NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl6, 479-496 (1999)

Least-squares Finite Element Approximations for the
Reissner—Mindlin Plate

Zhigiang Cai*Xiu Ye? and Huilong Zhang)

1Department of Mathematics, Purdue University, 1395 Mathematical Sciences Building, West
Lafayette, IN 47907-1395, USA. Email: zcai@math.purdue.edu.

2Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR
72204, USA. Email: XXYE@ualr.edu.

3MAB, CNRS UPRESA 5466, Univeesitle Bordeaux |, 351 Cours de la Eiation, 33400
Takence, France. Email: hzhang@math.u-bordeaux.fr.

Based on the Helmholtz decomposition of the transverse shear strain, Brezzi and Fortin in [7] introduced a
three-stage algorithm for approximating the Reissner—Mindlin plate model with clamped boundary conditions
and established uniform error estimates in the plate thickness. The first and third stages involve approximating
two simple Poisson equations and the second stage approximates a perturbed Stokes equation. Instead of
using the mixed finite element method which is subject to the ‘infsup’ condition, we consider a least-squares
finite element approximation to such a perturbed Stokes equation. By introducing a new independent vector
variable and associated div equation, we are able to establish the ellipticity and continuity of the homogeneous
least-squares functional in ah! product norm appropriately weighted by the thickness. This immediately
yields optimal discretization error estimates for finite element spaces in this norm which are uniform in the
thickness. We show that the resulting algebraic equations can be uniformly well preconditioned by well-
known techniques in the thickness. The Reissner—Mindlin model with pure traction boundary condition is
also studied. Finally, we consider an alternative least-squares formulation for the perturbed Stokes equation
by introducing an independent scalar variable. Copyright © 1999 John Wiley & Sons, Ltd.
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1. Introduction

The Reissner—Mindlin plate model is frequently used by engineers in connection with
plate and shell problems of small to moderate thickness. It is known that standard finite
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element approximations grossly underestimate the displacement of very thin plates. Such
a phenomenon is referred to lagking of the numerical solution. There have been many
studies to develop alternative approaches (see [1,6-9]) that are robust in the zero limit of
theplate thickness. But these alternatives are usually based on eitiigedformulations

that require finite element approximation spaces satisfying the so-called infsup condition
or stabilized mixedormulations (see [9] and references therein). Both formulations lead
to symmetric but indefinite algebraic systems that are difficult to solve (see [2,5]). Indeed,
little attention seems to have been paid to the development of robust solution strategies for
the resulting algebraic equations.

Among thosdocking-freediscretization schemes, the fundamental work of Brezzi and
Fortin in [7] must be noted. Based on the Helmholtz decomposition dfdinsverse shear
strain, they introduced a three-stage algorithm for approximating the Reissner—Mindlin
model with clamped boundary conditions and established the uniform convergence of dis-
cretization schemes in the thickness. The first and third stages solve simple Poisson equa-
tions for the respectiverotational part of the shear strain anmlansverse displacement
The second stage uses mixed finite element methods to solve a Stokes equation perturbed
by a Laplacian term for theotation of the fibers and theolenoidal parbf the shear strain.

As usual, mixed finite element methods are subject to the infsup condition and the resulting
algebraic equations are difficult to solve.

Recently, there has been substantial interest in the use of least-squares principles for
numerical approximations of elliptic partial differential equations and systems. See [11—
13] for linear elasticity which is a parameter dependent problem. Its advantages over the
usual mixed finite element discretizations include: (a) the choice of finite element spaces is
not subject to the infsup condition, (b) the resulting algebraic equations can be efficiently
solved by standard multigrid methods or preconditioned by well-known techniques, and (c)
the value of the least-squares functional provides a good error indicator which can be used
efficiently in a refinement process.

The purpose of this paper is to extend this methodology to the perturbed Stokes equation.
By introducing a new independent vector variable, the vector curl of the solenoidal part
of the shear strain and associated div equation, we reformulate such a perturbed Stokes
equation as an equivalent first- and second-order system. We first apply a least-squares
principle to this system using?- andH ~1-norms weighted appropriately by the thickness.

We then show that the homogeneous part of the resulting functional is uniformly elliptic and
continuous with respect to the thickness in a weigtégroduct norm. ThéZ ~1-norm and
second-order differential operators in the functional are further replaced by the respective
discrete ~1-norm and discrete second-order differential operators to make the computation
feasible (see [3,10,11]). Such a discrete functional is shown to be uniformly equivalent to
the same weighteff 1 product norm. This property enables us to show that standard finite
element discretization error estimates are optimal and uniform in the thickness. Moreover,
the resulting discrete algebraic equations can be preconditioned by multigrid uniformly
well with respect to the thickness, the mesh size and the number of levels.

The Reissner—Mindlin model is introduced in Section 2, along with some notation. We
describe a least-squares formulation for the perturbed Stokes equation and establish its
ellipticity and continuity in Section 3. Its discrete counterpart, the corresponding finite
element approximation and an efficient preconditioner are discussed in Section 4. Section
5 studies the pure traction problem. This least-squares formulation involves the weighted
H-norm of new independent variable, the curl of the solenoidal part of the shear strain, and
hence, it has one extra regularity requirement in establishing standard error estimation (see
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Theorem 4.2). As an alternative, we consider another least-squares formulation in Section 6
by introducing the curl of the shear strain that is the quantity representing a different scale.
The latter has the same numerical properties as those of the former, but no extra regularity
requirement.

2. The Reissner—Mindlin model

Let%(2) be the linear space of infinitely differentiable functions with compact support on
Q. We use standard notation and definition for the Sobolev spiéég)? for s > 0, the
associated inner products are denoted-by), o, and their norms by - || . (We will

omit  from the inner product and norm designation when there is no risk of confusion.)
Fors = 0, H*(2)? coincides withZ2(2)2. In this case, the norm and inner product will be
denoted by - || and(-, -), respectively. As usuaH(}(Q) is the closure of» (£2) with respect
tothe normj|- ||1. Let Hy *(2) andH ~(2) be duals o3 (2) andH(£2), correspondingly,

with norms defined by

¥ll-10= sup W, ¢) and [[Y¥]_1= sup ¥, @)
0£¢eHy() 19111 oxperi@ 911

respectively. Define the product spackg(22)? = []2; H}() with standard product
norms and IetLg(Q) denote the subspace 8f(€2) consisting of all such functions in
L2(2) having mean value zero.

Let 2 be the region occupied by the plate and assumehaia convex polygon i,
Letw and ¢ = (¢1, ¢2)! denote the transverse displacemenfadnd the rotation of the
fibers normal ta2, respectively. The variational form of the Reissner—Mindlin plate model
is to find (w, @) € Hy(Q) x HF(2)? such that

a(. ) + 17 2(p— Voo, = V) = (g,v), V(v ) € Hy(Q) x H}(?  (2.1)

where the symboV stands for the gradient operater;> 0 is the plate thickness; =
Ek/2(1+ v) is the shear modulus with the Young’s modulusy € (—1, %) the Poisson
ratio andk the shear correction factor; agds the given scaled transverse loading function
(scaling by a constant multiple of the square of the thickness [7]). The bilineardferm

is defined by

E
a(P, P) = m /Q |:(31¢1 + v02¢2) 011 + (V0191 + 02¢02) D22
1 _
= (Gag1 + 162) (G291 + Da2) ]
whered; ¢; = % andd;y; = % fori,j =1,2.

We will use standard curl notation for two dimensions by identif)@t?g/vith the(x1, x2)-
plane in%3. Thus, the curl okp means the scalar function

Vx ¢ = 0192 — 9201

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl6, 479-496 (1999)
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andV-+ denotes its formal adjoint:

o2p
vip=
P (—3119)

The gradient operator is extended to two-vectors componentwise:

V1
Vo =
+=(vn)
In order to avoid the ‘locking’ phenomenon, Brezzi and Fortin [7] propodbdee-stage
finite element method through the Helmholtz decomposition of the transverse shear strain

vector. Such an approach converges uniformly in the thicknégsthis end, consider the
following Helmholtz decomposition

M T2(Vo — ) =Vr —Vip (2.2)

with (r, p) € H}(Q) x (H1()/R). For simplicity, assume that= 1. Then the equivalent
formulation of (2.1) suggested by Brezzi and Fortin [7] is as follows:

(1) Findr € H}(Q) such that

(Vr, V) = (g, 1), ¥ p e HHQ) (2.3)

(2) Find(¢, p) € H}(R2)? x (HY(22)/%) such that

a(h. )+ (Vip, ) = (Vrgh). Ve Hy()? 2.4)
(¢, Vi) —1(Vip. Vig) =0, Vg€ H(Q)/R '

(3) Findw € H}(R) such that
(Vo, Vs) = (p+12Vr, Vs), Vs e HI Q) (2.5)
The following a priori estimate was established by Brezzi and Fortin in [7].

Theorem 2.1. LetS be a bounded convex polygon or havk! boundary infk2. For any
0 <t < Candg € HX(Q), there exists a unique solutian, ¢, p, w) € HC}(Q) X
H} ()2 x (HY(Q)/R) x H}(Q) of problem (2.3-2.5). Moreove# € H?(2)? and there
exists a positive constagt independent of and g such that

I+ lidlz+ lipla+2liplz + lwli < Cligl-10 (2.6)

Note that problems (2.3) and (2.5) are the Poisson equations whose numerical compu-
tations are well understood. Hence, we only consider least-squares finite element approxi-
mations to problem (2.4). Note also that problem (2.4) is a perturbed Stokes equation with
the following strong form:

—01Ap—V(V-$)+Vip=1f, inQ 07
{ Vx¢+1?Ap=fz, inQ (2.7)

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl6, 479-496 (1999)
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wheref = Vr and f3 = 0, with boundary conditions

¢=0 and Vp-n=0 on 9Q (2.8)
Herea; = ﬁ > 0,00 = ﬁ > 0, the symbolV- stands for the divergence
operator, anagh = (n1, n2)’ is the outward unit vector normal to the boundasry.
Remark 1

It is easy to establish the following a priori estimate for the solution of problem (2.7-2.8):

Il + Ilpll + 12V pll + 2 Apll < € (If 11,0 + Il fall)

whereC is a positive constant independentroBased on this estimate, it is possible to
develop a least-squares formulation, but such formulation invefzes which complicates
discretization and solution processes (cf. [4]).

Let
H(div; Q) = {ve L3(Q)%: V-v e L%Q)}

and
Hcurl; Q) = {ve L2Q)?: V x Ve LQ)}

which are Hilbert spaces under the respective norms:

NI

1
IVl iviy = (IVIZ+ 19 vI2)* and Ivireue) = (IVI2+ 1V x vI1)
Define their respective subspaces:
Ho(div; Q) ={ve H(div;Q): n-v=00ndQ}

and
Ho(curl; Q) ={ve H(curl; Q) : nxv=00ndR}

Set
U = Hp(div; Q) N H(curl; Q) and W = H(div; Q) N Hp(curl; Q)

We will also make use of the following results (see [15]).

Theorem 2.2. Assume that the domahis a bounded convex polygon or h@s * bound-
ary. Then for any vector functionin eitherU or W, we have

IvIZ = € (IVI2+ 1V - I+ 1V x Vi) 2.9
If, in addition, the domain is simply connected, then

VIZ = ¢ (IV- VIZ+ 1V x vI?) (2.10)

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl6, 479-496 (1999)
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3. Aleast-squares formulation

In this section, we first introduce a new independent vector variable for the treatment of
the termr2Ap in (2.7) and write problem (2.7)—(2.8) as a first- and second-order system.
We then apply the least-squares principle to such system. Our least-squares functional is
defined by the weighted sum of the?- and H ~1-norms of the residual equations of the
system. The ellipticity and continuity of the homogeneous functional are established in
Theorem 3.1. This will in turn imply the well-posedness of the least-squares formulation
and its equivalence to (2.4).

Introducing an independent vector variable

u:VLp

and using the homogeneous Neumann boundary conditign wfe have the following
properties
V-u=0 inQ and u-r=0 onoiQ 3.1)

wherer = (—n», n1)' is the unit counter-clockwise vector tangent to the boundaty
Then problem (2.7)—(2.8) may be rewritten as following first- and second-order system:

—a1APp—aaV(V- ) +Vip=Vr, inQ
Vx¢p—1°Vxu= 0, inQ

u—Vip=10 inQ (3.2)
V-u= 0, in Q
with boundary conditions
$d=0 onoQ
Vp-n=0, onaQ (3.3)

u-7=0, onoaR

We define the least-squares functional in terms of appropriate weights and norms of the
residuals for the above system:

G(¢, p, U; r) = |Vr + @18+ a2V(V - @) — VEpl|2) o+ [V x ¢p— 12V x u|?
+ltu = VEp) 12+ 12V - u)?
(3.4)
Let
V= HEQ)? x (HY(Q)/R) x W

and denote the weighted norm oWy

1
2

1. p Wil = (113 + P12 + 16V pI2 + rul + 12Vul?)

The least-squares formulation for problem (2.7) with boundary condition (2.8) is to mini-
mize the quadratic function&t (¢, p, u; r) with givenr over¥: find (¢, p, u) € V" such
that
G, p,u;ry=inf G, s, V; 1) (3.5
@W.p,Wer

Below, we will useC with or without subscripts to denote a generic positive constant,

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl6, 479-496 (1999)
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possibly different at different occurrences, which is independent of the plate thickness
and the mesh sizk, introduced in the subsequent section, but may depend on the domain
Qandy; (i =1, 2).

Theorem 3.1. The homogeneous functior@{ ¢, p, u; 0) is elliptic and continuous if¥’;
i.e., there exists a positive constanindependent of the thicknessuch that

1
2 i@, p, Wlli3 < G(¢, p, u; 0) (3.6)

and that
G(¢, p, u; 0) < Clll(¢, p, WIIIZ (3.7)

forany (¢, p,u) in V.

Proof
The upper bound in (3.7) follows immediately from the triangle inequality and the easily
established bounds

lAgl-10< IVl <liglr, IV(V-Pl-10=<ldli, [Vpl-10=Ilpll (3.8)

We proceed to show the validity of the lower bound in (3.6) (@t p, u) € V" satisfying
that ¢ € H?(Q2)2. Then (3.6) will follow for (¢, p, u) € V' by continuity. For anyp e
HY(Q)/%, note first that by using the well-known inequality (see, e.g., [1Bpl <
C|IVpll-1.0, and the change of variablé;, x2) = (—x2, x1), we have that

lpll = 151l < CIIVpll-10 = CIIV* pll-10 (3.9)

It then follows from the triangle inequality and the first two inequalities in (3.8) that

Ipll < € (IV:p — 18— a2V(V - )10+ I bl (3.10)

Using the Korn inequality, the integration by parts, and the Cauchy—Schwarz inequality, we
have that

Col @l <1 (Vep, V) + a2 (V- b, V- )
= (—a1Ap—a2V(V - @), ¢)
= (~12p—aV(V- $)+ Vip. ) = (V. @)
< Gi(¢, p.u; O pllL— (p.V x @) (3.12)
and that
—(p, VX ) = (p, =V x ¢p+12V x U) — (p, 12V x u)

= (p, =V x ¢+ 1>V x U) — (tV*p, tu)
= (p, =V X ¢+ 12V x u) — (t(Vp —u), ru) — ||ru]?

< (lpll + lrul) GZ (b, p. u: 0) — [ru])? (3.12)

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl6, 479-496 (1999)
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WhereG%(gb, p,u; 0) = ,/G(¢, p, u; 0). Combining the above two inequalities implies
that

1
CollplZ + llrull®> < C G2 (e, p, u; 0) (IIpllx + lIpll + llrull)
1
< CG(¢h, p.u; 0) + CGZ(ep, p.u; 0) (Il dll1 + llzul)

The last inequality used bound (3.10). It then follows fromdkeequality that
Il + llzull® < C G, p, u; 0)

Now, upper bounds in (3.6) for the term||2, 17V p||2, and |72Vu||?, are immediate
consequences of (3.10), the triangle inequality, and Theorem 2.2. This completes the proof
of the validity of (3.6) and, hence, the theorem. ]

4. Finite element approximations

This section presents a discrete ! least-squares finite element approximation for the
perturbed Stokes problem based on (3.5). We first discuss the well-posedness of the discrete
problem and then establish optimal order error estimates in the weightewrms for each
variable.

We approximate the minimum of the least-squares functiori@h, p, u; r) defined in
(3.4) using a Rayleigh—Ritz type finite element method.Lgte a partition of the? into
finite elements; i.eQ = Ugcg, K Withh = max{hg = diam(K) : K € J;}. Assume that
the triangulatiory’, is quasi-uniform; i.e., it is regular and satisfies the inverse assumption
(see [14]). Lefl" = ®" x P" x U" be a finite-dimensional subspace’6fsuch that for
any (g, q,v) € (H" ()% x H"t1(Q) x HY1()?%) NV, there exists an interpolant of
(, ¢, V), denoted by(y’, g7, v1), in ¥" satisfying

lgp— ||+ hllg— o < ChY el 41 (4.1)
D hk (AW —D)lok + IV - W= ¢ Nlox) < Ch Il 11 (4.2)
KeJh

lg — "Il + hllg — g"lla < ChY gl 41 (4.3)
> hklVig —qHlox < Ch qll, (4.4)
KeJh

IV =V + AV =V < CRY V], 41 (4.5)

wherey > 0for (4.1), (4.3) and (4.5) and > 1 for (4.2) and (4.4), and, -)o.x and| - |lo, x
indicate the respective inner product and normifiK). It is well known that (4.1)—(4.5)
hold for typical finite element spaces consisting of continuous piecewise polynomials with
respect to quasi-uniform triangulations (cf. [14]).

Note that the functional; (¢, p, u; r) defined in (3.4) involves théf ~1-norm, which
requires solution of a boundary value problem for its evaluation, and second-order differ-
ential operators. Hence, we need to replaceAhe-norm in (3.4) by a computationally
feasible discreté/ ~1-norm that ensures the equivalenc@dhbetween the standard norm
in ¥ and that induced by the discrete homogeneous functional. (A diskreteapproach
was introduced in [3] for scalar elliptic equations and was extended to the Stokes problem

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl6, 479-496 (1999)
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in[11] and linear elasticity in [13] in the context of least-squares methods and was used for
the Stokes problem in [10] in the context of stabilized finite element methods.) Also, we
need to replace the Laplacian and gradient operators in the first term of the functional by
the corresponding ‘discrete’ operators so that we cartddimite element approximations.

To this end, define the operatar Ho_l(Q)2 — Hol(Q)2 as the solution operator for the
Poisson problem

—Ag+=v in Q
{ =0 onoR (4.6)

i.e.,Av = iforagivenv Ho‘l(Q)2 is the solution of (4.6). Itis well known tha# -, ~)%
defines a norm that is equivalent to tHg‘l—norm. LetAy: Ho‘l(Q)2 — ®" be the discrete
solution operatory = A,v € ®”" for the Poisson problem (4.6) defined by

/(V!//~VW+ Uow) = (v, w), wed"
Q

It is easy to check thatay, -, ~)% defines a semi-norm 01‘-1!0_1(52)2 which is equivalent to
the discrete; * semi-norm

I i = sup 22
g 1911

Assume that there is a preconditiory : Ho‘l(Q)2 — @" thatis symmetric with respect
to the L2(2)-inner product and spectrally equivalentAq; i.e., there exists a positive
constantC, independent of the mesh sizesuch that

1
E(Ahv, V) < (BpV, V) < C(ApV, V), Ve® 4.7

Remark 1

(1) By introducing thel.2-orthogonal projection operat@?;, : L2($2)2 — ®" and noting
the relations thatA;, = A,Q, and B, = B, Qy, it is easy to check that the spectral
equivalence in (4.7) holds for evewye L2(2)2.

(2) The spectral equivalence in (4.7) implies that

NI

|- l—1,n = (Bp-, *)

defines a semi-norm oH,, 1(€2)?, which is equivalent td - || 1.

Finally, we introduce ‘discrete’ Laplacian and gradient operators: the ‘discrete’ Laplacian
operator,A,: H}(Q2)? — ®", for givenv € H}(Q)? is defined by = Apv € ®"
satisfying

(i, W) = —(Vv, VW), VYV we P

and the ‘discrete’ gradient operatd,: L2($2) — ®", for giveng € L2(2) is defined by
V = Vg € ®" satisfying

V, W) = —(¢,V-w), Yw e ®"

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl6, 479-496 (1999)
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Now, we are ready to define the discrete counterparts of the least-squares funGtiamal
follows:

G, p.uir) = |Vr + a1+ a2Vi(V - ) — Vp|2,

+ ) hRIVr+e1Ad+aV(V- ) — Viplif ¢
KeTy,

+ IVx @—2V xull?+ ||t(u— VEp)|I? + |12V - u||® (4.8)

Then the least-squares finite element approximation to (3.5) is ta&fd p”, u") e V"
such that

Gu(o", p", u"; 1y = inf Gu(¥, q, Vi 1)
W,q,V)ev™

The corresponding variational problem is to fiadd", p”, u") e " such that

bu(P", p" Ut g v =r (g, v), Y (g, v) €V (4.9)

where the bilinear fornd,, (-; -) is induced by the quadratic fori@, (-; 0) and the linear
formr(-) is given by

r@hg.v) = (BiVr, —atnth— a2V (V - 9 + Vq)

Y B (Vr—oadh— a2 (Y -+ V)

KeTy 0.K

Theorem 4.1. The homogeneous function@l, (¢, p, u; 0) is elliptic and continuous in
It i.e., there exists a positive constaftindependent of ands such that

1

cllice. p. W12 < Gi(¢p, p, u; 0) (4.10)
and that

Gn(e, p,u; 0) < Cll|(¢h, p, W||I3 (4.11)
for any (¢, p,u) € V.

Proof
By the definitions of the ‘discrete’ Laplacian and gradient operators and the Cauchy—
Schwarz inequality, we have that fgr ¢ ®",

And, Ve,V
||Ah¢”—l,h = Ssup M = sup M

\Y 4.12
T e A 7P
and

Vi (V - , V-, V-
IVi(V - )ll_1p = sup Mz sup V-, V-PI

Vv 4.13
e’ 4l b’ °h <IVel (4.13)

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl6, 479-496 (1999)
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The upper bound in (4.11) is then a straightforward consequence of Remark 1, the triangle
and inverse inequalities, and the bound that

IVEpl_1n < CIVEpll—1a < CIIVEpl—10 < Clipll

Next, we show the validity of (4.10). Note first that (4.1) with= 0 implies that, for
any ¢ € H}(Q)?,

I — Onipll < Chiigplls and [[Qnthll1 < Clligpa

For anyy € L2(2)2, a standard duality argument implies that

1

2
1 — Qnipll—1.0 < Chllgl < C ( > h%nwuak)

KeT),
and
(Onip, W) (¥, Opw)
Qntpll—10= sup ———=< sup —= <C|ll-1n
WeH(9)2 [lw]l1 WeHL(Q)2 (KRS
0 0
Hence,

% 10<C ( > hklwldk + ||¢||21,,1)

KeJy
which, with the choicay = V- p and the inequality (3.9), gives
Ipl? < c ( > hRIVEplG« + ||va||%1,,1> , peP!
KeJy
It then follows from the triangle and inverse inequalities, (4.12), (4.13), and Remark 1 that
Ipl? < c ( Y & (leadd+ a2V (V- ) — VEpld ¢ + 1ABIG  + IV(V - ¢>||%,K>>
KeTy
+C (le b+ @2Vi(V - ) = VEpI2y, + 10012 1, + 194V - B2
< CGu(¢h, p,u; 0) + Cll gl (4.14)

By the Korn inequality, the definitions of the ‘discrete’ Laplacian and gradient operators,
and Remark 1, we have that for aglye ®”"

Coll@lls <er(Vep, V) + a2 (V- ¢, V- )
= (—a1App — 2V (V - @), )
= (~1np— Vi (V- $) + Vi, ¢) = (V1 p. ¢)
< Cl—a1Apd—a2Vi(V - @)+ VEpl_villdlli— (p, V x )

1 1
< CGZ(¢, p,u; O)lllls+ lpll + lleul) GZ (¢, p, u; 0) — [zl

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl6, 479-496 (1999)
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The last inequality follows similarly to the proof of (3.12). We then have bytheequality
and (4.14) that
11§ + llrull® < C Ga(gb, p, u; 0)

Upper bounds in (4.10) for the termigp |2, ||V p|I%, and||2Vu||?, can be established by
an argument similar to that in the proof of Theorem 3.1. This completes the proof of the
theorem. ]

Theorem 4.2. Let (¢, p, u) and (¢, p", u") € V" be the solutions of (3.5) and (4.9),
respectively. Assume th@ap, p) isin H” 71()2 x HY*t2(Q) withy > 1. Then there exists
a positive constant’ independent of the thicknesand the mesh siZesuch that

lp— @"Il1+ Ilp — p"Il+ 11V (p — P+l u — uM)|| + 12V (u — uM) |
< Ch” (||¢||y+1 +1plly + ltplly+1 + lleully + ||r2u||y+1) (4.15)
Moreover, if the domaif is bounded and sufficiently smooth, then we have that fer1,
lp—" 14+ p—p" I+1V (p—p") I+l (u—u") [+ 12V (u—u") || < Chllgll-10 (4.16)

Proof
Itis easy to see that the approximation er(e,— ¢h, p — p", u—uh), satisfies the error
equation

bu(p— ", p—p'u—u"; g, v)=0, Y (hq,v)eV"

Let (¢!, p’, u’) be an interpolant of¢, p, u) satisfying (4.1)—(4.5). To show the validity
of (4.15), it suffices to prove that

ld" — "1+ Ip" — p" I+ 1tV (! — Pl + ru! — u")| + 2V ! — |
< Ch” (||¢||y+1 +1plly + lzplly+1 -+ llzully, + ||t2u||y+1)

This follows from Theorem 4.1, the above error equation, the Cauchy—Schwarz triangle and
inverse inequalities, and approximation properties (4.1), (4.3) and (4.5). If the dén&in
sufficiently smooth, then the second equation in (2.7) implies that

I2pll3 < CIIV x ll1

Now, (4.16) is then a direct consequence of (4.15), Theorem 2.1 and the relation" p.
This completes the proof of the theorem. ]

Theorem 4.1 indicates that the discréde! least-squares functional,, (¢, p, u; 0)
defined in (4.8) can be preconditioned by the functional

I3 + P12 + 112V plI? + flull? + 12V u]?

that decouplesp, p andu unkonwns, because they are spectrally equivalent uniformly
in the thickness and the mesh sizk. This means that the discrete system (4.9) can be
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uniformly preconditioned by a block diagonal preconditioner

Ah’d) 0 0
0 A,, O
0 0 Apu

Here the blocks correspond to the ordering of unknowng,0p andu, andA, & Anp
andAj_ y are the respective discrete solution operators of the Poisson problems:

find ¢ e ®" suchthat (Vep, Vih) + (b, ) = (g, ), Y e D"
find pe P" suchthat t2(Vp,Vg)+ (p,q) = (po.q), ¥ qe P"
find ueU" suchthat r*(Vu, Vv) +2(u,v) = (Ug,Vv), VYveU"

We canthenreplacg;, ; fori = ¢, p, uby any effective elliptic preconditioners including
those of multigrid type. Note that the Poisson problemgfandu are weighted byin such

a way that the condition numbers of the discrete operatoré’a((c%)2 + 1). Therefore, we
canreplacel;, , andA, u by simple preconditionersincluding those of diagonal matrix type
when the thicknessis relatively small compared with the mesh siz&Vith preconditioners
mentioned above, the preconditioned system/kaglependent condition number but we
have no estimate of its actual size.

5. Pure traction boundary conditions

The strong form of the Reissner—Mindlin plate model with pure traction boundary conditions
andi = 1is given by

{ —1A¢ —aV(V- ) +172(p—Vw) =0, inQ 5.1)

172V . (p—Vw) =g, inQ

which satisfies the following boundary conditions

o(d)n = (A—v)é(d)+vV-p$)N=0 and ¢pn—Vw-n=0 onoiQ
(5.2)
whered is the 2x 2 identity matrix andé(¢) = (%(ai@ + 8j¢i))2 , the deformation.
X

Let & be the space of linear functions ey i.e.,

E
12(1 — v2)

F=la+bxi+cx2:a,b,c, R}

and £ its orthogonal complement ih?($2). Then (the weak form of) boundary value
problem (5.1)—(5.2) has a unique solutigigh, ) € H1(Q)? x HY(Q), up to additive
functions in(VE¥) x & foranyg € H-X(2) N L+,

In this section, we extend our previous discussions to the pure traction problem (5.1)—
(5.2). We also consider imposing some boundary conditions on the functional rather than the
solution space. Because the development of computable finite element approximations and
the corresponding efficient iterative solvers or preconditioners, based on the least-squares
functional involving theH ~1-norm, becomes standard (see, for example, Section 4), we
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are, therefore, focusing on establishing ellipticity here and in the subsequent section.
To this end, define € H1(Q) to be the solution of

{ —Ar=g, in Q, (5.3)

Vr-n=0, 0no

Then we again have the Helmholtz decomposition (2.2) for the transverse shear strain, but
the boundary condition fop is now thatVp - 7= 0 on9d2. We may normalize so that

p = 0 ondQ. Substituting (2.2) into the first equation in (5.1) and the second boundary
condition in (5.2) and applyiny x to (2.2) give the perturbed Stokes equation (2.7) but
with the following boundary conditions

o(@p)n=0 and p=0 onaiQ (5.4)

The second equation and the second boundary condition in the respective (5.1) and (5.2)
lead to

(5.5)

—Aw=1%g—-V-¢, in Q
Vo-n=  ¢-n, ona

Let
Vp=®x H}(Q) xU and ®={e (HX(Q)/R)? : o(¢p)n =0 o0n i}

Then the similar proof as that of Theorem 3.1 gives:

Theorem 5.1. For the functionalG defined in(3.4), there exists a positive consta@t
independent of the thicknessuch that

1
Elll(dh p. WG < G(@, p, u; 0) < Clli(ep, p, WIIIF (5.6)

forany (¢, p, u) € Vp.

Instead of imposing traction boundary conditions¢obn the solution space, we may
enforce them weakly in the least-squares functional. More specifically, we modify the
functional G as follows:

G, p. us 1) =G, p, Ui 1) + o (DN,

where|| - ||as2,—% is H‘%(aﬂ) norm (see [16] for the discrete counterpart of the boundary
integral term). Let
Vp = HYQ)/R)? x H}Q) x U

and denote the weighted norm ‘iﬁfrp by

(b, p, WIllg, = <|||<¢, P, WIIE + ||a<¢>n||§gy%)

Theorem 5.2. There exists a positive constatiindependent of the thicknessuch that

1 A
@, p, wIE < G@, p,u; 0) < Cllie, p, WIIE, (5.7)
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forany (¢, p,u) € °l7p.

Proof
Upper bound (3.7) fo6G immediately implies the upper bound in (5.7). Note that

a1 (Vep, V) + a2 (V- p, V- ) =(=V-o(h), P) + /asz & - (o(p)n)ds
and that

I/ ¢ (0(dMds| < llo(dnlyg 1ldlye 1 = Cllo(@nlZ, 1l
90 72

forany ¢ (Hl(SZ)/R)Z. Now the proof of the lower bound in (5.7) follows in a similar
fashion as that of lower bound (3.6). ]

6. Another least-squares formulation

The least-squares formulation introduced in Section 3 involves the weightatbrm ofu
and hence, error estimates in Theorem 4.2 requirgtt@t ¥ +2(2) while ¢ € HY t1(Q)2.
As an alternative, this section presents another least-squares formulation by introducing the
curl of the shear strain that is the quantity representing a different scale. The latter has the
same numerical properties as those of the former, but no extra regularity requirement. As
in the previous section, we are focusing on establishing ellipticity here.

To this end, letw = V x ¢, then the perturbed Stokes equation may be rewritten as

—a1APp—aaV(V- ) +Vip=Vr, inQ
w4+2Ap=0, inQ (6.1)
w—Vxd¢= 0, in Q

with boundary conditions

¢=0 and Vp-n=0 onaiQ

/wdx:O
Q

V1=HHQ2xP x L5(Q) and P ={qe HXQ)/R : Vg -n=0aniQ)

and the compatibility condition

Let

and denote the weighted norm ovér by
1
2

1
(b, p, w)|ly, = (||¢||%+ P2+ 111V+pl® + ||;w||2_1+ ||w||2)
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We then consider the following least-squares functional

Gi(¢. p. wi r) = [|Vr + 018+ a2V (V - ) — V1 pl2 ) o + 13w + 12Ap) |2,
+Hlw =V x ¢||?
(6.2)
forany (¢, p, w) € V1.

Theorem 6.1. There exists a positive constatiindependent of the thicknessuch that

1
Zlllb. p. wllif, < Guld. p. wi0) < ClII@. p. wIIF, (6.3)

forany (¢, p, w) € V1.

Proof
The upper bound in (6.3) is a straightforward consequence of the triangle inequalities, (3.8),
and the easily established bound

Ap,v Vp, Vv
|Apll—1 = sup (8p.v) _ sup Vp ):snvan (6.4)

veHY(Q) vl veHL(Q) vl

It follows from the integration by parts, the Cauchy—Schwarz and Pdn€aiedrichs
inequalities, and the definition of thg~1-norm that

—(p.Vx ) = (p,w—V x @) —(p,w+1*Ap)+(p, t*Ap)
= (p,w—Vxd¢)—(p, %(ertzAp)) — [tV p)?
< lplllw—Vxll+CltVp] II%(ertzAp)ll—l— ItV+pl? (6.5)
Combining with (3.11), and using (3.10) and #nequality imply that
Coll ¢l + 11V pl|* < CGa(b, p, w; 0)

and, hence, that
Ipl? < CG1(ep, p, w; 0)

Lower bounds in (6.3) for the ternﬂétwnil and||w||? are immediate consequences of the
triangle inequality and (6.4). This completes the proof of the validity of the lower bound in
(6.3) and, hence, the theorem. ]

As in the previous section, we may enforce weakly the boundary conditipnirothe
least-squares functional by modifying the functioGalas follows:

. ap
Dy ) 2,9P 2
G1(h, p, w;r) = G1(, p, w; r) + £t an ||39’_%

forany (¢, p, w) in R
V1= H3(Q)? x (H{Q)/R) x LE(Q)
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By noting that the inequality (6.4) becomes

9
—(Vp, Vv) + [ vskds ap
IApl-1=sup LI < |VEpl+Cli=- 12, s
veHL(Q) lvll1 an T2

and that (6.5) becomes

_(p9v X d’)

1 op
= (p, w—V x ¢) — (tp, =(w + 12Ap)) — |1V pl? + rzf p——ds
t s on
1
<lpllw—V x ¢l +CllzV*p] 15w+ t2Ap) -1 — ItV pl|?

op
1 2
+ ClltV=pl| III%IIm,_%

Then the same argument as that in the proof of Theorem 6.1 gives

Theorem 6.2. There exists a positive constafiindependent of the thicknessuch that

1 A
Sl powlliE, < Gal. p. w:0) < ClII. p. wIIF, (6.6)

forany (¢, p, w) € 91 with

1
ap 2
_ 2 2
(¢, p, wllly. = (III((I’, P> Wy, + II—anIIQQ’_%>
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