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Abstract. Recently, Douglas et al. [4] introduced a new, low-order, non-
conforming rectangular element for scalar elliptic equations. Here, we ap-
ply this element in the approximation of each component of the velocity in
the stationary Stokes and Navier–Stokes equations, along with a piecewise-
constant element for the pressure. We obtain a stable element in both cases
for which optimal error estimates for the approximation of both the velocity
and pressure inL2 can be established, as well as one in a brokenH 1-norm
for the velocity.

1 Introduction

In [3], Crouzeix and Raviart considered nonconforming finite element ap-
proximations for solving the stationary incompressible Stokes equations.
Their low-order, nonconforming simplicial elements consist of standard
nonconformingP1 simplicial elements for the velocity and piecewise con-
stants for the pressure. They showed that this combination is stable and
yields first order accuracy. A comparison with the existing first-order con-
forming simplicial elements (see [1], [5] and references therein) shows that
the degrees of freedom and nonzero entries of the coefficient matrix for
the nonconforming method are significantly fewer than those for conform-
ing methods. It is natural to consider an analogue for rectangular elements.
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We will adopt a nonconforming rectangular element proposed recently by
Douglas et al. [4] for the velocity, and piecewise constants, as in [3], for the
pressure. We prove that this choice is stable and gives first order accuracy for
both the Stokes and the Navier–Stokes equations. For the Stokes equations,
Rannacher and Turek [9] have shown that the “rotated” bilinear basis can be
used for the velocity in combination with a piecewise-constant basis for the
pressure, also with optimal order approximation for rectangular elements;
as was seen in [4], the element we shall use behaves somewhat better when
quadrilateral elements are used in the partition of the domain than the rotated
bilinears. It is also the case that the analysis is much simpler for our element,
and there is no difference in coding or computational efforts associated with
replacing the rotated bilinears with our element.

Han [6] proposed an element similar to ours, but with an extra degree of
freedom for each component of the velocity, and obtained stability and an
analogue of part of our convergence results. The computational procedure
associated with our element is slightly simpler and more efficient than that
for his element.

In practice, it is possible to partition the domain using both rectangular
(wherever possible) and simplicial elements.An inspection of the proofs will
show that the corresponding nonconforming finite element approximation
retains the same accuracy as mentioned above.

Let � be a bounded, open subset inRd (d = 2 or 3) with Lipschitz
boundary∂�. We consider the stationary Stokes (γ = 0) and Navier–Stokes
(γ = 1) equations in dimensionless variables:

−ν1u + γ

d∑
j=1

uj∂ju + ∇p = f in �, (1.1a)

∇ · u = 0 in�, (1.1b)

u = 0 on ∂�, (1.1c)

where the symbols1, ∇, and∇· denote the Laplacian, gradient, and di-
vergence operators, respectively;∂j = ∂

∂xj
; and f (x) is the unit external

volumetric force acting on the fluid atx ∈ �.
We will employ standard definitions for the Sobolev spacesHs(�)d

and their associated inner products(·, ·)s,�, norms‖ · ‖s,�, and seminorms
| · |s,�, s ≥ 0. (We suppress the designationd on the inner products and
norms because dependence on dimension will be clear by context.) The
spaceH 0(�)d coincides withL2(�)d , in which case the norm and inner
product are denoted by‖ · ‖� and(·, ·)�, respectively. Finally, letL2

0(�)

denote the subspace ofL2(�) consisting of the functions inL2(�) having
mean value zero. Then, the variational formulation of (1.1) is to find a pair
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(u, p) ∈ H 1
0 (�)

d × L2
0(�) such that (cf. [5])

a(u, v)+ γ as(u; u, v)− b(v, p) = (f , v), ∀ v ∈ H 1
0 (�)

d, (1.2a)

b(u, q) = 0, ∀ q ∈ L2
0(�), (1.2b)

where the bilinear forms are defined by

a(u, v) = ν(∇u,∇v) = ν

d∑
j=1

(∇uj ,∇vj ) and b(v, q) = (∇ · v, q),

and the trilinear form by

as(u; v,w) = 1

2
[a1(u; v,w)− a1(u; w, v)]

with a1(u; v,w) =

 d∑
j=1

uj∂jv,w


 .

For fixedu, note thatas(u; v,w) is the skew-symmetric part ofa1(u; v,w).
LetD = {v ∈ H 1

0 (�)
d : ∇ ·v = 0} denote the divergence-free subspace

of H 1
0 (�)

d . Then, the solutionu of (1.2) lies inD and satisfies

a(u, v)+ γ as(u; u, v) = (f , v), v ∈ D. (1.3)

This note is organized as follows. Nonconforming rectangular elements
in two dimensions are described in Sect. 2. Aninf-sup condition for the
discrete analogue of the bilinear formb(· , ·) is demonstrated in Sect. 3.
Optimal order error estimates are obtained in Sect. 4 with respect to a bro-
kenH 1-norm for the velocity and theL2-norm for the pressure; in addition,
an optimal order estimate in theL2-norm is established for the velocity in
Sect. 5. In Sect. 6, we show that all results demonstrated for rectangular par-
titions in two dimensions extend to partitions into quadrilaterals. Finally, we
discuss three-dimensional nonconforming rectangular elements in Sect. 7.

2 Two-dimensional nonconforming rectangular elements

In the next five sections, we restrict to two dimensions and apply the non-
conforming element introduced in [4]. The extension of the method to three
dimensions is straightforward and will be discussed briefly in Sect. 7.

Let the reference element be the squareK̂ = [−1,1] × [−1,1]. The
rotatedQ1 nonconforming element built onR = Span{1, x̂1, x̂2, x̂

2
1 − x̂2

2}
does not satisfy the orthogonality relation (6.1) of [4] that plays a critical role
in the error analysis there. This failure was remedied in [4] by modifying
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x̂2
1 − x̂2

2 to (x̂2
1 − 5

3x̂
4
1)− (x̂2

2 − 5
3x̂

4
2). Hence, our nonconforming rectangular

element for the velocity will be based on

Q(K̂) = Span

{
1, x̂1, x̂2,

(
x̂2

1 − 5

3
x̂4

1

)
−
(
x̂2

2 − 5

3
x̂4

2

)}
.

Denote the middle points of edges and the associated edges of the reference
elementK̂ by â1 = (1,0), â2 = (0,1), â3 = (−1,0), andâ4 = (0,−1) and
ê1, ê2, ê3, andê4, respectively. Then, the corresponding nodal basis functions
associated with the nodesâi have the forms

φ̂1(x̂) = 1

4
+ 1

2
x̂1 − 3

8

((
x̂2

1 − 5

3
x̂4

1

)
−
(
x̂2

2 − 5

3
x̂4

2

))
,

φ̂2(x̂) = 1

4
+ 1

2
x̂2 + 3

8

((
x̂2

1 − 5

3
x̂4

1

)
−
(
x̂2

2 − 5

3
x̂4

2

))
,

φ̂3(x̂) = 1

4
− 1

2
x̂1 − 3

8

((
x̂2

1 − 5

3
x̂4

1

)
−
(
x̂2

2 − 5

3
x̂4

2

))
,

φ̂4(x̂) = 1

4
− 1

2
x̂2 + 3

8

((
x̂2

1 − 5

3
x̂4

1

)
−
(
x̂2

2 − 5

3
x̂4

2

))
.

It is easy to check that, fori, j = 1,2,3,4,∫
êi

φ̂j dŝ = δij
∣∣êi∣∣ , (2.1)

whereδij is the Kronecker symbol and
∣∣êi∣∣ is the length of the edgêei .

Let �̄ = ∪Jj=1�̄j be a quasiregular rectangular partition of� with
diam(�j ) ≤ h. Denote the boundary edge of�j by 0j = ∂� ∩ ∂�j ,
the interface between elements�j and�k by

0jk = 0kj = ∂�j ∩ ∂�k,
and the centers of0j and0jk byξj andξjk, respectively. For each�j , denote
by

Fj : x̂ → Fj(x̂) = Bj x̂ + bj , Bj ∈ L(R2), bj ∈ R2,

the affine, invertible mapping such thatFj(K̂) = �j ; the matrixBj can be
assumed diagonal for rectangular�j . Let

Q(�j ) = {v : v = v̂ ◦ F−1
j , v̂ ∈ Q(K̂)}.
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The nonconforming rectangular finite element spaceNCh for the velocity
will be taken to be

NCh ={v : vj = v|�j ∈ Q(�j )× Q(�j ),
vj (ξjk) = vk(ξkj ), v(ξj ) = 0, ∀ j, k}.

Let P0(E) denote the space of constants on the setE. The pressure will be
approximated by the piecewise-constant functions

Ph = {
q ∈ L2

0(�) : q|�j ∈ P0(�j ), ∀j} .
For anyv = (v1, v2)

t in NCh, it is easy to verify that∫
0jk

[vi] ds = 0 and
∫
0j

vi ds = 0, i = 1,2, (2.2)

where[vi] = vi |0jk − vi |0kj denotes the jump of the functionvi across0jk;
(2.2) expresses the orthogonalities that were important in [4].

Let (·, ·)j = (·, ·)�j and〈f, g〉j = ∫
∂�j

fg ds, and define the discrete
counterparts of the bilinear and trilinear forms as follows:

ah(u, v) = ν
∑
j

(∇u,∇v)j , a1,h(u; v,w) =
∑
j

(
2∑
i=1

ui∂iv,w

)
j

,

bh(v, q) =
∑
j

(∇ · v, q)j ,

and

as,h(u; v,w) = 1

2

[
a1,h(u; v,w)− a1,h(u; w, v)

]
.

For anyu, v,w ∈ H 1(�j )
d with 1 ≤ j ≤ J , integration by parts on each

element gives

a1,h(u; v,w) = −a1,h(u; w, v)−
∑
j

((∇ · u)v,w)j +
∑
j

〈(u · nj )v,w〉j

wherenj is the unit outward normal to∂�j . Hence,

a1,h(u; v,w) = as,h(u; v,w)− 1

2

∑
j

((∇ · u)v,w)j+ 1

2

∑
j

〈
(u · nj )v,w

〉
j
.

(2.3)

It is known (cf. [5]) that the trilinear formsa1(u; v,w) andas(u; v,w) are
continuous in(H 1(�)2)3. The same argument applied on each�j implies
thata1,h(u; v,w) andas,h(u; v,w) are also continuous, i.e.,

a1,h(u; v,w), as,h(u; v,w) ≤ C‖u‖1,h‖v‖1,h‖w‖1,h, (2.4)
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for any u, v,w ∈ H 1(�j )
2 with 1 ≤ j ≤ J . Here,‖ · ‖1,h denotes the

(broken) energy semi-norm

‖v‖1,h = √
ah(v, v) .

By (2.2),‖ · ‖1,h is a norm overNCh.
The nonconforming finite element approximation of (1.2) is to find a pair

(uh, ph) ∈ NCh × Ph such that

ah(uh, v)+ γ as,h(uh; uh, v)− bh(v, ph) = (f , v), v ∈ NCh, (2.5a)

bh(uh, q) = 0, q ∈ Ph. (2.5b)

Let Dh denote the discrete divergence-free subspace ofNCh, i.e.,

Dh = {v ∈ NCh : bh(v, q) = 0, ∀q ∈ Ph}.
Then the solutionuh of the above problem lies inDh and satisfies

ah(uh, v)+ γ as,h(uh; uh, v) = (f , v), ∀ v ∈ Dh. (2.6)

3 The inf-sup condition

It is well-known (see, e.g., [5]) that the bilinear formb(·, ·) satisfies the
inf-supcondition, i.e., there exists a positive constantρ such that

sup
v∈H1

0 (�)
d

b(v, q)
‖v‖1

≥ ρ‖q‖, ∀ q ∈ L2
0(�). (3.1)

We follow the argument in Crouzeix and Raviart [3] to show that the bilinear
form bh(·, ·) satisfies a discreteinf-supcondition onNCh × Ph, i.e., there
exists a positive constantβ, independent of the mesh sizeh, such that

sup
v∈NCh

bh(v, q)
‖v‖1,h

≥ β‖q‖, ∀ q ∈ Ph. (3.2)

Denote the edges of�j by eij for i = 1,2,3,4, and the midpoint of the
edgeeij by aij . Define the operatorπj : H 1(�j ) → Q(�j ) by requiring
that, for anyv ∈ H 1(�j ),∫

eij

πjv ds =
∫
eij

v ds, for i = 1,2,3,4. (3.3)

Since (2.1) is invariant under the mappingF−1
j , (3.3) determines the mid-

point values ofπjv as

πjv(a
i
j ) = 1

|eij |
∫
eij

v ds, i = 1,2,3,4.
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Therefore,πj reproducesQ(�j ). By a standard Bramble-Hilbert argument,

|πjv − v|1,j ≤ Chm|v|m+1,j , ∀ v ∈ Hm+1(�j ), m = 0,1; (3.4)

thus,

‖πjv‖1,j ≤ C‖v‖1,j . (3.5)

(We useC with or without subscripts in this note to denote a generic positive
constant, possibly different at different occurrences, that is independent of
the mesh sizeh but may depend on the domain�.)

For anyv ∈ H 1
0 (�)

2, define5hv ∈ NCh by

(5hv)i |�j = πjvi, ∀ j, i = 1,2. (3.6)

Lemma 3.1 The operator5h : H 1
0 (�)

2 → NCh has the following prop-
erties:

bh(5hv − v, q) = 0, q ∈ Ph, (3.7)

‖5hv‖1,h ≤ C‖v‖1, v ∈ H 1
0 (�)

2. (3.8)

Proof Let nj = (n1,j , n2,j )
t be the outward unit normal on∂�j and set

qj = q|�j for anyq ∈ Ph. By the divergence theorem,

bh(5hv − v, q) =
∑
j

qj

∫
�j

div (5hv − v) dx

=
∑
j

qj

∫
∂�j

(5jv − v) · nj ds

=
∑
j

qj

∫
∂�j

[(πjv1 − v1)n1,j + (πjv2 − v2)n2,j ] ds,

so that (3.7) follows from the definition ofπj .Also, (3.8) is a straightforward
consequence of the definition of5h and (3.5). ut

We can now establish (3.2). For anyq ∈ Ph ⊂ L2
0(�), it follows from

Lemma 3.1 that

sup
v∈NCh

bh(v, q)
‖v‖1,h

≥ sup
w∈H1

0 (�)
2

bh(5hw, q)
‖5hw‖1,h

= sup
w∈H1

0 (�)
2

b(w, q)
‖5hw‖1,h

≥ C sup
w∈H1

0 (�)
2

b(w, q)
‖w‖1

.

Combining this relation with theinf-supcondition (3.1) implies (3.2).

Proposition 3.1 The bilinear formbh(·, ·) satisfies the discrete inf-sup con-
dition (3.2) in NCh ×Ph, whereβ is a positive constant independent of the
mesh sizeh.
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4 Error estimates derived from stability

Optimal order error estimates in the (broken) energy norm for the velocity
and theL2-norm for the pressure will be derived, with the analysis of the
error in the velocity being based on (1.3) and (2.6). Then, the discreteinf-sup
condition (3.2) will be used to estimate the error of the pressure approxima-
tion. Later, in Sect. 6, a standard duality argument gives an error estimate
for the velocity inL2.

Let

3h = {λ : λjk = tr0jk (λ|�j ) ∈ P0(0jk);
λjk + λkj = 0; λj = tr0j (λ|�j ) ∈ P0(0j )

}
.

Define projectionsRh : H 2(�)2 → NCh andP0 : H 1(�)2 → 3h ×3h as
follows:

Rhv(ξ) = v(ξ), ∀ ξ = ξjk or ξj ; (4.1)〈
P0wj , z

〉
0

=
〈
∂wj

∂νj
, z
〉
0

, ∀ z ∈ P0(0)
2, ∀ 0 = 0jk or 0j , (4.2)

for v ∈ H 2(�)2 andw ∈ H 1(�)2, respectively. Also, define projections
Q0 : H 1(�) → P0(0) andSh : H 1(�) → Ph by

〈Q0q, z〉0 = 〈q, z〉0, ∀ z ∈ P0(0), ∀ 0 = 0jk or 0j ; (4.3)

(Shq, z) = (q, z), ∀ z ∈ Ph, (4.4)

for q ∈ H 1(�). It is easy to verify thatP0 satisfies the following orthogo-
nality:

〈P0vj ,wj 〉0jk + 〈P0vk,wk〉0kj = 〈P0vj ,wj − wk〉0jk = 0, ∀ w ∈ NCh.
(4.5)

SinceRh andSh reproduce linear functions on elements andP0 andQ0

reproduce constants on faces, the standard polynomial approximation results
imply that

‖v − Rhv‖ + h


∑

j

‖v − Rhv‖2
1,j




1/2

+ h2


∑

j

‖v − Rhv‖2
2,j




1/2

+ h1/2


∑

j

|||v − Rhv|||2j



1/2

≤ Ch2‖v‖2, v ∈ H 2(�)2, (4.6a)


∑

j

||| ∂w
∂νj

− P0w|||2j



1/2

≤ Ch1/2||w||2, w ∈ H 2(�)2, (4.6b)
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‖Shq−q‖ + h
1
2


∑

j

|||q−Q0q|||2j



1/2

≤ Ch‖q‖1, q ∈ H 1(�), (4.6c)

where||| · |||j =
(∑

k ‖ · ‖2
L2(0jk)

) 1
2

denotes theL2-norm over the boundary

of �j ; 0j replaces0jk for a boundary face.
Following Girault and Raviart [5], define the quantities

N = sup
u,v,w∈H1

0 (�)
d

as(u; v,w)
‖u‖1‖v‖1‖w‖1

and

Nh = sup
u,v,w∈NCh

as,h(u; v,w)
‖u‖1,h‖v‖1,h‖w‖1,h

,

(4.7)

which are norms for the trilinear formsas andas,h, respectively. It is well-
known (see, e.g., [5]) that (1.2) has a unique solution if

γN
ν2

||f ||−1 < 1. (4.8)

Hence, we will always assume (4.8). We will also assume throughout that,
for h > 0,

γNh

ν2
‖f‖∗ ≤ ζ < 1, where ||f ||∗ = sup

v∈NCh
(f , v)
|v|1,h . (4.9)

These two assumptions will not be repeated in the statements of the various
theorems and lemmas below. Note that they pose no constraints for the
Stokes problem. Takingv = u andv = uh in (1.3) and (2.6), respectively,
and using the facts thatas(u; u,u) = as,h(uh; uh,uh) = 0, the Cauchy–
Schwarz inequality implies that

‖u‖1 ≤ ν−1||f ||1 and ||uh||1,h ≤ ν−1||f ||∗. (4.10)

Lemma 4.1 Let (u, p) and (uh, ph) be the solutions of(1.2) and (2.5),
respectively. Then, forν ≥ ν∗ = √

γNh||f ||∗, there is a positive constantC
such that

‖u − uh‖1,h ≤
(

inf
v∈NCh

‖u − v‖1,h

+ sup
v∈Dh

|ah(u, v)+ γ as,h(u; u, v)− (f , v)|
‖v‖1,h

)
, (4.11)
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‖p − ph‖ ≤ C

(
inf
q∈Ph

‖p − q‖

+ sup
v∈NCh

|ah(u, v)+ γ as,h(u; u, v)− bh(v, p)− (f , v)|
‖v‖1,h

+ inf
v∈NCh

‖u − v‖1,h

+ sup
v∈Dh

|ah(u, v)+ γ as,h(u; u, v)− (f , v)|
‖v‖1,h

)
. (4.12)

Proof For v ∈ Dh, it follows from (2.6) that

ν||uh − v||21,h = ah(uh − v,uh − v)

= ah(uh,uh − v)− ah(u,uh − v)+ ah(u − v,uh − v)

= (f ,uh − v)− γ as,h(uh; uh,uh − v)

− ah(u,uh − v)+ ah(u − v,uh − v)

= [(f ,uh − v)− ah(u,uh − v)− γ as,h(u; u,uh − v)]
+ ah(u − v,uh − v)

+ γ [as,h(u; u,uh − v)− as,h(uh; uh,uh − v)]. (4.13)

Sinceas,h(u; uh − v,uh − v) = 0, (2.4) and (4.10) give

|as,h (u; u,uh − v)− as,h(uh; uh,uh − v)|
= |as,h(u; u − v,uh − v)+ as,h(u − uh; uh,uh − v)|
= |as,h(u; u − v,uh − v)+ as,h(u − v; uh,uh − v)

+ as,h(v − uh; uh,uh − v)| (4.14)

≤ Nh

(‖u‖1 + ‖uh‖1,h
) ||u − v||1,h||uh − v||1,h

+ Nh‖uh‖1,h||u − uh||1,h||uh − v||1,h
≤ C||u − v||1,h||uh − v||1,h + Nh

ν
||f ||∗||u − uh||1,h||uh − v||1,h.

Using (4.14) and dividing both sides of (4.13) by||uh − v||1,h gives

ν||uh − v||1,h ≤ sup
w∈Dh

|(f ,w)− ah(u,w)− γ as,h(u; u,w)|
||w||1,h

+ C||u − v||1,h + γNh

ν
||f ||∗||u − uh||1,h.
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Then,

ν

(
1 − γNh

ν2
||f ||∗

)
||uh − v||1,h

≤ sup
w∈Dh

|(f ,w)− ah(u,w)− γ as,h(u; u,w)|
||w||1,h + C||u − v||1,h,

which, together with the triangle inequality, gives an appropriate analogue
of the second Strang lemma:

||u − uh||1,h

≤ C

(
inf

v∈Dh
||u − v||1,h + sup

w∈Dh

|(f ,w)−ah(u,w)−γ as,h(u; u,w)|
||w||1,h

)
.

The same proof as one constructed by Girault and Raviart [5] shows that

inf
v∈Dh

‖u − v‖1,h ≤ C inf
v∈NCh

‖u − v‖1,h.

Now, (4.11) follows from the two inequalities above.
For any(v, q) ∈ NCh × Ph, it follows from (2.5) that

bh(v, q − ph)

= bh(v, q − p)+ bh(v, p)− bh(v, ph)

= bh(v, q − p)+ bh(v, p)+ (f , v)− ah(uh, v)− γ as,h(uh; uh, v)

= bh(v, q − p)+ [(f , v)− ah(u, v)− γ as,h(u; u, v)+ bh(v, p)]
+ ah(u − uh, v)+ γ [as,h(u; u, v)− as,h(uh; uh, v)]

= bh(v, q − p)+ [(f , v)− ah(u, v)− γ as,h(u; u, v)+ bh(v, p)]
+ ah(u − uh, v)+ γ [as,h(u; u − uh, v)+ as,h(u − uh; uh, v)].

It then follows from the triangle inequality, (3.2), the above equality, the
boundedness of the bilinear formsbh(·, ·) andah(·, ·), and (4.10) that

‖p − ph‖ ≤ ‖p − q‖ + ‖q − ph‖
≤ ‖p − q‖ + 1

β
sup

v∈NCh
|bh(v, q − ph)|

‖v‖1,h

≤ C‖p − q‖
+ 1

β
sup

v∈NCh
|(f , v)− ah(u, v)− γ as,h(u; u, v)+ bh(v, p)|

‖v‖1,h

+ C‖u − uh‖1,h,

which, together with (4.11), implies (4.12). Hence, the lemma has been
proved. ut
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To bound the truncation errors in (4.11) and (4.12), we follow the proof
in [4] to estimate sums of some surface integrals over all edges.

Lemma 4.2 For anyφ, w ∈ H 1
0 (�)

2 ∪ NCh,∣∣∣∣∑
j

〈
∂w
∂nj

,φ

〉
j

∣∣∣∣ ≤ Ch‖w‖2‖φ‖1,h, ∀ w ∈ H 1
0 (�)

2 ∩H 2(�)2, (4.15)

∣∣∣∣∑
j

〈
(w · nj )v,φ

〉
j

∣∣∣∣ ≤ Ch‖w‖1,h‖v‖2‖φ‖1,h, ∀ v ∈ H 2(�)2, (4.16)

∣∣∣∣∑
j

〈
q,φ · nj

〉
j

∣∣∣∣ ≤ Ch‖q‖1‖φ‖1,h, ∀ q ∈ H 1(�). (4.17)

Proof For anyw ∈ H 1
0 (�)

2 ∩ H 2(�)2, it follows either from the fact that
P0w ∈ 3h×3h if φ ∈ H 1

0 (�)
2, or from the orthogonality (4.5) ifφ ∈ NCh,

that ∑
j

〈
P0w,φ

〉
j

= 0.

Hence, formj ∈ P0(�j )
2 taken as the average ofφ over�j ,∑

j

〈
∂w
∂nj

,φ

〉
j

=
∑
j

〈
∂w
∂nj

− P0w,φ
〉
j

=
∑
j

〈
∂w
∂nj

− P0w,φ − m
〉
j

.

Now, (4.15) follows from the approximation property (4.6), the Cauchy–
Schwarz inequality, and a standard trace theorem that

∣∣∣∣∑
j

〈
∂w
∂nj

,φ

〉
j

∣∣∣∣ ≤ Ch
1
2 ‖w‖2

(∑
j

‖φ − m‖j‖∇(φ − m)‖j
) 1

2

≤ Ch‖w‖2

(∑
j

‖∇φ‖2
j

) 1
2

.

By (2.2), (4.3), and (4.6),∣∣∣∣∑
j

〈q,φ · nj 〉j
∣∣∣∣ =

∣∣∣∣∑
j

〈q −Q0q, (φ − m) · nj 〉j
∣∣∣∣

≤ Ch
1
2 ‖q‖1

(∑
j

‖φ − m‖j‖∇(φ − m)‖j
) 1

2

≤ Ch‖q‖1‖φ‖1,h,

which proves (4.17). We can prove (4.16) similarly.ut
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Theorem 4.1 Let (u, p) ∈ H 2(�)2 × H 1(�) and (uh, ph) ∈ NCh × Ph

be the solutions of(1.2)and(2.5), respectively. Then,

‖u − uh‖1,h + ‖p − ph‖ ≤ Ch(‖u‖2 + ‖p‖1). (4.18)

Proof Multiply (1.1a) byv in NCh, integrate by parts on each element, and
use (2.3) to see that

(f , v) =
(

−ν1u + γ

2∑
i=1

ui∂iu + ∇p, v
)

= ah(u, v)+ γ as,h(u; u, v)− bh(v, p)− ν
∑
j

〈
∂u
∂nj

, v
〉
j

(4.19)

+ γ

2

∑
j

〈(u · nj )u, v〉j +
∑
j

〈p, v · nj 〉j .

Rearranging (4.19) gives

ah(u, v)+ γ as,h(u; u, v)− (f , v)

= bh(v, p)+ ν
∑
j

〈
∂u
∂nj

, v
〉
j

− γ
2

∑
j

〈(u · nj )u, v〉j −
∑
j

〈p, v · nj 〉j .

By (4.10), (4.6), the triangle inequality, and Lemma 4.2, it suffices to show
that

|bh(v, p)| ≤ Ch‖p‖1‖v‖1,h, ∀ v ∈ Dh.

This is an immediate consequence of the fact thatbh(v, p) = bh(v, p−Shp)
for all v ∈ Dh, the Cauchy–Schwarz inequality, and (4.6). Thus, the theorem
is proved. ut

5 Duality and theL2-error estimate

We consider the linear dual problem




−ν1ψ −
2∑
j=1

uj∂jψ +
2∑
j=1

ψj∇uj + ∇χ = u − uh in �,

∇ · ψ = 0 in�,
ψ = 0 on ∂�.

(5.1)
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The variational formulation of (5.1) is to find a pair(ψ, χ) ∈ H 1
0 (�)

d ×
L2

0(�) such that

a(v,ψ) + a1(u; v,ψ)+ a1(v; u,ψ)− b(v, χ) = (u − uh, v), (5.2a)

∀ v ∈ H 1
0 (�)

d,

b(ψ, q) = 0, ∀ q ∈ L2
0(�). (5.2b)

If u is a nonsingular solution of (1.1), then (5.2) has a unique solution [5].
To establish the error estimate inL2 for the velocity, we use the duality

argument introduced by Aubin and Nitsche [2]. To do so, we require that
(5.1) beH 2-regular, i.e.,

‖ψ‖2 + ‖χ‖1 ≤ C ‖u − uh‖. (5.3)

We write out the argument in the Navier–Stokes case, since the Stokes case
is covered by a somewhat simpler argument. Let(ψ, χ) be the solution of
(5.2) and let(ψh, χh) ∈ NCh × Ph satisfy

‖ψ − ψh‖1,h + ‖χ − χh‖ ≤ Ch(‖ψ‖2 + ‖χ‖1). (5.4)

Theorem 5.1 Let (u, p) ∈ H 2(�)2 × H 1(�) and (uh, ph) ∈ NCh × Ph

be the solutions of(1.2)and(2.5), respectively. If(5.1) isH 2-regular, then

‖u − uh‖ ≤ Ch2(‖u‖2 + ‖p‖1). (5.5)

Proof The inequality (5.4) and theH 2-regularity (5.3) imply that

‖ψ − ψh‖1,h + ‖χ − χh‖ ≤ Ch‖u − uh‖. (5.6)

Multiplying both sides of the first equation of (5.1) byu − uh, integrating
by parts on each element, and using (2.3), we see that

‖u − uh‖2 = ah(u − uh,ψ)+ a1,h(u; u − uh,ψ)

+ a1,h(u − uh; u,ψ)− bh(u − uh, χ)

− ν
∑
j

〈
∂ψ

∂nj
,u − uh

〉
j

−
∑
j

〈(u · nj )ψ,u − uh〉j

+
∑
j

〈χ, (u − uh) · nj 〉j

= ah(u − uh,ψ)+ as,h(u; u − uh,ψ)+ as,h(u − uh; u,ψ)

− 1

2

∑
j

((∇ · (u − uh))u,ψ)j

− bh(u − uh, χ)− ν
∑
j

〈
∂ψ

∂nj
,u − uh

〉
j
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− 1

2

∑
j

〈(u · nj )ψ,u − uh〉j + 1

2

∑
j

〈((u − uh) · nj )u,ψ〉j

+
∑
j

〈χ, (u − uh) · nj 〉j . (5.7)

The second equality above follows from (2.3) and the fact thatu is divergence
free. The difference of (4.19) and (2.5a), tested againstv = ψh, implies that

0 = ah(u − uh,ψh)+ as,h(u; u,ψh)

− as,h(uh; uh,ψh)− bh(ψh, p − ph)

− ν
∑
j

〈
∂u
∂nj

,ψh

〉
j

+ 1

2

∑
j

〈(u · nj )u,ψh〉j

+
∑
j

〈p,ψh · nj 〉j . (5.8)

The difference of (5.7) and (5.8) gives

‖u − uh‖2 = ah(u − uh,ψ − ψh)+ R1

− bh(u−uh, χ)+ bh(ψh, p − ph)+ R2 + R3, (5.9)

whereR1 is a sum of trilinear forms:

R1 = as,h(u; u − uh,ψ)+ as,h(u − uh; u,ψ)

− as,h(u; u,ψh)+ as,h(uh; uh,ψh)

= as,h(u; u − uh,ψ)+ as,h(u − uh; u,ψ)

− as,h(u; u − uh,ψh)− as,h(u − uh; uh,ψh)

= as,h(u; u − uh,ψ − ψh)+ as,h(u − uh; u,ψ)

− as,h(u − uh; uh,ψ)

= as,h(u; u − uh,ψ − ψh)+ as,h(u − uh; u − uh,ψ)

+ as,h(u − uh; uh,ψ − ψh); (5.10)

R2 is a sum of line integrals:

R2 = −ν
∑
j

〈
∂ψ

∂nj
,u − uh

〉
j

− 1

2

∑
j

〈(u · nj )ψ,u − uh〉j

+ 1

2

∑
j

〈((u − uh) · nj )u,ψ〉j

+
∑
j

〈χ, (u − uh) · nj 〉j + ν
∑
j

〈
∂u
∂nj

,ψh

〉
j

− 1

2

∑
j

〈(u · nj )u,ψh〉j −
∑
j

〈p,ψh · nj 〉j ;
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andR3 = −1
2

∑
j ((∇ · (u−uh))u,ψ)j . Sinceu,ψ ∈ H 1

0 (�)
2 ↪→ C0(�)2,

we have

R2 = −ν
∑
j

〈
∂ψ

∂nj
,u − uh

〉
j

− 1

2

∑
j

〈(u · nj )ψ,u − uh〉j

+ 1

2

∑
j

〈((u − uh) · nj )u,ψ〉j

+
∑
j

〈χ, (u − uh) · nj 〉j + ν
∑
j

〈
∂u
∂nj

,ψh − ψ

〉
j

− 1

2

∑
j

〈(u · nj )u,ψh − ψ〉j −
∑
j

〈p, (ψn − ψ) · nj 〉j ,

which, together with Lemma 4.2, implies that

|R2| ≤Ch (‖ψ‖2 + ‖χ‖1) ‖u − uh‖1,h

+ Ch (‖u‖2 + ‖p‖1) ‖ψ − ψh‖1,h. (5.11)

Let cj be a constant such that

‖u · ψ − cj‖�j ≤ Ch‖u · ψ‖1,�j ≤ Ch‖u‖1,�j ‖ψ‖2,�j .

Since∇ · u = 0 andbh(uh, q) = 0 for all q ∈ Ph,

|R3| =
∣∣∣∣12
∑
j

((∇ · (u − uh))u,ψ)j

∣∣∣∣ =
∣∣∣∣12
∑
j

(∇ · (u − uh),u · ψ)j
∣∣∣∣

= 1

2

∣∣∣∣∑
j

(∇ · (u − uh), (u · ψ − cj ))j

∣∣∣∣
≤ Ch‖u − uh‖1,h‖u‖1‖ψ‖2. (5.12)

Combining (5.9)–(5.12) and using the Cauchy–Schwarz inequality element-
wise, we see that

‖u − uh‖2 ≤ C
(‖ψ − ψh‖1,h‖u − uh‖1,h

+ ‖u − uh‖1,h‖χ − χh‖ + ‖ψ − ψh‖1,h‖p − ph‖
+ ||u − uh||21,h||ψ ||1 + h (‖ψ‖2 + ‖χ‖1) ‖u − uh‖1,h

+ h (‖u‖2 + ‖p‖1) ‖ψ − ψh‖1,h
)
,

which, together with (4.18), (5.3), and (5.6), implies the validity of (5.5).
This completes the proof of the theorem.ut
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6 Two-dimensional quadrilateral elements

An extension to quadrilateral elements for the components of the velocity
is immediate. If�j is a quadrilateral, there is a unique (up to rotation in the
order of the vertices) bilinear mapFj : K̂ → �j andFj is affine on the
edges ofK̂. Thus, if we define the basis on�j as usual by

Q(�j ) = {v : v = v̂ ◦ F−1
j , v̂ ∈ Q(K̂)},

then the orthogonality properties (2.2) remain valid. Moreover, the two affine
maps induced on a common edge between adjacent quadrilateral elements
coincide, so that requiring continuity at midpoints of edges is consistent
with the mappings. If shape quasiregularity is enforced on a partition into
quadrilaterals, then the approximation properties (4.6) also remain valid.
These properties allow us to observe that the entire convergence argument
remains valid.

7 Three-dimensional rectangular elements

The results in the previous sections concerning rectangular elements can
be extended to three dimensions without difficulty. Therefore, we limit our-
selves to describing the nonconforming finite element approximation spaces,
which are direct extensions of those in two dimensions. Thus, the pressure
is approximated by piecewise constants and each component of the velocity
by the nonconforming, three-dimensional elementsQ defined below; again
continuity is imposed at the midpoints of interelement faces, along with the
requirement that the nodal values on the boundary vanish.

As in [4], the nonconforming three-dimensional elementQ on the refer-
ence cube

K̂ = [−1,1] × [−1,1] × [−1,1]
is chosen as

Q(K̂) = Span

{
1, x̂1, x̂2, x̂3,

(
x̂2

1 − 5

3
x̂4

1

)
−
(
x̂2

2 − 5

3
x̂4

2

)
,(

x̂2
1 − 5

3
x̂4

1

)
−
(
x̂2

3 − 5

3
x̂4

3

)}

= Span

{
1, x̂1, x̂2, x̂3,

(
x̂2

2 − 5

3
x̂4

2

)
−
(
x̂2

3 − 5

3
x̂4

3

)
,(

x̂2
2 − 5

3
x̂4

2

)
−
(
x̂2

1 − 5

3
x̂4

1

)}
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= Span

{
1, x̂1, x̂2, x̂3,

(
x̂2

3 − 5

3
x̂4

3

)
−
(
x̂2

1 − 5

3
x̂4

1

)
,(

x̂2
3 − 5

3
x̂4

3

)
−
(
x̂2

2 − 5

3
x̂4

2

)}
.

This choice again guarantees the orthogonality (6.1) of [4]. Denote the mid-
points of faces and the associated faces of the reference elementK̂ by
âi , i = 1, . . . ,6, andŝi , i = 1, . . . ,6, respectively. Then, the nodal basis
function related tôa1 = (1,0,0) is given by

φ̂1(x̂) = 1

6
+ 1

2
x̂1 − 1

4

((
x̂2

1 − 5

3
x̂4

1

)
−
(
x̂2

2 − 5

3
x̂4

2

))

− 1

4

((
x̂2

1 − 5

3
x̂4

1

)
−
(
x̂2

3 − 5

3
x̂4

3

))
;

the other five can be obtained by permuting indices and reflecting coordi-
nates.

A direct manipulation verifies that, fori, j = 1, . . . ,6,∫
ŝi

φ̂j dŝ = δij
∣∣ŝi∣∣ , (7.1)

where
∣∣ŝi∣∣ is the area of the facêsi . The stability analysis and analyses of the

errorsu − uh andp− ph in Sect. 3 and Sect. 4 apply without modification.
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