

(3.3) and (3.8) define two algebraic systems that may be used to solve for the linear parameter210

c and the nonlinear parameter r, respectively. For convenience, (3.3) and (3.8) are referred to as211

the linear and nonlinear problems, respectively.212

4. A structure-guided Gauss-Newton (SgGN) method. In this section, we introduce213

our SgGN method for solving the minimization problem in (3.1), guided by both the least squares214

structure and the ReLU NN structure. The method utilizes a block structure of the systems of215

algebraic equations given in (3.3) and (3.8) and iterates back and forth between the linear parameter216

c by solving (3.3) and the nonlinear parameter r by using the Gauss-Newton method.217

To efficiently apply the Gauss-Newton method, below we derive a special “Gauss-Newton”218

matrix by making use of the neural network structure. To this end, let δi(x) = δ (ri · y) for219

6
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i = 1, . . . , n, where δ(t) is the Dirac delta function defined in (2.2). Denote the n × n diagonal220

matrix with the ith-diagonal element δi(x) by221

Λ(x) = diag(δ1(x), . . . , δn(x)).222

For i, j = 1, . . . , n, it is easy to check that223

∇riHj (x) =

{
0, i ̸= j,

δj(x)y, i = j.
224

This implies225

(4.1) ∇rH
T (x) = Λ(x)⊗ y.226

Now we introduce the following n(d+ 1)× n(d+ 1) matrix:227

(4.2) H(r) =
∫
Ω

µ
[
HHT

]
⊗
[
yyT

]
dx,228

where we write µ(x) as µ and H(x) as H for the ease of notation. Lemma 4.1 below shows that229

H(r) is the principal part of the Gauss-Newton matrix and is referred as the layer Gauss-Newton230

matrix in this paper.231

Lemma 4.1. The Hessian matrix has the form of232

(4.3) ∇r

(
∇rJp (un)

)T
=
(
D(c)⊗ Id+1

)
H(r)

(
D(c)⊗ Id+1

)
+ Ĥ(c, r)

(
D(c)⊗ Id+1

)
,233

where Ĥ(c, r) is given by234

Ĥ(c, r) =
∫
Ω

µ (un(x)− u(x)) Λ(x)⊗
(
yyT

)
dx.235

Proof. It follows from (3.8), the product rule, (3.6), and (4.1) that236

∇rG(c,α, r) =

∫
Ω

µ
(
∇run

)
(H⊗ y)

T
dx+

∫
Ω

µ (un − u)
(
∇rH

T
)
⊗ yT dx237

= (D(c)⊗ Id+1)

∫
Ω

µ
(
H⊗ y

)(
H⊗ y

)T
dx+

∫
Ω

µ (un − u) Λ(x)⊗
(
yyT

)
dx,238

which, together with (3.8) and the transpose rule of the Kronecker product, implies (4.3). This239

completes the proof of the lemma.240

Lemma 4.2. Under the assumption of Lemma 2.1, the Gauss-Newton matrix H(r) is symmetric241

and positive definite.242

Proof. Clearly, H(r) is symmetric. For any vT = (βT
1 , . . . ,β

T
n ) ∈ Rn(d+1) with βi ∈ Rd+1, let243

v(x) =

n∑
i=1

(
βT
i y
)
Hi(x).244

It is easy to check that245

vTH(r)v = vT

(∫
Ω

µ(x)
(
H⊗ y

)(
H⊗ y

)T
dx

)
v = ⟨v, v⟩µ ≥ 0,246

which, together with Lemma 2.1, implies that H(r) is positive definite. This completes the proof of247

the lemma.248
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With the Gauss-Newton matrix H(r) defined in (4.2), Lemma 4.1, and Lemma 4.2, we are ready249

to describe one step of the SgGN method. Given the previous iterate
(
ĉ(k), r(k)

)
=
(
c(k),α(k), r(k)

)
,250

compute the current iterate
(
ĉ(k+1), r(k+1)

)
=
(
c(k+1),α(k+1), r(k+1)

)
as follows.251

(i) Compute the linear parameter ĉ(k+1) =
(
c(k+1),α(k+1)

)
by solving the system of linear equa-252

tions253

(4.4) A
(
r(k)

)
ĉ(k+1) = f

(
r(k)

)
,254

using either a direct or iterative solver.255

(ii) In the case that every entry of c(k+1) is nonzero, compute the search direction256

p(k+1) =
(
D−1

(
c(k+1)

)
⊗ Id+1

)
s(k+1),257

where s(k) is the solution of the Gauss-Newton system258

(4.5) H
(
r(k)

)
s(k+1) = −G

(
c(k+1),α(k+1), r(k)

)
.259

(iii) In the case that c(k+1) has some entries with magnitudes less than a certain small threshold,260

the search direction p(k+1) is obtained in a similar fashion as in (ii) by updating the entries of261

p(k) that corresponds to the rest of entries of c(k+1). The biases corresponding to those small262

entries will be assigned randomly.263

(iv) Compute the nonlinear parameter264

r(k+1) = r(k) + γk+1p
(k+1),265

where the damping parameter γk+1 is the solution of a one-dimensional optimization problem266

γk+1 = argmin
γ∈R+

0

Jµ
(
un

(
·; c(k+1), r(k) + γp(k+1)

))
.267

See Algorithm 4.1 for a pseudocode of the SgGN method.268

The SgGN method needs the algebraic solutions of multiple linear systems in (4.4) and (4.5)269

during the iterations. Since the focus of this work is on investigating the SgGN method for shallow270

ReLU networks, here we just briefly mention some numerical issues considered in the method and271

leave the details to a forthcoming paper [7]. The linear systems may be solved with direct or iterative272

solvers. If r(k) satisfies the assumption in Lemma 2.1, both the matrices A
(
r(k)

)
and H

(
r(k)

)
are273

symmetric and positive definite (see Lemmas 3.1 and 4.2). Nevertheless, both of them could be274

nearly singular in some applications, such as when the underlying target function has sharp layers.275

This is especially the case when the SgGN iterations start to converge so that some basis functions276

get close to each other. (A rigorous way to characterize how close they are will be given in [7].) In277

this work, we use direct solvers for the purpose of verifying the convergence of the SgGN algorithm.278

5. SgGN for Discrete Least-Squares Optimization Problems. We then show how the279

SgGN method can be extended to discrete least-squares optimization problems. For a given data280

set
{(

xi, ui
)}m

i=1
with xi ∈ Ω and ui ∈ R and a given distribution function 0 ≤ µ(x) ≤ 1, consider281

the following discrete least-squares minimization problem: finding un(x) ∈ M̂n(Ω) such that282

(5.1) Jm,µ(un) = min
v∈M̂n(Ω)

Jm,µ(v),283

where Jm,µ(v) is the weighted discrete least-squares loss function given by284

Jm,µ(v) =
1

2

m∑
i=1

µ(xi)
(
v(xi)− ui

)2
=

1

2
∥v − u∥2m,µ.285
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Algorithm 4.1 A structure-guided Gauss-Newton (SgGN) method for (3.1)

Input: network parameters r = (r1, . . . , rn), data set {
(
xi, ui

)
}Ni=1, density function µ(x)

Output: network parameters c, r
Initialize r(0) in (2.4)
for k = 0, 1, . . . do
▷ Linear parameter c
Form A(r(k)), f(r(k)) in (3.4).
c(k+1) ← A−1(r(k))f(r(k))
▷ Nonlinear parameter r
Form G(c(k+1), r(k)), H(r(k)) in Equations (3.7) and (4.2)
s(k) ← −H−1

(
r(k)

)
G
(
c(k+1), r(k)

)
p(k) ←

(
D−1

(
c(k+1)

)
⊗ Id+1

)
s(k)

γk+1 ← argmin
γ∈R+

0

Jµ
(
un

(
·; c(k+1), r(k) + αp(k)

))
r(k+1) ← r(k) + γk+1p

(k)

if a desired loss or a specified number of iterations is reached then
Return c(k+1), r(k+1)

end if
end for

286

Here, ∥ · ∥m,µ is the weighted discrete L2(Ω) norm given by287

∥f∥m,µ =

(
m∑
i=1

µ(xi)f2(xi)

) 1
2

,288

and the corresponding weighted discrete L2(Ω) inner product is denoted by ⟨·, ·⟩m,µ.289

Problem (5.1) may be regarded as a discretization of (3.1) using a numerical integration of290

Monte-Carlo type. Hence, the SgGN method proposed in the previous section can be applied291

directly for iteratively solving the discrete least-squares minimization problem in (5.1) by simply292

replacing integrals by summations. For the reader’s convenience, we describe the corresponding293

components of the SgGN method.294

To this end, let295

un(x) =

n∑
i=1

ciσi(x) + α0 =

n∑
i=1

ciσ(wix+ bi) + α0296

be a solution of (5.1), then297

ĉ = (c1, . . . , cn, α0)
T and rT =

(
rT1 , . . . , r

T
n

)
=
(
b1,w

T
1 , . . . , bn,w

T
n

)
298

are the linear and nonlinear parameters of un(x), respectively. The blocks of A(r) and f(r) in (3.4)299

are given by300

A11(r) =
[
aij(r)

]
n×n

, A12(r) =
[
bi(r)

]
n×1

, A22 = ⟨1, 1⟩m,µ , f1(r) =
[
fi(r)

]
n×1

, f2 = ⟨u, 1⟩m,µ ,301

where entries of the block matrices are defined by302 {
aij(r) = ⟨σj , σi⟩m,µ , fi(r) = ⟨u, σi⟩m,µ , for i, j = 1, . . . , n,

bi(r) = ⟨σi, 1⟩m,µ , for i = 1, . . . , n,
303
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respectively. The gradient vector of Jm,µ(un) with respect to r is304

G(c,α, r) =

m∑
i=1

µ(xi)
(
un(x

i)− u(xi)
)
H(xi)⊗ yi,305

and the layer Gauss-Newton matrix is306

H(r) =
m∑
i=1

µ(xi)
(
H(xi)HT (xi)

)
⊗
(
yi(yi)T

)
.307

The damping parameter γk+1 is the solution of a one-dimensional optimization problem308

γk+1 = argmin
γ∈R+

0

Jm,µ

(
un

(
·; c(k+1), r(k) + γp(k+1)

))
.309

6. Numerical Experiments. In this section, a series of numerical experiments is conducted310

to test the effectiveness and accuracy of the proposed SgGN algorithm. We also compare it with311

several existing optimization algorithms commonly used for neural networks: Adam [13], BFGS312

[4, 10, 12, 22], and the Gauss-Newton-based KFRA method introduced in [2] which is considered313

more applicable than the original Gauss-Newton-based KFAC method [17].314

Our test problems encompass various types of target functions, including step functions in one315

and two dimensions, a delta-like function in 1D, and a continuous piece-wise linear function in 2D.316

These functions are well-suited for accurate approximation using shallow neural networks. However,317

they pose significant challenges for optimization algorithms due to the presence of discontinuities318

or sharp transition layers. As indicated in [5, 15], the nonlinear parameters ri = (bi,w
T
i )

T ∈ Rd+1319

correspond to the breaking points/lines of the neurons which form a physical partition of the domain.320

Therefore, the efficiency of an optimization algorithm can be measured as the efficiency of moving321

those breaking points/lines from a uniform distribution to the nearly “optimal” locations according322

to the underlying target function.323

In the comparison study, we used BFGS as a baseline. For each test, BFGS was first repeated324

30 times, and we report the median loss and the corresponding approximation result. We then325

run the other two methods, KFAC and our SgGN, using the same number of iterations. For the326

first-order Adam optimizer, we run all test problems with a relatively larger number of iterations327

until the corresponding loss functions plateau.328

It is important to note that different methods may have varying computation complexities329

per iteration. For instance, computational cost of BFGS [20] and the KFRA [2] is O(n2) per330

iteration, while cost of Adam is only O(n). Our SgGN involves solutions of two dense linear331

system with coefficient matrices A(r(k)) and H(r(k)), respectively, as in Algorithm 4.1. These332

matrices are typically very ill conditioned for the test problems considered here. In our current333

implementation, truncated SVDs are used for the solution and its cost is O(rn2) with r depending334

on the accuracy. This suffices our purpose of comparing the convergence of the SgGN with the other335

methods. Although we use the number of iterations as one of the reference metrics for the efficiency336

performance of the optimization, our major focus for comparison in this study is the quality of the337

solution. As shown for the test problems, the SgGN can often converge to much more accurate338

approximation than the other methods.339

The detailed parameter setting for each method is listed in Table 6.1. All the methods start340

with the same initial as listed in the Initialization section in Table 6.1. The integration of the loss341

function Jµ(un) is computed by the composite mid-point rule over a uniform partition with the342

mesh size h = 0.01.343

6.1. One-dimensional piece-wise constant function. The first test problem is a one-344

dimensional piece-wise constant function defined in the interval [0, 10] with ten pieces from a skewed345
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Table 6.1: List of parameters used in the methods, where the parameters for BFGS and Adam are
referred to the MATLAB deep learning toolbox [18].

BFGS
net.trainParam.min grad minimum performance gradient with value 0
net.trainParam.max fail maximum validation failures with value 104

net.trainParam.epochs maximum number of epochs to train with value 104

KFRA

γ
A damping parameter for the approximated Gauss-Newton
matrix induced by the full Gauss-Newton

Adam
InitialLearnRate initial learning rate α1

DropRateFactor multiplicative factor αf by which the learning rate drops

DropPeriod
number of epochs that passes between adjustments to
the learning rate, denoted by T

Initialization
Linear coefficient c initialized by a narrow normal distribution N (0, 0.01)

nonlinear parameter ri the corresponding breaking hyper-planes uniformly partition
the domain

distribution (see Figure 6.1(a)). We use these skewed pieces to test whether an optimizer can346

move the uniformly initialized breaking points to catch those discontinuities in a target function.347

Theoretically, 20 neurons are enough to approximate a ten-piece step function with a given accuracy348

ϵ > 0 [5, 6]. Due to the uncertainty of solving a non-convex optimization problem, 30 neurons are349

used in the test. For Adam method, we adjusted the learning rate for the best performance and the350

reported results are obtained using α1 = 0.1, αf = 0.5, and T = 1000. For the KFRA, γ = 0.01.351

(a) Target function u and initial breaking
points

(b) Loss curves of the optimization methods

Fig. 6.1: One-dimensional piece-wise constant function approximation: target function, initial break-
ing points, and optimization loss curves.

The loss decay curves are depicted in Figure 6.1(b). While the loss curve for SgGN continues352

to decline even after 200 iterations, the curves for the other three methods decay slowly, reaching353

values close to their final training loss. Table 6.2 compares the least squares loss values of the354
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Table 6.2: Comparison for one-dimensional piece-wise constant function.

Method SgGN BFGS KFRA Adam

Iteration 9 825 207 825 825 10, 000
Jm,µ 8.76E-4 6.56E-9 4.03E-3 2.65E-3 1.61E-3 8.14E-3

(a) SgGN un (b) BFGS un

(c) KFRA un (d) Adam un

Fig. 6.2: One-dimensional piece-wise constant function approximation results.

four methods. Notably, SgGN achieves a loss value of magnitude 10−9, significantly lower than the355

10−3 magnitude obtained by the other methods. Further insight into these loss comparisons can356

be derived from the approximation results shown in Figure 6.2. Specifically, only SgGN accurately357

captures all steps (Figure 6.2(a)), by precisely aligning the breaking points to the discontinuities.358

In contrast, the other methods (Figures 6.2(b) to 6.2(d)) either overlook certain discontinuous steps359

or induce overshooting.360

6.2. One-dimensional delta-like function. In the second experiment, we consider a smooth361

but sharp delta-like function [23]362

u(x) =

k∑
i=1

1

di(x− xi)2 + 1
, x ∈ [−1.5, 1.5],363

where k is the number of centers, xi is the center position, and di is to control center width so that364

the larger di is, the narrower width is.365
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In the experiment, we set k = 3 with centers {x1, x2, x3} =
{
−π2

10 ,−(π −
5
2 ),

√
85
10

}
, and width366

parameters {d1, d2, d3} =
{
104, 103, 5× 103

}
. We employed 15 neurons in the first hidden layer for367

our tests. To evaluate the optimization methods, we initialized the neural network with uniformly368

distributed breaking points, as illustrated in Figure 6.3(a). Our primary objectives are twofold:369

first, to assess each optimization method’s ability to accurately capture all three irrational peak370

centers from an rationally initialized breaking points and second, to determine whether the method371

can adaptively allocate the 15 breaking points to account for the differing widths of the centered372

delta-like peaks. For Adam, α1 = 0.02, αf = 0.6 and T = 2000, while in KFRA, γ = 0.0001.373

As illustrated in Figure 6.3(b), the loss curve for SgGN not only decays more rapidly than374

those of the other three methods but also converges to a better solution within about 50 iterations.375

The SgGN method converges at a loss magnitude of 10−4, which is substantially lower than the376

10−3 ∼ 10−2 magnitudes exhibited by the other methods (see Table 6.3). As further shown in377

Figure 6.4, SgGN successfully moves the breaking points to align with all center positions and378

adaptively distributes the remaining neuron breaking points to accurately approximate sharp peaks379

of varying widths. However, the other methods (see Figures 6.4(b) to 6.4(d)) fail to capture these380

nuances; they either fail to capture all peaks or do not distribute the breaking points proportionally.381

(a) Target function u and initial breaking
points

(b) Loss curves of four optimization methods

Fig. 6.3: One-dimensional delta-like function approximation: target function, initial breaking points,
and optimization loss curves.

Table 6.3: Comparison for one-dimensional delta-like function.

Method SgGN BFGS KFRA Adam

Iteration 12 334 91 334 334 10, 000
Jm,µ 2.24E-3 2.23E-4 3.74E-3 2.33E-3 2.97E-3 3.94E-3

6.3. Two-dimensional piece-wise constant function. Next, we consider a 2D piece-wise382

constant function defined in the domain [−1, 1]2:383

u(x) =

{
1, −0.5 ≤ x+ y ≤ 0.5,

−1, otherwise.
384

In the previous two examples, we used more neurons than the minimum required to mitigate the385
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(a) SgGN un (b) BFGS un

(c) KFRA un (d) Adam un

Fig. 6.4: One-dimensional delta-like function approximation: optimization loss curves and approxi-
mation results using four optimization methods.

uncertainties arising from the non-convex optimization problems. In contrast, this test focuses on386

utilizing only the minimum number of neurons necessary to compare the performances of different387

methods. As shown in Figure 6.5(a), each discontinuous segment can, in theory, be approximated388

using just two neurons. An effective approximation would place a pair of neurons for each discon-389

tinuous line, with the proximity of the corresponding breaking lines serving as a measure of the390

quality of the approximation. Consequently, we opt for using only 4 neurons in this example. For391

Adam method,α1 = 0.01, αf = 0.8 and T = 2000 and in KFRA, γ = 0.005.392

As shown in Figure 6.5(c), the SgGN loss curve not only decays at a faster rate than those of the393

other three methods but also reaches the final training loss in approximately 20 iterations. Table 6.4394

compares the least squares loss values after 142 iterations for the second-order methods and 10,000395

iterations for Adam. Given the integration mesh size h = 0.01, there exists a theoretical lower bound396

on the proximity of the breaking lines, thus imposing a limit on the minimal achievable loss value.397

Even so, SgGN attains a loss magnitude of 10−3, lower than the 10−2 magnitudes demonstrated by398

the other methods. Furthermore, as displayed in Figure 6.5. SgGN (see Figure 6.5(h)) accurately399

positioned all the four breaking lines to capture the discontinuities. In contrast, the other three400

methods (see Figures 6.5(i) and 6.5(k)) captured only one side of the discontinuity lines.401

6.4. Two-dimensional function in M̂n(Ω). For the previous three problems, the target402

functions do not reside within the defined network function space M̂n(Ω). Consequently, the re-403

sultant loss function does not converge to zero. This non-zero convergence precludes a definitive404
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(a) Exact Solution (b) Initial Breaking Lines (c) Loss Curve

(d) SgGN un (e) BFGS un (f) KFRA un (g) Adam un

(h) SgGN Trained Breaking
Lines

(i) BFGS Trained Breaking
Lines

(j) KFRA Trained Breaking
Lines

(k) Adam Trained Breaking
Lines

Fig. 6.5: Two-dimensional piece-wise constant function approximation: target function, initial
breaking lines, optimization loss curves and approximation results using four optimization methods.

Table 6.4: Comparison for a two-dimensional piece-wise constant function.

Method SgGN BFGS KFRA Adam

Iteration 9 142 100 142 142 10, 000
Jm,µ 8.82E-2 3.16E-3 9.20E-2 8.92E-2 9.40E-2 9.23E-2

determination of the optimal approximation for each target function within the specified function405

space. To better assess the performance of parameter optimization, we introduce an artificial func-406
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tion from M̂n(Ω) with randomly selected optimal parameters c∗ and r∗ that407

(6.1) u(x) =

N∑
i=1

c∗iϕi(x; r
∗
i ) + α∗

0,408

where N is number of neurons. In this case, the known optimal parameters c∗ and r∗ allow us to409

directly evaluate the performance of different optimization methods by tracking the movement of410

the breaking lines toward these optimal values. When too many neurons are provided, any initial411

positions of the breaking lines would naturally be close to some of the optimal ones. Moreover, with412

uniform initialization, some of the initial positions will be inherently close to the optimal solutions.413

To focus on the movement of the breaking lines, we opt for initialization along only horizontal and414

vertical axes, and we limit the number of neurons to 5. For Adam method, we have α1 = 0.1,415

αf = 0.5, T = 2000 for horizontal initialization, and α1 = 0.1, αf = 0.8, T = 3000 for vertical416

initialization respectively. In KFRA, γ = 0.005.417

Table 6.5: Comparison for a two-dimensional piece-wise linear function with horizontal initial break-
ing lines (VI) and vertical initial breaking lines (VI).

Method SgGN BFGS KFRA Adam

Iteration 99 207 204 207 207 10, 000
Jm,µ (HI) 6.28E-22 6.68E-27 7.50E-22 7.50E-22 6.12E-2 1.17E-5
Iteration 4 105 30 105 105 10, 000
Jm,µ (VI) 2.35E-4 4.34E-26 5.21E-4 2.71E-4 5.56E-2 2.15E-4

The loss decay curves are depicted in Figures 6.6(b) and 6.6(d). SgGN reaches the magnitude418

10−10 within just 50 iterations while the other three methods decay more slowly, requiring a greater419

number of iterations to reach their final training loss. Table 6.5 compares the least squares loss420

values when initialized horizontally and vertically, respectively. Notably, SgGN excels by achieving421

a near-zero loss value in both scenarios, a level of accuracy significantly higher than what the other422

methods managed to accomplish. Further examination of the approximation results, as shown in423

Figure 6.6, reveals more nuanced insights. SgGN accurately moves all five breaking lines to their424

optimal positions under both horizontal and vertical initializations (see Figures 6.6(e) and 6.6(i)).425

On the other hand, while the other methods ( Figures 6.6(f), 6.6(h), 6.6(j) and 6.6(l)) either perform426

well only with horizontal initializations or fail altogether to correctly position all the breaking lines.427

6.5. Data science application. Lastly, we test an application of shallow network in data428

science. The task is to predict the age of abalones using physical measurements, drawing data from429

the UCI dataset [19]. Since there is no prior knowledge about network structure setting, we test430

two shallow networks where the numbers of neurons are 40 and 80 respectively. The parameters for431

Adam in the two tests are α1 = 0.1, αf = 0.8, T = 1500, and in KFRA, γ = 1.432

Table 6.6: Comparison for the data science problem.

Method SgGN BFGS KFRA Adam

40 neurons
Iteration 35 200 50 200 200 10, 000
Jm,µ 1.90 1.90 2.09 1.89 2.59 2.02

80 neurons
Iteration 9 200 40 200 200 10, 000
Jm,µ 2.00 1.70 2.14 2.02 2.59 1.93
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(a) Horizontal Initial (HI) (b) Loss Curve (Horizontal) (c) Vertical Initial (VI) (d) Loss Curve (Vertical)

(e) SgGN un (HI) (f) BFGS un (HI) (g) KFRA un (HI) (h) Adam un (HI)

(i) SgGN un (VI) (j) BFGS un (VI) (k) KFRA un (VI) (l) Adam un (VI)

Fig. 6.6: Two-dimensional piece-wise linear function approximation: target function, initial break-
ing lines, optimization loss curves and approximation results using the optimization methods with
horizontal initial (HI) and vertical initial (VI) breaking lines.

The loss decay curve for SgGN reaches a magnitude close to the final loss just within just 35433

iterations(see Figure 6.7). In contrast, the loss curves for the other three methods decay more slowly,434

requiring a greater number of iterations to to reach their final training loss. Table 6.6 compares435

the least squares loss values after 200 iterations for the second-order methods and 10,000 iterations436

for Adam, with number of neurons 40 and 80 respectively. Both SgGN and BFGS have similar437

performance in the scenario with 40 neurons. However, SgGN demonstrates a better least squares438

loss than the other three methods with 80 neurons. This unequivocally attests to SgGN’s superiority439

in terms of both the accuracy and effectiveness for this data science application.440

7. Conclusions and Discussions. Newton’s method in optimization is a second-order iter-441

ative method for numerically solving optimization problems with general objective functions. One442
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(a) 40 neurons (b) 80 neurons

Fig. 6.7: Data science application: optimization loss curves using the optimization methods.

of its variants, BFGS has been successfully applied to NN-based machine learning applications.443

For nonlinear least-squares problems, one may use methods of Gauss-Newton type that exploit the444

quadratic form of the objective function. The structured-guided Gauss-Newton (SgGN) method445

introduced in this paper is an iterative method for solving nonlinear least-squares problems using446

shallow ReLU NN as a model. In addition to the least squares structure aspect, SgGN method447

effectively makes use of the structure of the network. Guided by both structure types, the method448

has some attractive features. One feature is the guarantee of the positive definiteness of the mass449

and layer Gauss-Newton matrices without the need of extra shifting like in usual Gauss-Newton450

methods.451

Another feature is the rapid convergence in practice. the SgGN method was tested for several452

one and two dimensional least-squares problems which are difficult for commonly used training453

algorithms in machine learning such as BFGS and Adam. The loss curves for all the test problems454

clearly show the superior convergence of SgGN. SgGN often out-performs those methods by a large455

margin. This conclusion is further strengthened by examining the ability and effectiveness of the456

methods in moving the breaking hyper-planes (breaking points for one dimension and breaking lines457

for two dimensions).458

Each iteration of the SgGN requires linear solvers to approximately invert the mass matrix459

A(r(k)) and the layer Gauss-Newton matrix H(r(k)) for the linear and nonlinear parameters, re-460

spectively. While both the matrices are symmetric and positive definite, they are nevertheless461

ill-conditioned. In the numerical experiments reported in this paper, the truncated SVD is used462

as the linear solver, albeit at a significant computational cost. More efficient linear solvers will be463

investigated in an upcoming paper [7].464
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