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A DUAL FINITE ELEMENT METHOD FOR A SINGULARLY
PERTURBED REACTION-DIFFUSION PROBLEM*
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Abstract. We present a dual finite element method for a singularly perturbed reaction-diffusion
problem. It can be considered a reduced version of the mixed finite element method for approximate
solutions. The new method only approximates the dual variables without approximating the primary
variable. An approximation for the primary variable is recovered through a simple local Lg projection.
Optimal error estimates for the primary and flux variables are obtained. Our method provides a
competitive alternative to other existing numerical methods. For example, our approximate solution
for the primary variable does not show a significant numerical oscillation, which is observed in the
standard Galerkin methods, and we present a confirming numerical example.
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1. Introduction. Let Q C R™ (n = 2, 3) be a bounded polygonal or smooth
domain with Lipschitz-continuous boundary 0€2. Consider the singularly perturbed
reaction-diffusion problem

—eAu+btu=f in Q,

1.1
1) u=0 on O0Y,

where € < 1 is a constant. Assume that f € L?(2) and that b is a smooth function
bounded below and above by positive constants by and b1, i.e., 0 < by < b(x) < by for
almost all z € 2. For simplicity, assume that by /by = O(1).

Singularly perturbed problems like (1.1) appear in some applications, and typ-
ically their solutions exhibit sharp boundary layers near the boundary (see [33]).
Various numerical methods for (1.1) have been introduced and analyzed (see, e.g.,
[1, 12, 23, 24, 26, 28, 29, 33, 34, 38, 39]). When the solution of (1.1) is sufficiently
smooth, it has been demonstrated in [1, 23, 24, 28, 29] that the discretization error
in the energy norm,

1/2
ol = (1701 + 0l3ey) ¥ v € HIO),

can be made small uniformly with respect to € when using a proper Shishkin mesh.
Nevertheless, for small €, the energy norm is like the L? norm, and, hence, it is too
weak a norm to measure adequately the discretization error.

Recently, Lin and Stynes in [27] introduced a new finite element method comput-
ing both the primal variable u and the dual variables o = —Vu simultaneously. The
method is proved to be quasi-optimal in a strong norm (€3[| Av||? + €| Vvl|? + |Jv]|?) /2.
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Moreover, for a problem posed on the unit square, its error bound on a Shishkin mesh
is proved to be uniform in e. This method is based on a new formulation that starts
with a first-order system of (1.1) and uses the idea of the least-squares method with
a slightly different adjoint operator of the first-order system. In a special case where
b = 1, the method becomes the least-squares method that is symmetric. In general,
their method is asymmetric.

Using the idea of Lin and Stynes [27], Roos and Schopf in [34] developed a C? inte-
rior penalty method. The method is based on the primary variable and has improved
stability properties compared to Galerkin methods on Shishkin meshes. Moreover,
balanced (with respect to €) error estimates are obtained. Also, Heuer and Karkulik
in [16] developed a discontinuous Petrov—Galerkin method. The method approximates
seven unknown variables, including three field variables: primary variable u, the flux
o = —Vu, and V - 0. They obtained an optimal error estimate in a norm that is
balanced in the field variables. However, the resulting algebraic system is large due to
simultaneous approximations of all seven variables and, hence, is expensive to solve.

The purpose of this paper is to analyze a two-stage finite element method that has
all attractive approximation properties of the Lin and Stynes method. The first stage
is to compute the dual variable through a finite element approximation to the dual
problem of (1.1) (see (2.4)). The dual problem is symmetric and coercive with respect
to a weighted H(div; Q) norm ||7|| + €||V - 7|| on the dual variable, which, in turn,
yields a balanced norm [|Vv| 4 €||Av|| on the primal variable (see [27]). The resulting
system of algebraic equations of this stage may be solved by a fast multigrid method
(see [2]). The second stage is to compute the primal variable, if needed, through a
local L? recovery from the computed dual variable. A similar strategy is successfully
applied to solve second-order elliptic PDEs in [22].

A standard argument yields that the finite element approximation o, to the dual
problem is optimal with respect to the energy norm (see Theorem 4.1)

1/2
7l = (171300 + 1672V -7l 0) -

Combining with a result in Lin and Stynes [27], it yields a uniform error estimate on
a Shishkin mesh (see Corollary 4.2). The recovered approximation uj, to the primary
variable u in the second stage satisfies (see section 3)

(12) uh:Phu+e2Ph[bV-(0'—0'h)]7

where Py, is the local L? projection (see (2.7)). Hence, the uy, is a perturbation of the
local L? projection of the exact solution u and has the following error estimate:

|u —unllLy) < lu — Prhull, @) +€v/br min [jo— 74|
ThEE;”L

In addition to the basic error estimates mentioned above on general meshes, in-
cluding highly anisotropic meshes, we also present a sharp L? error estimate of the
dual variable and various local and maximum norm error estimates on a quasi-uniform
mesh. In particular, our local maximum norm error estimate shows that the so-called
pollution effect is decreasing as € — 0 (see Theorem 6.5 and Corollary 6.6). The error
is bounded by the locally best approximation and weakly depends on the error on
a larger domain. Numerically, the recovered primary approximation does not show
significant numerical oscillations, which are observed in the standard Galerkin solu-
tions. This is an imperative improvement since the numerical oscillation is artificial
and does not exist in the exact solutions. The fact that the approximation uy is a
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perturbation of the local L? projection of the exact solution u provides an explanation
for why the uj;, does not show significant numerical oscillations.

This paper is organized as follows. In section 2, we introduce our formulation
to solve the singularly perturbed problems, and we present numerical methods to
approximate the problems in section 3. In section 4, error estimates are presented
on general meshes, including highly anisotropic meshes. On quasi-uniform meshes,
L; and maximum norm error estimates are presented in section 5, and local error
estimates are developed in section 6. Numerical experiments are presented in section 7.

2. The dual problem, finite element spaces, and preliminaries. This
section introduces the dual problem, the conforming finite element spaces of H!(Q)
and H (div; Q), and the discrete delta function needed for a priori error estimates in
the maximum norm.

2.1. Dual problem. The corresponding minimization problem of (1.1) is to find
u € HE(Q) such that

2.1 Jw) = inf J(v),
1) (W= nf I

where J(v) is the energy functional given by

1 _
Jw) = 5 (190130 + 1720030 ) = (F: 0).
The dual problem of (2.1) is to find o € H(div; ) such that

(2.2) J ()= sup J*(7),
TEH (div;2)

where H(div; Q) is the space of all square-integrable vector fields whose divergence is
also square-integrable and J*(7) is the complementary energy functional given by

. 1
I () = =5 (@@ + 1872V -7 = Pl 0)) -

By the duality theory (see, e.g., [14]), it is well known that
(2.3) Ju)=J"(e) and o =—-Vu.

The corresponding variational problem of the maximization problem in (2.2) is to find
o € H(div; Q) such that

(2.4) B(o, )= f(r) V7€ H(iv;Q),
where the bilinear and linear forms are given by
(2.5) B(o, 7)=&0bV-0,V-7)+(o,7) and f(r)=bf,V-T),
respectively. Denote the induced energy norm of the dual bilinear form by
1/2 2 2)1p1/2 2 1/2
(2.6) il = B2, 7) = (I 300 + 162V - 7l @) -
This is a balanced norm for the dual variable since |||z, ) and € ||V - 7|1, ) have

the same scale for problem (1.1) (see [27]).

2.2. Finite element spaces. Let T, be a triangulation of the domain ) consist-
ing of triangles or quadrilaterals. For simplicity, we present our argument in triangular
elements. Denote by hx the diameter of element K € 7;, and by h = maxgeT, hi
the mesh size of the triangulation 7p.
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Let Py(K) be the space of polynomials of degree less than or equal to k on an
element K. The finite element space for approximating the primal variable is piecewise
discontinuous polynomials:

Vi = {v e L*(Q) :v|x € Pu(K),VK € Tn}.

Denote the H(div; Q)-conforming Raviart—Thomas and Brezzi-Douglas—Marini finite
element spaces [7] by

RT, = {r € H(div;Q) : T|g € Pu(K)" +xPy(K),V K € Tp}
and BDMy ={r € H(div;Q) : 7|k € P.(K)",V K € Ty}
The dual variable will be approximated by EZ = RTy or BDMj 1.
Let P, : L*(2) — V¥ be the local L? projection,
(2.7) (v — Pyo,w) =0 Y weVF,

and let I, : H(div;Q) — X7 denote the standard interpolation (Fortin) operator
defined in [7]. Then the operators P, and IIj satisfy the following commutativity

property:

(2.8) V- -I,7r=P,V- -1 V7€ H(iv;Q);
equivalently, we have

(2.9) (V- (r=1p71),v) = (I —P,)V-T,0) =0 YveVl

2.3. Approximation properties on quasi-uniform meshes. For the local
and maximum error estimates in sections 5 and 6, we assume that the underlying
meshes are quasi-uniform. Here, we state some of approximation properties that are
valid on quasi-uniform meshes.

First, the local L? projection operator P, defined in (2.7) satisfies the following
approximation and stability property (see, e.g., [41]): For 1 < p < oo, m > 0, and
any T € Ty, there exists a positive constant C' such that

(210) ||’U — PhU”Lp(T) é Ch|U|Wl}(T)
and
(2.11) 1Pwollwy ) < Clolw ).

Second, the standard interpolation operator ITj, : H(div;Q) — X satisfies the
following approximation property [7]: For each T € Ty, there exist an integer k and a
positive constant C such that for all 1 <r <k + 1,

(212) HT — HhT||L2(T) S Chr|T‘W2¢(T) Vr1e WQT(Q)

Third, let D C Q be a subdomain and Dy = {z € Q : dist(z,D) < d}. Let w
be a sufficiently smooth function. The following superapproximation properties hold
[13] for the local L? projection operator: For any 1 < p < oo, there exists a positive
constant C' such that

(2.13) (I = Pu) (@)L, @) < Chllwllyrr gyl Vv e Vi

Similarly, when supp(w) C D, ||[Vwl|[z_(p) < Cd~t, and d > 2h, the interpolation
operator IIj satisfies the following superapproximation property: For any 1 < p < oo,
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there exists a positive constant C' such that
(2.14) (I = 1) (@), (D) < C% 7L, g ¥ 7 € i
Also, we need the following inverse inequality [4, 11]: For any T € 75 and for
1 <p<q<ooand m >0, there exists a positive constant C' such that
(2.15) Il aye < CRM AP~ || Ly ¥ T €
In particular, for m = 1, (2.15) with p = ¢ = 2 and oo implies

(2.16) { Irllwgery < Ch M Tl pryn V7 € Z,
||T||W§Q(T)n < Chil””'”Lw(T)n VT e 2;‘;.

2.3.1. Discrete delta function. For the maximum norm error estimates, we
need to use the discrete delta function. For any given zy € Q, let 6 € =F be a
function such that

(2.17) (7,6?) = [T (x0)]: VT e Efl’,

where [7(z0)]; is the ith component of the vector 7(z(). We need to use the following
inequality obtained in [13]: There exists a positive constant C' such that

(2.18) 1820z, 1= + RV - 87l (L, 0 < CA™/P=D.,
In particular, for p = 1, we have
(2.19) ”‘S?H[Ll(ﬂ)]" +h[[V - 5?”[L1(Q)] <C.

3. A two-stage method. This section introduces a two-stage method consisting
of (i) computing a finite element approximation to the dual problem in (2.4) and (ii)
recovering the primal variable through a local L? projection.

Computing the dual variable. The first stage computes a finite element ap-
proximation to the dual problem: Find o}, € E’fl such that

(3.1) Blop, T)=f(1) VTE€ Eﬁ,

where the bilinear and linear forms are defined in (2.5). The difference between (3.1)
and (2.4) gives the following orthogonality:

(3.2) B(o —on,7)=0 YTeXi

Recovering the primal variable. The second stage is to recover the primal
variable, if needed, from the computed dual variable o. Using (1.1) and (2.3), we
have

U:b(f—€2V'O'),

which suggests the following recovery:
(3.3) Up ZPh {b (f—ﬁZV-O'h)}.

Here P, is the local L? projection defined in (2.7). Using the first equation in (1.1),
(3.3) becomes

(34) uh:Phu+62Ph{bv'(0'70'h)}.
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It follows from (3.3), the definition of P, and the equation in (3.1) that for any
Texk,

(un,V - 7) = (Pu[b(f — €V - a)],V - 7) = (b(f — &V - 01,),V - T) = (op, T).
Hence, the recovery of the primal variable is equivalent to find uy, € V¥ such that
(3.5) (up,V-7) = (o4, 7), YV T€ET}

4. Error estimates on general meshes. For the numerical method defined
in (3.1) and (3.3), this section presents a priori error estimates in the L? norm on
general meshes including highly anisotropic meshes.

First, using (3.2) and the definition of ||-|| in (2.6), the following basic error
estimate in the energy norm is obtained by a standard argument (e.g., see [10]).

THEOREM 4.1. Let o and o, € ¥ be the solutions of (2.4) and (3.1), respec-

tively. Then
lle —onll < min [jo —7||.
TEXY

Error estimate on a Shishkin mesh. For problem (1.1) on the unit square
with sufficiently smooth f and b, Lin and Stynes [27] constructs a Shishkin mesh
that is piecewise equidistant with N mesh intervals in each coordinate direction.
Let (o£%uES) € RT, x S} be the finite element approximation obtained from their
approach, where RTy is the lowest-order Raviart-Thomas element on rectangular
meshes and S} is the continuous bilinear element. They proved the following estimate

(A1) SV (0 — )y + o — oF 1) < ONT N,

where the constant C' is independent of e.
Combining Theorem 4.1 and (4.1), the same uniform error estimate with respect
to the € is valid for the finite element approximation oy,.

COROLLARY 4.2. Let o be the solution of (2.4) with Q = (0, 1)2. Let o, € XV
be the solution of (3.1) on the Shishkin mesh constructed in [27]. Then there exists a
positive constant C' independent of € such that

(4.2) SIVBVY - (o — on)llr.) + /%o — onllr,0) <CN 'InN.

Proof. Theorem 4.1 with 7 = 6% and the fact that b(z) < by give

2 (VB - (7 = oIy + 17 = onllrao)
< (/2 (e||\/5V (o= E)| L) + o — cr,I;S||L2(Q))

< max{1, Vb1 }e'/? (e|V - (0 = 05%) | o) + o = 075 | a() -
which, together with (4.1), implies (4.2). O

Next, we establish a superconvergence result on ||Pyu — up||, (). This estimate
provides a sharp L? norm error estimate for the error ||u — uy|| La(Q)-

THEOREM 4.3. Let u and uy, be the solutions of (1.1) and (3.5), respectively. For
the local L? projection operator Py, we have

(4.3) | Pru — uh||L2(Q) < ey/by min [llo = 7|||-
TeDy
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Proof. For any T € EZ, the definition of Pj, and integration by parts gives
(PhU,V'T) = (U,V'T) = (UaT)a
which, together with (3.5), yields
(4.4) (Pou—up,V-7T)= (0 —on,7) YT
To bound || Pru — up||1,(q), consider the auxiliary problem
n+VA=0, in Q,
(4.5)
V-n=PFPu—up, in

with homogeneous boundary condition A = 0 on 9. It follows from (4.5); the defi-
nition of Pj; the commutativity property in (2.8), (4.4), and (3.2); and the Cauchy—
Schwarz inequality that

| Pru — uh||%2(m = (Pou—up,V-n) = (Pyu—up, P,V - 1) = (Pyu—up, V-1n)
= (o —op, Iyn) = =V - (0 — a4), V - (Ixn))
= —2(bV - (o — o), Pyu — up)
(4.6) <5207V - (o = o) Lace) |1 Prw — unll (o),
which yields
1Pats = | o) < Vb0V - (0 = 1) || L()-

Now (4.3) is a direct consequence of Theorem 4.1. This completes the proof of the
theorem. 0

THEOREM 4.4. Let u and uy, be the solutions of (1.1) and (3.5), respectively. Then

(4.7) lu —unllL,) < llu — Phullp, @) +€v/b1 Hellzf:lk l[lo —7]l[-
T h

Proof. Equation (4.7) follows directly from the triangle inequality and Theorem
4.3. 0

5. Error estimates on quasi-uniform meshes. This section provides error
estimates in the L? and maximum norms on a quasi-uniform triangulation 7p,.
Theorem 4.1 implies the following L? norm error estimate for the dual variable:

o = oullr) < o —he| @) + VOV - (o0 = T140)|| 1, 0)-

By using the superapproximation property in (2.13), the dependence on the L? norm
of the divergence of the interpolation error may be further weakened.
The following equality is an immediate consequence of (2.8):

(5.1) V(o —llyo)=V-0-F,V- 0.

THEOREM 5.1. Let o and o, € I} be the solutions of (2.4) and (3.1), respec-
tively. Then there exists a positive constant C' that is independent of € but that may
depend on b such that

(5.2) lo = anllr@) < 2llo =MoL, + C|V - (0 = 114o)| L, (0)-
In the case that b =1, we have

(5.3) o — ol <o —Hro| L, 0)-
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Proof. By the assumption of the theorem, the superapproximation property in
(2.13) with v = V- (Il — o,) and w = b, and the inverse inequality (2.16), we have

(I = Pu) bV - (Tho — on)]l| Ly
(5.4) < Ch||V - (Tho — on)lLy@) < CllThe — onl|L,@)-

It follows from the orthogonality in (3.2), (5.1), the property of P, in (2.7), the
Cauchy—Schwarz inequality, (5.4), and the triangle inequality that

(0 —on o —0ay)=— (V- (o —04),V- (Lo —oay))

= -2V - (o —1o),V - (o — o)) — €2(p/2V - (o — O'h)H%Z(Q)

IN

—& (V- (o —1yo), bV - (o — o))
< =€ (

e (V-o—P,V-0,bV-(Ilho—o0oy))
=—€(V-o—PV-0,bV (o —oy) — P {dV - (o —op)}))
=—€(V-o—PV-o,[—P,)bV-(Ilo — o))
<E|V-a =PV 0|l = P)bV - (Tho — o]l
<CE|V-0 =PV 0| Ly Tho — onllL,@)

(5.5) < CEV - (0 —Tno)|Ly) (IThe — ol o) + 6 = onllLa@)

By the Cauchy—Schwarz inequality and (5.5), we have

lo —onlli, = (0 —0on,o—14o)+ (6 —on, o — o)
<o —onlli, @ llo —1holr,@) + (0 — o, o —op)
<o = ol (lo = TMho ||y + CEIV - (0 = o)l Ly(0))
(5.6) + CE|V - (o - o), lo — Huol n,0)-

Now the validity of (5.2) is a direct consequence of the arithmetic-geometric inequality.
When b = 1, the second equality in (5.5) and (2.9) give

(o0 —on, o — o) = ||V - (o — o‘h)||2L2(Q) <0.
Together with the Cauchy—Schwarz inequality, we have
lo—onlli, = (6 —0on,0—14o) + (6 — o, o —o4) < (60 —on,0 —11,0)
<|lo = ol llo = walliL, @)

which implies the validity of (5.3). This completes the proof of the theorem. ]

We also present maximum norm error estimates first for the dual variable and
then for the primary variable. We use the discrete delta function defined in (2.17) for
our estimates for the dual variable.
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THEOREM 5.2. Let o and o, € XF be the solutions of (2.4) and (3.1), respec-
tively. Assume that e < h**0 for some § > 0. Then there exists hg > 0 such that for
any h < hg, there exists a positive constant C' that is independent of € but that may
depend on b such that

. g — O Loo ()" = g — l1yo Loo(Q)n € (o — 1o Loo(Q)-
67l I < Cllo — o] +C €|V (o —1o)]

Proof. To show the validity of (5.7), by the triangle inequality, it suffices to prove
that

(5.8) [Hho = onll.r <C(lo —po|lL pn + V- (0 —1ho)|lL (@) -

Assume that X is a point such that |[II,0 — oL ) = |[(ITne — 04)(x0)]i|. The
discrete delta function and the orthogonality in (3.2) give

HHha' — O'hHLOO(Q)n = (Hha' —oy, 5?) = (Hha' -0, 5?) =+ (O’ — 0o, 5?)
(5.9) = (o -0, 5?) — (V- (o —0oy), V-é?).
Using (5.1) and the orthogonality of the operator P}, in (2.7), we have
(bV - (o —1po), V-64) = (I — P,)V -0, bV - §))
= (I =PV 0o, (I-P)0V-8)) = (V- (0 ~Ixo), (I-Py)bV-8)),

which, together with (5.9), Hélder’s inequality, the superapproximation property in
(2.13) with w = b and v = V - §;, and the inverse inequality (2.16), yields

Iho — oL )n
= (Mo —0,8)) — (V- (0 — o), (I — P)(bV - 67))
— &bV - (lyo — 04),V - 87)

87 llry(@) + €IV - (0 = o)l @) 11 = Po)(0V - &7)] 1, 0

<l|lo = HUno| L. n
+ CEV - (o — on)llLe @IV - 6?“L1(Q)
< Cllo —Muo|r_ oy + CERV - (o —T140) @) IV - 6711, @)

+ C(E/M)|V - Ihe — op)ll L)

2
€
< C(HO‘ — Hho’”Lm(Q)n +€2HV . (0‘ — Hho’)HLOO(Q)n) + Cﬁ”HhU — o'h”Loo(Q)n.

2

For sufficiently small h, we have that C'75 < Ch? < %, which, together with the
above inequality, shows the validity of (5.8) and, hence, the theorem. This completes
the proof of the theorem. ]

THEOREM 5.3. Let u and uy, be the solutions of (1.1) and (3.5), respectively. Let
Py, be the local Lo projection defined in (2.7) and up be the approximate solution
defined in (3.3). Then, under the same assumptions as in Theorem 5.2,

lu —unllL ) < llu— Puullp () + Celle =Ihell L )n

(5.10) +CEV- (0~ o). )-
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Proof. By the definition of uy, given in (3.3), we have
u—up = (u— Pyu) + (Pyu—up) = (u— Pyu) + P, [bV - (o, — 0)],

which, together with (5.11), the triangle inequality, the boundedness of b, and (2.11),
gives

(5.11) lu—unllro@) < llu— Prullp. () + CENV - (on — )L
Using the triangle and inverse inequalities and Theorem 5.2, we have
IV-(o=on)lrow < IV (o =Ihon)llr @ + V- o — o)l @
< ||V (e —Thow)lli (@) + Ch o — oullL. on

< |V (e =Tl + Ch ([l —onllL.n + llo = Mholl L))

C
<[V (o -1ho)|r. @) + E(HU — ol + €IV - (e — o)l (@)

62 —
((145) 17 = Mol + 57 o = Dol o )

(IV - (o~ o)l @ + 127" o -l @),

which, together with (5.11) and the fact that e < ', implies (5.10). This completes
the proof of the theorem. ]

6. Local error estimates. In this section, we obtain error estimates on a subset
D C Q on a quasi-uniform triangulation 7. For d > 0, let

Dy = {z € Q:dist(z, D) < d}.

Throughout this section, let 0 < w(z) < 1 be a cutoff function such that w(x) = 1 for
z € D and w(z) = 0 for € D and that |Vw||,_(p,) < <.

Also, we use the following approximation property for the coefficient b: Let by
denote the piecewise constant on the quasi-uniform mesh 7}, satisfying

(6.1) 16— b1l (ry < Chr|bllwy (r) < Chr

for any T' € Tp; see [4].

Remark 6.1. The by can be considered as a local Ly projection onto the space of
piecewise constants on T,. When b is nonnegative, by is also nonnegative.

LEMMA 6.1. Let o and o, be the solutions of (2.4) and (3.1), respectively. As-
sume that € < h < d; then we have

h
(0’ — 0oy, Hh(wz(HhO’ - O'h))) < C(EQHV (o — HhU)H%Q(Dd) + EHH;,,O’ — U’l||2Lg(Dd))'

Proof. First, using the orthogonality property (3.2), we have

(62) (0‘ — O'h,Hh(wz(HhG' - U'h))) = 762(bv . (O’ - O'h), V- Hh(wz(HhO‘ - O'h))).
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Observe that using V - (Il,o — o) € V¥ and b; in (6.1) being nonnegative piecewise
constant, we have b;V - (Il,o — o,) € V¥, Using this and (2.7), we have

—(ij . (HhO' - O'h)7 Ph(w2V . (HhO' - O'h)))
= 7(blv . (HhO' - O'h), (w2V . (HhO' - O'h)))
(6.3) = —(by(V - (o — ap))?, w?) <0.

Using the above inequality, (6.1), supp(w) C Dg, the Cauchy—Schwarz inequality,
(2.11), and (2.16), we have

—(bV - (Ilpo — a4), Pu(w?V - (Ilo — a4)))
= —((b—0b7)V-(Ilho — o), P(w?V - (Il —ay)))
— (0;V - (o — o), Pu(W?V - (o — o))
< —((b=b1)V - (Mo — 04), Pu(w?V - (o — 04)))
<16 =brll o (D) IV - (Tpo = o) || Ly () | Pr(@?V - (Tho — on) || Ly (D)
< Ch|V - (o — )| ooy WV - (TThe = o) | Ly (D.)
(6.4) < Clpo = oullL, )V - (Hpo = on)lLy(Da)-

Now, using (2.8), (6.4), the Cauchy-Schwarz inequality, and ||Vw]||r., < we

have

<
d’

~ (0 (0~ on), V- M@ (Iho — on) )
=& (bV (o — o), V- I (w2 (e — ah))
— € (bV -(IIyo — o), V- I (WP (o — U'h))
= —(0V - (0 = o), PV - (@*(Iho — o))
= &bV (Mo = 04), PV - (@2 (o — 1))
= (bV (o —o), Py(2wVw - (o — o) + w?V - (4o — Uh)))
— e (bv (Mpo — o1), Po(2wVew - (Mo — o) +w?V - (e — ah))>
< e (bv (o — o), Py(2wVw - (o — o) + w2V - (IT,0 — o’h)))
—é (bv ~(Ilho — o), Pr(2wVw - (o — Uh)))
+ CEho = ohl Ly IV - (TThe = 1)l Lo(D.))
< CUV - (0~ 1,0) o [T — ol
— &V - (0 —10), Pu(w’V - (o — 04)))

2
€
+ CEHV “(IIho — o)y (o)) IHhe — onllL,(Dy)
(6.5) =1+ 1+ Is.
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For I, using ab < a? + b% and € < h < d, we have
eh
I =Cp 2|V - (o = ho)ll 00 1The = onllz.pa)

2

e h
< CﬁIIV (o~ Hho’)H%Q(Dd) + CﬁHHhU - Uh||2L2(Dd,)

h

For Iy, let by be the piecewise constant in (6.1). Then by P, (w?V - (o — 0},)) €
Vik. Hence, using (2.7), we obtain

(6.7) (V-0 — P,V -0,bP,wV-(Ilo—0a))) =0.
Also, using (6.1), (2.11), 0 <w < 1, and (2.16), we have
[(b = b1) Po(w?V - (TTho — o1)) | L (Da)
<16 = brllzoe (o) 1PV - (ho — on))l| Lo(Da)
< Ch||Pu(w?V - (o — o4))lLo(pg) < Chl|lw?V - (o — o4) | L,(py)

< Ch|V - (Tho — o4l Lo(Da)
(6.8) < C|ho — onllLy(py)-

Now, using (5.1), (6.7), supp(w) C Dy, the Cauchy—Schwarz inequality, (6.8), and
e < h<d<1, we have

I, = —&(bV - (o — o), Py(w?V - (o — 1))
= (V- (o — o), bP,(w?V - (Io — a4)))
=—(V-0—P,V-0,bP,(w?V-(Ilo —0g;)))
=-&(V-0 - PV, bPy(w?V - (ITho — o)) — by P(w?V - (Tho — a'h)))
= —¢ (v o~ PV -0, (b—b)Py(w?V - (Lo — ah)))

< V-0 =PV -0l L, p)ll(b—br)Pa(w?V - (o — o)l 1y (0.)
<CENV-0— PV ol 0o — onllL, .
<CE|V-o— PV oli,p, +CENMhe —anli,p,

h
(6.9) < CE|V -0 - P,V -0l7,p,) + OEHHhU —anll7,p.):

For I3, using the inverse inequality (2.16) and ¢ < h, we have

2
€
Iy = C— IV - (ho = on)l oo [Hno = anllzzpa)
62
S TR A PREA I TS A PRER

€ h
(6.10) < CgHHhU —onll7, ) < 03||Hh0 —onllT, .

Plugging (6.6), (6.9), and (6.10) into (6.5) and then the resulting inequality into
(6.2), we obtain the desired inequality. This completes the proof. 0
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THEOREM 6.2. Let o and o, be the solutions of (2.4) and (3.1), respectively.
Assume that € < h < d; then we have

lo—onllL, )

h
<C (IIU — oLy (py) + gHU = OullLy(pg) TV - (o — HhG)IIm(m)) -

Proof. Tt follows from the Cauchy—Schwarz inequality, (2.14), Lemma 6.1, Young’s
inequality, and the triangle inequality that

|w(o — Uh)H%Q(Dd) = (WQ(U —0op), 0 — HhU)

+ (o0 —on, (I — 1) (W (po — 1)) + (0 — op, Iy (W (Lo — o))

h
<Nlw(o —on)llr.(ylle —Mno||L, . + CEHU = 0nllLyop)Hhe — oL,y
2 2 h 2
+C eV (o —Hro)ll7,p,) + EHHhU —onllL, .
1 , 1 ,
< 5”“’(‘7 —on)l1,pa) §||0 —holl7, 0.

h
+ €20 = oulliawn (10 = OnllLapa + o = Tho |, )

2h 2h
(V-0 = W0l 0, + Gl = ool o, + 210 = ol ).

Now, isolating ||w(e — &4 )||L,(p,) in the above equation and using h < d and Young’s
inequality, we have

(e = )30y < Cllo = a3,y + CE IV - (0 = )30,
O lo 01l + Collo — ouliapullo ~ o)
< Cllo ~ o} p,) + CLIV - (0~ 10,0,y + C o — 04l .
which implies
lo = onlZ, ) < llwlo —an)lZ, i,
<0 (o = Mol + 510 = Tl + I (0 = W00, )
Applying the above inequality to |lo — &4 ][ p,, we have
o = oull3 o
< € (lo =0, + 3l = 0l + 17 0 = 1) )

Now, scaling back from 2d to d, we obtain the desired inequality. This completes the
proof of the theorem. ]

Now, by repeated application of the above theorem, we obtain the following result.
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COROLLARY 6.3. Let o and oy, be the solutions of (2.4) and (3.1), respectively.
Assume that € < h < d"/0=% e, d > h'=%, for some § > 0. Then there exists
ho > 0 such that for any h < hg,

S h °
o = nllzaco) < €+ o = Mool + € ) o = ooy
+ Ce||V - (o —14o)|| Ly (p.y)» fors=1,2,....
Proof. First, let C be the constant in Theorem 6.2, and let hq satisfy

1
Chf < 3

Then, for any h < hg, using d > h'~%, we have
h 1
— < Ch’ <Ch) < =.
Cd < Ch® < Chy < 5
Now, applying Theorem 6.2 repeatedly for D, Dy, ..., D(s_1)4, We obtain

S h °
lo = ol ooy < 20(s)lo ~ e Lo, +C (d) lo=onllzz.
+ C(s)e|V - (0 = no) || Ly(D.u)»

where ) .
h h AN
1 1 2 1 s—1
co(ie e (1) e (B) ) <o
This completes the proof. 0

Next, we prove local Ly norm error estimates for u — uy. Note that uy is defined
using the simple Lo projection operator P, and computed solution oy, i.e.,

(6.11) up = Pu{b(f — €V -a1)} = Pyu+ P, (bV - (o0 — a4)).
THEOREM 6.4. Let uy, be the approzimate solution defined in (3.3). Then

lu = wnll Ly oy < lu— Paullr,py + CENV - (60 = ho) | Ly (py)

62
(6.12) + O (llo = 1ol a(on) + o = Tnllian )-

Proof. Using (6.11), the triangle inequality, and the inverse inequality (2.16), we
have

Hu_uh“Lz(D)
= |lu— Paull 1,0y + E1Pa{bV - (0 — o)} 1o (D)
< |lu = Puully oy + CEV - (0 — o)l Lo(D)
< |lu = Puull Ly (o) + CEV - (6 = ho)[| Ly (p) + CEV - (o — )nll Lo (D)
< |lu — PuullL,p) + Ce|V - (o — o) 2,0y + C%HHhU —onllr.(py)
< lu = Puully(p) + CEV - (0 = o) || Ly(D)

2
€
(6.13) + CW(HU —1no | rypy) + 6 = OnllLy(Da))-

This completes the proof. 0
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We prove the following maximum norm error estimate for v — u, on a single
element T € Ty, for Q C R? using Corollary 6.3. Note that 7' can be replaced by a
region D C €. Roughly speaking, the estimates show that the error is bounded by
locally best approximation and weak dependence on the error on larger domains.

THEOREM 6.5. Let uy, be the approzimate solution defined in (3.3) and n = 2.
Then, under the same assumptions as in Corollary 6.3, we have

lw—unllr.ry < Cllu— Puullp ) + €IV - (6 —po)|L. )

2 s
€ h
+0(5) (1o = Mol +*(5) o - onln,
(6.14) + eV (o— HhU)IILz(TSd,))

fors=1,2,....

Remark 6.2. Our local maximum norm error estimate shows similar convergence
behavior to the one presented in [35, Theorem 7] in the sense that the local error is
bounded by locally best approximation and weak dependence on larger domains.

Proof. Using (6.11), the triangle inequality, the boundedness of b, the inverse
inequality (2.16), and (2.15), we have
lu—unllpory = lu = Paullrcry + €| Pu{bV - (o — o)} o r)
< lu— Puullory + CEOV - (0 — om)llL(m)
< lu— Puullpory +CEV - (0 —om)i.m)
< lu— Prullpry + Cé*||V - (o — o)l o ()

+ €|V - (Mho — an)llp ()
2
€
< |lu— Pyl (1) + CEV - (0 =o)L () + CﬁHHhU = nllLy()-

(6.15)
Using the triangle inequality and Corollary 6.3, we have
Mhe — onllr,ir) = llo = hollr, 1) + lo = onllr. )

S h °
< Clo =Wl + () o = oulany + T (0 = W)l

Plugging the above inequality into (6.15), we obtain

lu—unllpe ) < Clu— Poullp 1) + €IV - (o —14o)| (1))

2
€
+0(5) (lo =l

S h ’
-0 (8) o=l + 47~ M)

This completes the proof for (6.14). |

Different choices of d and s and the local regularities of the solution will lead to
different estimates. For example, the following corollary gives an error estimate when
d = +/h and s = 4 for the lowest approximation spaces (k = 0).
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COROLLARY 6.6. Assume that ||y ( ~ O(1). Ford =+h, s =4, and

k =0, we have

T4x/ﬁ)

2
lu = unllery < C(Blulwa ) + €IV - Tl + Tlolwi ﬂ)

+ 01 (ol ey + VOV - o llraen ) + Oy
(6.16) < C*h.

h2 ||v ' UHLQ(TAI\/ﬁ)

Remark 6.3. The local maximum error estimate (6.16) shows that the pollution
effect is weak in the singularly perturbed problem. If the solution is well behaving
near the region of interest, i.e., |o[wy (7, ) ~ O(1), then the approximate solution is
guaranteed to achieve the optlmal rate of convergence for € < h. The pollution effect
is decreasing as € is getting smaller.

Proof. Note that (%)S = h? for s = 4 and d = Vh. Using the approximation
properties (2.10), (2.12), the commuting diagram property (2.8) with the stability
(2.11), and Theorem 4.1 in (6.14), we have

2
lu = wnll iy < Chlulws oy + €|V - (0 = T0) ||y + C S wlolwia,

+Ce(lo — oL, +0h2\|V (0 =)l

T4\F)> T4f

< Chlulws () + €|V - o1 (T)+C |0|W(

+ (o — anllLy +Ch2||V |l

T4ﬂ) Tyvm)
< Chlulwy, (ry + €|V o1, (T)+C |U|W( T, )

+ C* (o) + VOV - ol 1, 0) + CﬁIIV Ol -

Now the last inequality in (6.16) follows from the assumption |0-|W21(T4\/E) ~ O(1)
and ||o||p, ) ~ O(eY/2) and |V - &| 1) ~ O(e7%/?); see [27]. This completes the
proof. ]

7. Numerical examples. In this section, we present numerical examples con-
firming our theoretical results. We consider the following model problem:

—EAu+u=finQ, wu=0ondN.

We choose the true solution u = tanh(2(2? + y? — 1)) — tanh(2) on the unit circle
Q= {(z,y) € R? : 22 + y? < 1}. For our numerical experiments, we consider the
problems with e = 0.0001 and ¢ = 0.000001. Note that there is an interior layer at
r = /a2 +y% = 1/2. We use the 16-point quadrature rule [40] for our computations.

We compare our methods with the standard Galerkin methods. For the approxi-
mate spaces for our proposed method, we use the lowest Raviart—Thomas spaces RTj
for the dual variables and piecewise constant spaces V}? for the primary function. The
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i 1L

25

Fia. 7.1. Left: approzimate solution of the standard Galerkin methods, Right: approzimate
solution of the proposed methods with € = 0.0001 and h = 2%
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FIG. 7.2. Mesh with h = §.

standard continuous piecewise linear functions are used for the Galerkin method. Both
of the approximations shown in Figure 7.1 are obtained on the same mesh with mesh
size h = 6%1. In Figure 7.2, we show the mesh for mesh size h = %. The mesh is gen-
erated by the MATLAB function described in [31]. For the approximate solution for
the primary variable u, our solution does not show significant numerical oscillations,
while the standard Galerkin method shows solutions with oscillations. To observe the
numerical oscillation of the approximate solution, the maximum and minimum values
of the approximate solutions are provided in Table 7.1. The maximum and minimum
of the true solution u are 0 and —2. While our new method produces numerical solu-
tions without numerical oscillation, the standard Galerkin methods produce solutions
with oscillations.

We provide convergence behavior of our approximation w, and the (local) Lo
projection Ppu in Table 7.2. The accuracy of our approximate solution is comparable
to the accuracy of the Lo projection. Also, we report the convergence behaviors of

lu—un|r.(p), where D = B(0,4 —2xh),B(0,2), and B(0, 1), where
B(0,r) = {(z,y); |2* +y°| < r*}.

Corollary 6.6 predicts that the local region needs to be away from the interior layer,
to overcome the pollution effects, i.e., |o|wy (1, ) ~ O(1). The distance is a relative
distance proposal to vh. Note that B(0,1 — 2 x h) is close to the (interior) layer

at r = % in the relative distance v/h. As a result, the accuracy of the approximate
solution is deteriorating as h is getting smaller. On the other hand, the region B(0, %)
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TABLE 7.1
Mazimum and minimum of the approzimate solutions for h = 2%.
U uﬁ u;CL;
e = 0.0001 e = 0.000001 e = 0.0001 e = 0.000001
Max 0 3.897e-03 1.169e-08 0.9391 0.8932
Min -2 || -2.00 - 0.0389 | -2.00 - 1.161e-08 | -2.00 - 0.7839 | -2.00 - 0.7834

TABLE 7.2
Convergence behaviors with e = 0.0001.

% 23 24 25 26
lw — unllry (o) 0.45586 0.30936 0.21449 0.14683
llw — Phull 1y 0.45583 0.30935 0.21443 0.14668

lu = unllp (50,2 —2en) 3.8170e-08 | 2.3114e-07 | 7.9453e-07 | 2.8551e-06
[eS] '3

[ = wnll, _ (50,2)) 2.3886e-06 | 2.3114e-07 | 1.2808e-10 | 5.7731e-15

e = wnlly 50,1y 3.8170e-08 | 3.7887e-11 | 4.8850e-15 | 4.4409¢-15

can be considered as far away from the interior layer, and we observe the improved
accuracy as h becomes smaller. The convergence on B(0, %) shows a somewhat mixed
performance. It shows a slight improvement in accuracy as h = 2% — 2% This is due

to the fact that the region is not far away from the interior layer with respect to the

relative distance v/h for h = 5. After that, it shows similar improvements as in the

2T
case for B(0, ).
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