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Abstract. Recently, Douglas et al. [4] introduced a new, low-order, non-
conforming rectangular element for scalar elliptic equations. Here, we ap-
ply this element in the approximation of each component of the velocity in
the stationary Stokes and Navier—Stokes equations, along with a piecewise-
constant element for the pressure. We obtain a stable element in both cases
for which optimal error estimates for the approximation of both the velocity
and pressure .2 can be established, as well as one in a brakémorm

for the velocity.

1 Introduction

In [3], Crouzeix and Raviart considered nonconforming finite element ap-
proximations for solving the stationary incompressible Stokes equations.
Their low-order, nonconforming simplicial elements consist of standard
nonconformingP; simplicial elements for the velocity and piecewise con-
stants for the pressure. They showed that this combination is stable and
yields first order accuracy. A comparison with the existing first-order con-
forming simplicial elements (see [1], [5] and references therein) shows that
the degrees of freedom and nonzero entries of the coefficient matrix for
the nonconforming method are significantly fewer than those for conform-
ing methods. It is natural to consider an analogue for rectangular elements.

* This work was sponsored in part by the NSF and the ONR.
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We will adopt a nonconforming rectangular element proposed recently by
Douglas et al. [4] for the velocity, and piecewise constants, as in [3], for the
pressure. We prove that this choice is stable and gives first order accuracy for
both the Stokes and the Navier—Stokes equations. For the Stokes equations,
Rannacher and Turek [9] have shown that the “rotated” bilinear basis can be
used for the velocity in combination with a piecewise-constant basis for the
pressure, also with optimal order approximation for rectangular elements;
as was seen in [4], the element we shall use behaves somewhat better when
guadrilateral elements are used in the partition of the domain than the rotated
bilinears. Itis also the case that the analysis is much simpler for our element,
and there is no difference in coding or computational efforts associated with
replacing the rotated bilinears with our element.

Han [6] proposed an element similar to ours, but with an extra degree of
freedom for each component of the velocity, and obtained stability and an
analogue of part of our convergence results. The computational procedure
associated with our element is slightly simpler and more efficient than that
for his element.

In practice, it is possible to partition the domain using both rectangular
(wherever possible) and simplicial elements. An inspection of the proofs will
show that the corresponding nonconforming finite element approximation
retains the same accuracy as mentioned above.

Let Q be a bounded, open subset®{ (d = 2 or 3) with Lipschitz
boundaryp 2. We consider the stationary Stokes=£ 0) and Navier—Stokes
(y = 1) equations in dimensionless variables:

d

—vAU+y Y udiu+Vp=Ff ing, (11a)
j=1

V.-u=0 ing, (1.1b)

u=0 onaJ, (1.1¢

where the symbold\, V, andV- denote the Laplacian, gradient, and di-
vergence operators, respectivedy; = 3"’7/ andf (x) is the unit external
volumetric force acting on the fluid ate <.

We will employ standard definitions for the Sobolev spag&gQ)?
and their associated inner products ) o, norms| - ||;.q, and seminorms
| - |s., s = 0. (We suppress the designatidron the inner products and
norms because dependence on dimension will be clear by context.) The
spaceH%(Q2)¢ coincides withL?(2)?, in which case the norm and inner
product are denoted by- || and (-, -)q, respectively. Finally, leL.3(2)
denote the subspace bf(Q) consisting of the functions ih?(2) having
mean value zero. Then, the variational formulation of (1.1) is to find a pair
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(U, p) € HY(Q)? x L3() such that (cf. [5])

a(u,Vv) + yas(u; u,v) —b(v, p) = (f,v), Yve H}I(Q)I (12a
b(u,q) =0, VgelLiQ), (12b

where the bilinear forms are defined by

d
a(u,v) =v(Vu, V) =v > (Vu;, Vv;) and  b(V,q) = (V- V.q),
j=1

and the trilinear form by

1
as(U; V, W) = S[aa(U; v, W) — ax(U; W, V)]
d
with  a(u; v, w) = Z ujov, w
j=l

For fixedu, note thatz, (u; v, w) is the skew-symmetric part af (u; v, w).
LetD = {v € H}(Q)? : V-v = 0} denote the divergence-free subspace
of Hi(2)?. Then, the solutiom of (1.2) lies inD and satisfies

a(u, V) + yag(u; u,v) = (f, v), v eD. (1.3)

This note is organized as follows. Nonconforming rectangular elements
in two dimensions are described in Sect. 2. iiksup condition for the
discrete analogue of the bilinear forbx-, -) is demonstrated in Sect. 3.
Optimal order error estimates are obtained in Sect. 4 with respect to a bro-
ken H-norm for the velocity and th&2-norm for the pressure; in addition,
an optimal order estimate in thHe*-norm is established for the velocity in
Sect. 5. In Sect. 6, we show that all results demonstrated for rectangular par-
titions in two dimensions extend to partitions into quadrilaterals. Finally, we
discuss three-dimensional nonconforming rectangular elements in Sect. 7.

2 Two-dimensional nonconforming rectangular elements

In the next five sections, we restrict to two dimensions and apply the non-
conforming elementintroduced in [4]. The extension of the method to three
dimensions is straightforward and will be discussed briefly in Sect. 7.

Let the reference element be the squﬁ’re: [—1,1] x [-1, 1]. The
rotatedQ; nonconforming element built 0R = Span(1, &1, £, £2 — %3}
does not satisfy the orthogonality relation (6.1) of [4] that plays a critical role
in the error analysis there. This failure was remedied in [4] by modifying
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22— £2to (82 — 2%)) — (&2 — 2£3). Hence, our nonconforming rectangular

element for the velocity will be based on

A 5 5
OR) = Span{l, %1, o, <£f _ éﬁg‘) _ <x§ _ é)eg)} |

Denote the middle points of edges and the associated edges of the reference
elementk byd; = (1,0), d, = (0, 1), 43 = (-1, 0), andd, = (0, —1) and

e1, €2, €3, andey, respectively. Then, the corresponding nodal basis functions
associated with the nodéshave the forms

L 1 1 3 . 5, . 5.
hi(d) =7+ 50— ¢ ((xf — éxi‘) - (x% - éx;‘)) :

=>

472
. 1 1, 3 . 5, N S
P2(x) = 2 + §x2+ 3 ((xf 3 f) - (xg— §x§>),
a 1 1, 3 . 5. N 5,
i) == g0 g (- 51) - (8- 53)).
- 1 1, 3//. 5, R 5,
b = - (- 3) - (8- 5%))
Itis easy to check that, far j = 1, 2, 3, 4,

/ ¢;ds = 8; &, (2.1)

wheres;; is the Kronecker symbol and; | is the length of the edgé.

Let Q = Ujf.zlfzj be a quasiregular rectangular partition @fwith
diam(2;) < h. Denote the boundary edge ©f; by I'; = 0Q N 92},
the interface between elemeists and<2; by

T =Ty =08, N,

and the centers df; andI";; by £; andé ., respectively. For eadf;, denote
by

Fj )2—>F]()?)=Bjﬁ+b], BjEE(RZ), bjERZ,

the affine, invertible mapping such thaf(K) = ;; the matrixB; can be
assumed diagonal for rectangufay. Let

Q)= :v="00F "1 0 eQK)).

j
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The nonconforming rectangular finite element sps(c for the velocity
will be taken to be

NC" ={v : v; =Vig, € Q(Q)) x X)),
V&) = VilEiy), VE) = 0, V j k}.

Let Po(E) denote the space of constants on therselhe pressure will be
approximated by the piecewise-constant functions

P"={q € L§Q) : qlg, € Po(Q)), Vj}.

For anyv = (v, vp)' in NC", it is easy to verify that

[vilds =0 and / v;ds =0, i=1,2, (2.2)
Lj

Lk

where[v;] = vi|r;, — vilr,; denotes the jump of the functian across" j;
(2.2) expresses the orthogonalities that were important in [4].

Let (-,); = (-, )g; and(f, g); = fmj fg ds, and define the discrete
counterparts of the bilinear and trilinear forms as follows:

2
ap(U, V) =v Y (YU, VW), app(U;v,w) = > (Z Ui 3V, W) :
i=1

J i J
ba(V.q) =D (V-V.q);,
J
and 1
s (U V, W) = 3 [a1n(U; v, W) — ay(u; W, v)].

For anyu,v,w € H*(Q;)¢ with 1 < j < J, integration by parts on each
element gives

ayn(U; V. W) = —agp (U; W, V) — ) (V- UV, W) + Y (U~ njV, W),
j j
wheren; is the unit outward normal t8<2;. Hence,

1 1
a1 (U3 V, W) = g (U5 V, W) — 2 > (V- uv, W)+ > {wn)v, W),
J J

(2.3)

It is known (cf. [5]) that the trilinear formsa; (u; v, w) anda,(u; v, w) are
continuous in(H(£2)%)3. The same argument applied on e&zhimplies
thatay ,(u; v, w) anday ; (u; v, w) are also continuous, i.e.,

ayp(U; V, W), as,(U; V,W) < CllullyalIVIliLallWI 1,8, (2.4)
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for anyu,v,w € HYQ;)?with 1 < j < J. Here,| - ||, denotes the
(broken) energy semi-norm

IVIiLe = Van(Vv, V).

By (2.2),]| - |l1.» is a norm oveVC”.
The nonconforming finite element approximation of (1.2) is to find a pair
(Up, pp) € NC" x P" such that

an(Uy, V) + yas ,(Up; Uy, V) — by(v, pp) = (F,v), veNC", (259
by(uy, q) =0, g € P". (2.5b)

Let D" denote the discrete divergence-free subspacéd, i.e.,
D' ={veNC": by(v,q) =0, Vgqe P}
Then the solution;, of the above problem lies i®" and satisfies

an(Up, V) + vas,(Up; Uy, v) = (F,v), VveD" (2.6)

3 The inf-sup condition

It is well-known (see, e.g., [5]) that the bilinear forb-, -) satisfies the
inf-supcondition, i.e., there exists a positive constarsuch that
b(v,
sup v, q)

> pllgll, Y q e LiQ). (3.1)
VGH&(Q)“’ ”V”l

We follow the argument in Crouzeix and Raviart [3] to show that the bilinear
form b, (-, -) satisfies a discretiaf-supcondition onN'C" x P”, i.e., there
exists a positive constagt independent of the mesh sizesuch that
by (v, q)
sup ——== > Bligll, ¥qeP" (3.2)
venvet IVIlLn

Denote the edges @t; by ej. fori =1, 2, 3, 4, and the midpoint of the
edgee’, by a}. Define the operatar; : H'(R2;) — Q(R;) by requiring
that, for anyv € HX(Q)),

f_ mvds:/_vds, for i =1,2,3,4. (3.3)
e'j e

Since (2.1) is invariant under the mappiﬁgl, (3.3) determines the mid-
point values ofr;v as

. 1
njv(al’,.) = W /,- vds, i=1234.
JtYe
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Thereforesr; reproduce®(2;). By a standard Bramble-Hilbert argument,
Imjv — vl < CR™lpyrj, Yve H™HRQ), m=0,1 (3.4)
thus,
ljvlle,; = Cllvlly,;- (3.5)

(We useC with or without subscripts in this note to denote a generic positive
constant, possibly different at different occurrences, that is independent of
the mesh sizé but may depend on the domain)

For anyv € H3()?, definell,v € NC" by

(Hhv)i|Q_,‘ =TV, V.]7 i = 17 2. (36)

Lemma 3.1 The operatorl, : H3(Q)? — NC" has the following prop-
erties:

by(TTyv —V,q) =0, ¢ € P", (3.7)
IV, < ClVle, Ve Hy(2)2. (3.8)

Proof Letn; = (ny;,no ;)" be the outward unit normal o#2; and set
q; = qle; foranyqg € P". By the divergence theorem,

bh(HhV—V,q)=qu/ div (IT,v — v) dx
T

ZZq]f (HjV—V)'nde
j 02

J

= ZC]]‘ / [(rjv1 —vpnyj + (jv2 — vo)no jlds,
TR
so that (3.7) follows from the definition af;. Also, (3.8) is a straightforward

consequence of the definition Of, and (3.5). O

We can now establish (3.2). For agye P" C L3(2), it follows from
Lemma 3.1 that

by (v, q) . by (ITyW, ¢) _ sup b(w, q)
veNCh ”V”l,h WEH&-(Q)Z ”HhW”l,h WEH&-(Q)Z ”HhW”l,h
b(w,
>C sup w

WeH&(Q)Z ”W”l

Combining this relation with thenf-supcondition (3.1) implies (3.2).

Proposition 3.1 The bilinear formp,, (-, -) satisfies the discrete inf-sup con-
dition (3.2)in N'C" x P, whereg is a positive constant independent of the
mesh sizé.
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4 Error estimates derived from stability

Optimal order error estimates in the (broken) energy norm for the velocity
and theL?-norm for the pressure will be derived, with the analysis of the
error in the velocity being based on (1.3) and (2.6). Then, the disofetap
condition (3.2) will be used to estimate the error of the pressure approxima-
tion. Later, in Sect. 6, a standard duality argument gives an error estimate
for the velocity inL?.

Let

A" ={r e =trr, (Me,) € Po(Tj0);
Mjk + A =0; & =trr, (Ag,) € PoT))}.

Define projectionsR;, : H3(Q2)2 — NC" and Py : HX()? - A" x A" as
follows:

RyV(§) = V(§), VE=§joréy; (4.1)
(Pow;, 2),. = <% z> , YZePyI)?, VI =TyorT;, (4.2)
J r

forv e H?(Q)? andw e HY(Q)?, respectively. Also, define projections
Qo : HY(Q) — Po(T") ands;, : HY(Q) — P" by
(Qog.2)r =(q.2)r, YzePo('), VI =T 0orTy;  (4.3)
(Svg.2) = (¢.2), VzeP (4.4)
for g € HY(Q). Itis easy to verify thatP, satisfies the following orthogo-
nality:
(PoVj, W;)r, + (PoVi, Wi)ry,, = (PoVj, W; —Wi)r,, =0, VweNC".
(4.5)
SinceR,, andS, reproduce linear functions on elements d@adnd Qg
reproduce constants on faces, the standard polynomial approximation results
imply that
1/2 1/2
V=RV +h | D IIV=RVIZ; |  +h* D IIv—RaVI3;
J j
1/2
+R2 D NIV = RVIIZ ] < CRPIVI2. ve HA(Q)? (463
j

1/2

ow
Dolm= = Powllif | < ChAZwll, we HA(Q)?, (4.6b)
j J
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1/2

1
ISig—qll + 1% (Y 1llg—QoqlllZ | < Chlgls. q € HYQ), (460
J

1
wherel||-|||; = <Zk I - ||§2(ij))2 denotes th& ?-norm over the boundary

of 2;; I'; replacedj; for a boundary face.
Following Girault and Raviart [5], define the quantities

N = sup as(U; v, w)
uvawert@d IUILIVIIwiz 4o
M _ sup as p(U; vV, W) ’ ( . )
wvawenet ULalVILalIWi

which are norms for the trilinear forms anda; j, respectively. It is well-
known (see, e.g., [5]) that (1.2) has a unique solution if

N
”v—2||f||,l <1 (4.8)

Hence, we will always assume (4.8). We will also assume throughout that,
forh > 0O,

YN (f,v)

—=lfll. <¢ <1, where [[f[], = sup

v veNCh VIzn ‘

(4.9)

These two assumptions will not be repeated in the statements of the various
theorems and lemmas below. Note that they pose no constraints for the
Stokes problem. Taking = u andv = u, in (1.3) and (2.6), respectively,

and using the facts that (u; u, u) = a,,(Ug; Uy, u,) = 0, the Cauchy—
Schwarz inequality implies that

Tulla < v7YIflle and [[ugllese < v HIF]L. (4.10)

Lemma4.1 Let (u, p) and (u,, p,) be the solutions 0f1.2) and (2.5),
respectively. Then, far > v* = \/y N, [|f]l., there is a positive constant
such that

lu—upllyn < ( inf Jlu—Vll1s
N h

veNC

s » U, — f’
+ sup lan(u, V) + yasn(U; U, V) — ( V”), (4.11)
e IVIlLn
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lp — pull < C( inf [[p—ql
qEPh

+ su

D lan (U, V) 4+ yas »(U; U, v) — by(v, p) — (f, v)]

veNCh (\ALEW?
+ inf ||U—V||1’h
veNCh
u,v U u,v) — (f,v
+ sup lan (U, V) + yas n( ) —( )|)' (4.12)
veDh IVIl1,n

Proof Forv e D", it follows from (2.6) that

vllup = VIIZ, = an Uy — Vv, Uy — V)
= ap(Up, Uy — V) —ap(U, Uy, — V) +ap(U —V, U, —V)
= (f, U, — V) — ya,,(Up; Up, Uy, — V)
—ap(U,U; —V) +ap(U—Vv,U, —V)
= [(f,up = V) —an(u, Uy — V) — yas ,(U; U, Uy — V)]
+ap(U—V, U, —V)
+ ylasn(U; U, Uy — V) — a5 5 (Up; Up, Uy — V)] (4.13)

Sinceas ,(U; U, — Vv, u, —Vv) =0, (2.4) and (4.10) give

las,n (Us U, Uy — V) — ag j (Ups U, Uy — V)|
= lasn(U; U=V, Uy — V) + a5, (U — Up; Uy, Uy — V)|
= lasn(Us U =V, Uy — V) + a5, (U — Vi Uy, Uy — V)
+ a5 (V= Up; Up, Uy — V)| (4.14)
<N (Iullx + Uslivs) U = Viluallus — Vlws
+ Nallupllzallu = UpllonllUp — Vilan

N
< Cllu = V||yallup = VllLn + T||f||*||U — Upllpnllup = V1.

Using (4.14) and dividing both sides of (4.13) y, — v||1,, gives

f,w) —a,(u,w) — ya, ,(U; u, w
vliUs = Vlls < SUP [(T, w) (U, w) — yasn( )|
weDh (W],

Ni

14
+ Cllu = Vi[1n + 1l lu = Up ]2

v
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Then,
YN,
v(l——zhnfn*)nuh—vnl,h
v
f,w) —ay(u,w) — ya, ,(U; U, w
- SupI( ) — an(U, W) — yag( )|+C||u—v||1,h,
weDh [IWI]1,5

which, together with the triangle inequality, gives an appropriate analogue
of the second Strang lemma:

U — Upllen

i f, W) —a,(u, w)—ya,(u; u,w
<c|inf [Ju=Vv|lL, + sup |(F, W) —a, (U, W) —yag ,( )\
vep! weD e

The same proof as one constructed by Girault and Raviart [5] shows that

inf lu—v|y, <C inf [Ju—Vly.
veDh veN !

Now, (4.11) follows from the two inequalities above.
For any(v, ¢) € NC" x P", it follows from (2.5) that

ba(V,q — pi)
=by(V,q — p) + b (V, p) — bu(V, pp)
=by(V,q — p) +bu(V, p) + (f,V) —an(Up, V) — yas,(Uy; Uy, V)
=by(V,q — p) +[(F, V) —a,(U, V) — ya, 5 (U; U, V) + by(V, p)]
+ ap(U —Up, V) + ylasn(U; U, V) — as,(Up; Uy, V)]
=by(V,q — p) + (£, V) —a,(U, V) — ya,,(U; U, V) + by(V, p)]
+ap(U — Uy, V) + ylagn(U; U — Up, V) + ag , (U — Up; U, V)]

It then follows from the triangle inequality, (3.2), the above equality, the
boundedness of the bilinear formhs(-, -) anda, (-, -), and (4.10) that

lp—pull <llp —qll + llg — pall

1 1bn(V, g — pn)l
<lp—qll+- SUp—h
B yench IVIl.n
<Clp—ql
1 f,v) —a,(u,Vv) — ya,,(u; u,v) + b,(v,
1w |(F, V) —an(u, V) — yasn( ) + bu(V, p)l

B yeneh (\VAIEW?
+ Cllu — Upll1,,

which, together with (4.11), implies (4.12). Hence, the lemma has been
proved. O
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To bound the truncation errors in (4.11) and (4.12), we follow the proof
in [4] to estimate sums of some surface integrals over all edges.

Lemma 4.2 For any¢, w € H}(Q)?UNC",
a4}

; anj ’ j
> (ow-nyv. ¢)

< ChllwW|2lllLe, VW e HHRQ)?NH3(Q)? (4.15)

‘ < ChlW||slIVI2l@llLe, Y Ve HA(Q)? (4.16)
X J
J

>ao- m-)j' < Chllqlaliglli ¥ q € H (). (4.17)

J

Proof For anyw € H}(Q)? N H?(2)?, it follows either from the fact that
Pow € A" x A"if ¢ € H}(2)?, or from the orthogonality (4.5) i € NC",
that

Z<P0W, ¢)j =0.

J

Hence, fom; € Py(2;)? taken as the average ¢foverQ;,

aw aw ow
i #) =T, ~ o) =S5 - o -m)

J j J j
Now, (4.15) follows from the approximation property (4.6), the Cauchy—
Schwarz inequality, and a standard trace theorem that

0 1 :
) Z<37W ¢> ‘ < Ch? ||w||2(2 I —mll; V(g — m>||f>
7 i i
< Ch||W||2(Z ||V¢||§)
J

By (2.2), (4.3), and (4.6),

D la. 1)),

1
2

> {a — Qoq. (6 —m) - 1)),

J J
3
1
< Ch2||61||1<z ¢ —mi;[[V(d — m)II,-)
J
< Chliql1li@llLn,

which proves (4.17). We can prove (4.16) similarig
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Theorem 4.1 Let (u, p) € HA(Q)? x HY(Q) and (uy, pp) € NC" x P"
be the solutions afl.2)and(2.5), respectively. Then,

U —UpllLs + P — pall = Ch(llullz + [ pll1)- (4.18)

Proof Multiply (1.1a) byv in NC", integrate by parts on each element, and
use (2.3) to see that

2
(f,v) = (—vAu +y Zu,-aiu +Vp,v>

i=1

au
= a;(U,V) + yasp(U; U, V) — by(v, p) — v Z<aT V> (4.19)
j J

J

+g2<(u 'nj)U,V>j+Z<p’V'nj>]"
j J

Rearranging (4.19) gives

ap(u, V) + yas p(u; u, v) — (f,v)

)
=MWmeZj£¥Q—gXMwmmwrjjnwmn
j Sl

J J

By (4.10), (4.6), the triangle inequality, and Lemma 4.2, it suffices to show
that

lbi(v, p)| < Chllpll1lIVlLs Y VveD.

This is animmediate consequence of the factihat, p) = b, (v, p— S, p)
forallv € D", the Cauchy—Schwarz inequality, and (4.6). Thus, the theorem
is proved. O

5 Duality and the L?-error estimate

We consider the linear dual problem

2 2
—VAY =Y ujdi g+ Y YVu;+Vy=u—u, ing,
= par] (5.1)
A\ 0 in €,
) 0 onog.
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The variational formulation of (5.1) is to find a paig, x) € H}(Q)? x
L3() such that

a(v,¥) +ai(u; v, ¥) +ar(v; U, ¥) — b(v, x) = (U—uy, V), (523
Vv e Hy(Q),
b(¥,q) =0, VqelL3RQ). (5.2b)

If uis a nonsingular solution of (1.1), then (5.2) has a unique solution [5].
To establish the error estimateir? for the velocity, we use the duality
argument introduced by Aubin and Nitsche [2]. To do so, we require that

(5.1) beH?-regular, i.e.,

1P ll2+ lixlls = Cllu—ugll. (5.3)

We write out the argument in the Navier—Stokes case, since the Stokes case
is covered by a somewhat simpler argument. (et x) be the solution of
(5.2) and let(yr,, x;) € NC" x P" satisfy

1 — ¥aullee +1x — xull < ChY N2+ 11X M10)- (5.4)

Theorem 5.1 Let (u, p) € H2(Q)? x HY(Q) and (uy, py) € NC" x P"
be the solutions df1.2) and(2.5), respectively. I{5.1)is H?-regular, then

lu—usll < CR(lullz + lIpllo)- (5.5)
Proof The inequality (5.4) and th& 2-regularity (5.3) imply that
1V = ¥pllen + 11X — xull = ChIU — U]l (5.6)

Multiplying both sides of the first equation of (5.1) by— u,, integrating
by parts on each element, and using (2.3), we see that

u—Upll? = an(u — Uy, ¥) +ap,(u; U — Uy, %)
+ayp(U—Up U, ¥) —by(Uu—Uuy, x)

0
- UZ<3_:[.’U - Uh> - Z((U ‘NP, U—Uy);
j J

I
+ ) (6 (U—uy) - nj);
J

=a,(U— Uy, ¥) +a,,(U; U—Uy, ¥) +a,,(U— Uy u, ¥)
1
—~ QZ((V (U= U, )
J

9
— by(U— Uy, X) — vz<a—:,u - uh>
j / j
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1 1
=5 2 )Y U= U+ 5 Y (W= w) - npu. ),
J J

+ Y (X (U—up) Ny (5.7)
J

The second equality above follows from (2.3) and the factiligtlivergence
free. The difference of (4.19) and (2.5a), tested agaiasty ,, implies that

0 = ah(u - Uh, wh) + as,h(U; u7 V,h)
—ag ,(Ups Up, ¥y) — b (Y, p — pr)

9 1
B ”Z<% ¢h> + > Z((u “NHU, ¥y)
X 7] J

J

J
+Y (P ¥, N ;e (5.8)
j

The difference of (5.7) and (5.8) gives

Iu—upll? =apu—uy ¥ —¢,) +Ra
—by(U=Upy, x) +by(¥y, p — pr) + R2o+ Rz, (5.9)

whereR, is a sum of trilinear forms:
Ri1=asn(U; U —Up, ¥) +ag,(U— Uy U, ¢)
— a5 5 (U; U, ¥) + ag n(Up; Up, ¥y)
= as,(Us U — Uy, ¥) + a5 (U — Uy U, ¥r)
— asp(Us U — Uy, ¥y) — asn (U — Up; Up, ¥y)
=ag (U U —Up, ¥ —¥y) + a5, (U — Uy U, ¥)
— s p (U — Up; Up, ¥r)
= a5 (WU —Up, ¥ — ¥) + a5, (U— U U— Uy, ¥)

+ a5, (U—Up U, ¥ — ¥y); (5.10)

R, is a sum of line integrals:

0 1
Ro= v (0w =5 YW w0,
J J j

J

1
+5 D (=) npu, ¥,
J
d
Y0 -+ Y ()

J
1
=5 2 U npu ) = 3 (p ¥ 0y
J

J
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andRs = —3 Y, (V- (U—up)u, ¥);. Sinceu, ¥ € H3 (Q)? — CO(Q)?,
we have

ad
Ry = —vZ<a—:‘hj,U—U},>
J

1
+5 Z«(u —uy) N, ¥);

1
52 AU Ny, u—u);

J J

J
ad
+Z(X’(U—Uh)-nj>j+vz<8—:_a¢h—W>
j j J

J

1
=5 2 U npu g, =) = Y (P (U, = ¥) 0y,
J

J

which, together with Lemma 4.2, implies that

Ral =Ch (I¥ll2+ lxllD) lu — Upllzn
+ Chlulz+ 1Pl 1Y — ¥y llan (5.11)

Let c; be a constant such that
Iu-9¥ —cjlle, < Chllu-¥llre; < ChllullrLe, I¥l2e;-

SinceV - u = 0 andby,(uy, g) = O forallg € P",

1
|Rs| = ‘5 ij((v (U= U, P);

1
= ‘5 D (V- u—up,u-9);
J

1
2

D Vau—u, U-Y —c));
J
< Chju = Upllallullali 2. (5.12)

Combining (5.9)—(5.12) and using the Cauchy—Schwarz inequality element-
wise, we see that

lu—uull® < C(I1Y = Fhllonlu = Unllan
U= Unlleallx = xall + 1Y = ¥pllunllp — pall

U= Ul 119+ 2 A2+ ) U = Ul
+hullz + Ipl) 1Y — ¥yllan),

which, together with (4.18), (5.3), and (5.6), implies the validity of (5.5).
This completes the proof of the theorenm
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6 Two-dimensional quadrilateral elements

An extension to quadrilateral elements for the components of the velocity
is immediate. If2; is a quadrilateral, there is a unique (up to rotation in the

order of the vertices) bilinear malp; : K — Q; and F; is affine on the
edges ofk . Thus, if we define the basis @p; as usual by

Q@) ={v:v="D0F" §e QK

thenthe orthogonality properties (2.2) remain valid. Moreover, the two affine
maps induced on a common edge between adjacent quadrilateral elements
coincide, so that requiring continuity at midpoints of edges is consistent
with the mappings. If shape quasiregularity is enforced on a partition into
quadrilaterals, then the approximation properties (4.6) also remain valid.
These properties allow us to observe that the entire convergence argument
remains valid.

7 Three-dimensional rectangular elements

The results in the previous sections concerning rectangular elements can
be extended to three dimensions without difficulty. Therefore, we limit our-
selvesto describing the nonconforming finite element approximation spaces,
which are direct extensions of those in two dimensions. Thus, the pressure
is approximated by piecewise constants and each component of the velocity
by the nonconforming, three-dimensional elemeddefined below; again
continuity is imposed at the midpoints of interelement faces, along with the
requirement that the nodal values on the boundary vanish.

As in [4], the nonconforming three-dimensional elem@riin the refer-
ence cube

K =[-11] x [-1,1] x [-1,1]

is chosen as
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~ ~ ~ (A2 5. > 9.
= Span{l, X1, X2, X3, <x§ — §x§) — <xf — éxf) ,

5 5
(18-3%) - (- 52)].

This choice again guarantees the orthogonality (6.1) of [4]. Denote the mid-
points of faces and the associated faces of the reference eldnbnt
a,i=1...,6,ands;, i = 1,...,6, respectively. Then, the nodal basis
function related t@i; = (1, 0, 0) is given by

a 1 1, 1//., 5. 2 9,
¢1(x)=6+§x1—z<(xf—§xf> - (x%—g)é))

1 5 5
~a (- 50) - (8- 59):

the other five can be obtained by permuting indices and reflecting coordi-
nates.
A direct manipulation verifies that, far j = 1, ..., 6,

[@ﬁ:%m

where|§,» ] is the area of the face. The stability analysis and analyses of the
errorsu — u, andp — p,, in Sect. 3 and Sect. 4 apply without modification.

, (7.1)
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