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Based on the Helmholtz decomposition of the transverse shear strain, Brezzi and Fortin in [7] introduced a
three-stage algorithm for approximating the Reissner–Mindlin plate model with clamped boundary conditions
and established uniform error estimates in the plate thickness. The first and third stages involve approximating
two simple Poisson equations and the second stage approximates a perturbed Stokes equation. Instead of
using the mixed finite element method which is subject to the ‘infsup’ condition, we consider a least-squares
finite element approximation to such a perturbed Stokes equation. By introducing a new independent vector
variable and associated div equation, we are able to establish the ellipticity and continuity of the homogeneous
least-squares functional in anH1 product norm appropriately weighted by the thickness. This immediately
yields optimal discretization error estimates for finite element spaces in this norm which are uniform in the
thickness. We show that the resulting algebraic equations can be uniformly well preconditioned by well-
known techniques in the thickness. The Reissner–Mindlin model with pure traction boundary condition is
also studied. Finally, we consider an alternative least-squares formulation for the perturbed Stokes equation
by introducing an independent scalar variable. Copyright © 1999 John Wiley & Sons, Ltd.
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1. Introduction

The Reissner–Mindlin plate model is frequently used by engineers in connection with
plate and shell problems of small to moderate thickness. It is known that standard finite
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element approximations grossly underestimate the displacement of very thin plates. Such
a phenomenon is referred to aslockingof the numerical solution. There have been many
studies to develop alternative approaches (see [1,6–9]) that are robust in the zero limit of
theplate thicknesst . But these alternatives are usually based on eithermixedformulations
that require finite element approximation spaces satisfying the so-called infsup condition
or stabilized mixedformulations (see [9] and references therein). Both formulations lead
to symmetric but indefinite algebraic systems that are difficult to solve (see [2,5]). Indeed,
little attention seems to have been paid to the development of robust solution strategies for
the resulting algebraic equations.

Among thoselocking-freediscretization schemes, the fundamental work of Brezzi and
Fortin in [7] must be noted. Based on the Helmholtz decomposition of thetransverse shear
strain, they introduced a three-stage algorithm for approximating the Reissner–Mindlin
model with clamped boundary conditions and established the uniform convergence of dis-
cretization schemes in the thickness. The first and third stages solve simple Poisson equa-
tions for the respectiveirrotational part of the shear strain andtransverse displacement.
The second stage uses mixed finite element methods to solve a Stokes equation perturbed
by a Laplacian term for therotationof the fibers and thesolenoidal partof the shear strain.
As usual, mixed finite element methods are subject to the infsup condition and the resulting
algebraic equations are difficult to solve.

Recently, there has been substantial interest in the use of least-squares principles for
numerical approximations of elliptic partial differential equations and systems. See [11–
13] for linear elasticity which is a parameter dependent problem. Its advantages over the
usual mixed finite element discretizations include: (a) the choice of finite element spaces is
not subject to the infsup condition, (b) the resulting algebraic equations can be efficiently
solved by standard multigrid methods or preconditioned by well-known techniques, and (c)
the value of the least-squares functional provides a good error indicator which can be used
efficiently in a refinement process.

The purpose of this paper is to extend this methodology to the perturbed Stokes equation.
By introducing a new independent vector variable, the vector curl of the solenoidal part
of the shear strain and associated div equation, we reformulate such a perturbed Stokes
equation as an equivalent first- and second-order system. We first apply a least-squares
principle to this system usingL2- andH−1-norms weighted appropriately by the thickness.
We then show that the homogeneous part of the resulting functional is uniformly elliptic and
continuous with respect to the thickness in a weightedH 1 product norm. TheH−1-norm and
second-order differential operators in the functional are further replaced by the respective
discreteH−1-norm and discrete second-order differential operators to make the computation
feasible (see [3,10,11]). Such a discrete functional is shown to be uniformly equivalent to
the same weightedH 1 product norm. This property enables us to show that standard finite
element discretization error estimates are optimal and uniform in the thickness. Moreover,
the resulting discrete algebraic equations can be preconditioned by multigrid uniformly
well with respect to the thickness, the mesh size and the number of levels.

The Reissner–Mindlin model is introduced in Section 2, along with some notation. We
describe a least-squares formulation for the perturbed Stokes equation and establish its
ellipticity and continuity in Section 3. Its discrete counterpart, the corresponding finite
element approximation and an efficient preconditioner are discussed in Section 4. Section
5 studies the pure traction problem. This least-squares formulation involves the weighted
H 1-norm of new independent variable, the curl of the solenoidal part of the shear strain, and
hence, it has one extra regularity requirement in establishing standard error estimation (see
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Theorem 4.2). As an alternative, we consider another least-squares formulation in Section 6
by introducing the curl of the shear strain that is the quantity representing a different scale.
The latter has the same numerical properties as those of the former, but no extra regularity
requirement.

2. The Reissner–Mindlin model

Let $(�) be the linear space of infinitely differentiable functions with compact support on
�. We use standard notation and definition for the Sobolev spacesHs(�)2 for s ≥ 0, the
associated inner products are denoted by(·, ·)s,�, and their norms by‖ · ‖s,�. (We will
omit� from the inner product and norm designation when there is no risk of confusion.)
Fors = 0,Hs(�)2 coincides withL2(�)2. In this case, the norm and inner product will be
denoted by‖·‖ and(·, ·), respectively. As usual,H 1

0 (�) is the closure of$(�)with respect
to the norm‖·‖1. LetH−1

0 (�)andH−1(�)be duals ofH 1
0 (�)andH 1(�), correspondingly,

with norms defined by

‖ψ‖−1,0 = sup
06=φ∈H1

0 (�)

(ψ, φ)

‖φ‖1
and ‖ψ‖−1 = sup

06=φ∈H1(�)

(ψ, φ)

‖φ‖1

respectively. Define the product spacesH 1
0 (�)

2 = ∏2
i=1H

1
0 (�) with standard product

norms and letL2
0(�) denote the subspace ofL2(�) consisting of all such functions in

L2(�) having mean value zero.
Let� be the region occupied by the plate and assume that� is a convex polygon in52.

Let ω andf = (φ1, φ2)
t denote the transverse displacement of� and the rotation of the

fibers normal to�, respectively. The variational form of the Reissner–Mindlin plate model
is to find (ω,f) ∈ H 1

0 (�)×H 1
0 (�)

2 such that

a(f,c)+ λt−2(f − ∇ω,c − ∇v) = (g, v), ∀(v,c) ∈ H 1
0 (�)×H 1

0 (�)
2 (2.1)

where the symbol∇ stands for the gradient operator;t > 0 is the plate thickness;λ =
Ek/2(1 + ν) is the shear modulus withE the Young’s modulus,ν ∈ (−1, 1

2) the Poisson
ratio andk the shear correction factor; andg is the given scaled transverse loading function
(scaling by a constant multiple of the square of the thickness [7]). The bilinear forma(·, ·)
is defined by

a(f,c) = E

12(1 − ν2)

∫
�

[
(∂1φ1 + ν∂2φ2) ∂1ψ1 + (ν∂1φ1 + ∂2φ2) ∂2ψ2

+1 − ν

2
(∂2φ1 + ∂1φ2) (∂2ψ1 + ∂1ψ2)

]

where∂iφj = ∂φj
∂xi

and∂iψj = ∂ψj
∂xi

for i, j = 1, 2.

We will use standard curl notation for two dimensions by identifying52 with the(x1, x2)-
plane in53. Thus, the curl off means the scalar function

∇×f = ∂1φ2 − ∂2φ1
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and∇⊥ denotes its formal adjoint:

∇⊥p =
(
∂2p

−∂1p

)

The gradient operator is extended to two-vectors componentwise:

∇f =
(∇φ1

∇φ2

)

In order to avoid the ‘locking’ phenomenon, Brezzi and Fortin [7] proposed athree-stage
finite element method through the Helmholtz decomposition of the transverse shear strain
vector. Such an approach converges uniformly in the thicknesst . To this end, consider the
following Helmholtz decomposition

λt−2(∇ω − f) = ∇r − ∇⊥p (2.2)

with (r, p) ∈ H 1
0 (�)×(H 1(�)/5). For simplicity, assume thatλ = 1. Then the equivalent

formulation of (2.1) suggested by Brezzi and Fortin [7] is as follows:

(1) Findr ∈ H 1
0 (�) such that

(∇r,∇µ) = (g, µ), ∀ µ ∈ H 1
0 (�) (2.3)

(2) Find(f, p) ∈ H 1
0 (�)

2 × (H 1(�)/5) such that

{
a(f,c)+ (∇⊥p,c) = (∇r,c), ∀ c ∈ H 1

0 (�)
2

(f,∇⊥q)− t2(∇⊥p,∇⊥q) = 0, ∀ q ∈ H 1(�)/5
(2.4)

(3) Findω ∈ H 1
0 (�) such that

(∇ω,∇s) = (f + t2∇r,∇s), ∀ s ∈ H 1
0 (�) (2.5)

The following a priori estimate was established by Brezzi and Fortin in [7].

Theorem 2.1. Let� be a bounded convex polygon or haveC1,1 boundary in52. For any
0 < t ≤ C and g ∈ H−1(�), there exists a unique solution(r,f, p, ω) ∈ H 1

0 (�) ×
H 1

0 (�)
2× (H 1(�)/5

)×H 1
0 (�) of problem (2.3–2.5). Moreover,f ∈ H 2(�)2 and there

exists a positive constantC independent oft andg such that

‖r‖1 + ‖f‖2 + ‖p‖1 + t‖p‖2 + ‖w‖1 ≤ C ‖g‖−1,0 (2.6)

Note that problems (2.3) and (2.5) are the Poisson equations whose numerical compu-
tations are well understood. Hence, we only consider least-squares finite element approxi-
mations to problem (2.4). Note also that problem (2.4) is a perturbed Stokes equation with
the following strong form:{−α11f − α2∇(∇ · f)+ ∇⊥p = f , in �

∇ × f + t21p = f3, in �
(2.7)

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 479–496 (1999)
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wheref = ∇r andf3 = 0, with boundary conditions

f = 0 and ∇p · n = 0 on ∂� (2.8)

Hereα1 = E
24(1+ν) > 0, α2 = E

24(1−ν) > 0, the symbol∇· stands for the divergence
operator, andn = (n1, n2)

t is the outward unit vector normal to the boundary∂�.

Remark 1
It is easy to establish the following a priori estimate for the solution of problem (2.7–2.8):

‖f‖1 + ‖p‖ + ‖t∇p‖ + ‖t21p‖ ≤ C
(‖f‖−1,0 + ‖f3‖

)
whereC is a positive constant independent oft . Based on this estimate, it is possible to
develop a least-squares formulation, but such formulation involvest21pwhich complicates
discretization and solution processes (cf. [4]).

Let
H(div;�) = {v ∈ L2(�)2 : ∇ · v ∈ L2(�)}

and
H(curl;�) = {v ∈ L2(�)2 : ∇ × v ∈ L2(�)}

which are Hilbert spaces under the respective norms:

‖v‖H(div;�) =
(
‖v‖2 + ‖∇ · v‖2

) 1
2

and ‖v‖H(curl;�) =
(
‖v‖2 + ‖∇ × v‖2

) 1
2

Define their respective subspaces:

H0(div;�) = {v ∈ H(div;�) : n · v = 0 on ∂�}

and
H0(curl;�) = {v ∈ H(curl;�) : n × v = 0 on ∂�}

Set
U = H0(div;�) ∩H(curl;�) and W = H(div;�) ∩H0(curl;�)

We will also make use of the following results (see [15]).

Theorem 2.2. Assume that the domain� is a bounded convex polygon or hasC1, 1 bound-
ary. Then for any vector functionv in eitherU or W , we have

‖v‖2
1 ≤ C

(
‖v‖2 + ‖∇ · v‖2 + ‖∇ × v‖2

)
(2.9)

If, in addition, the domain is simply connected, then

‖v‖2
1 ≤ C

(
‖∇ · v‖2 + ‖∇ × v‖2

)
(2.10)

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 479–496 (1999)
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3. A least-squares formulation

In this section, we first introduce a new independent vector variable for the treatment of
the termt21p in (2.7) and write problem (2.7)–(2.8) as a first- and second-order system.
We then apply the least-squares principle to such system. Our least-squares functional is
defined by the weighted sum of theL2- andH−1-norms of the residual equations of the
system. The ellipticity and continuity of the homogeneous functional are established in
Theorem 3.1. This will in turn imply the well-posedness of the least-squares formulation
and its equivalence to (2.4).

Introducing an independent vector variable

u = ∇⊥p

and using the homogeneous Neumann boundary condition ofp, we have the following
properties

∇ · u = 0 in � and u · t = 0 on ∂� (3.1)

wheret = (−n2, n1)
t is the unit counter-clockwise vector tangent to the boundary∂�.

Then problem (2.7)–(2.8) may be rewritten as following first- and second-order system:


−α11f − α2∇(∇ · f)+ ∇⊥p = ∇r, in �

∇ × f − t2∇ × u = 0, in �

u − ∇⊥p = 0, in �

∇ · u = 0, in �

(3.2)

with boundary conditions 


f = 0, on ∂�
∇p · n = 0, on ∂�

u · t = 0, on ∂�
(3.3)

We define the least-squares functional in terms of appropriate weights and norms of the
residuals for the above system:

G(f, p, u; r) = ‖∇r + α11f + α2∇(∇ · f)− ∇⊥p‖2
−1,0 + ‖∇ × f − t2∇ × u‖2

+‖t (u − ∇⊥p)‖2 + ‖t2∇ · u‖2

(3.4)
Let

9 = H 1
0 (�)

2 × (H 1(�)/5)×W

and denote the weighted norm over9 by

|||(f, p, u)|||9 ≡
(
‖f‖2

1 + ‖p‖2 + ‖t∇p‖2 + ‖tu‖2 + ‖t2∇u‖2
) 1

2

The least-squares formulation for problem (2.7) with boundary condition (2.8) is to mini-
mize the quadratic functionalG(f, p,u; r) with givenr over9: find (f, p,u) ∈ 9 such
that

G(f, p, u; r) = inf
(c,p,u)∈9

G(c, s, v; r) (3.5)

Below, we will useC with or without subscripts to denote a generic positive constant,

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 479–496 (1999)
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possibly different at different occurrences, which is independent of the plate thicknesst

and the mesh sizeh, introduced in the subsequent section, but may depend on the domain
� andαi (i = 1, 2).

Theorem 3.1. The homogeneous functionalG(f, p,u; 0) is elliptic and continuous in9;
i.e., there exists a positive constantC independent of the thicknesst such that

1

C
|||(f, p, u)|||29 ≤ G(f, p, u; 0) (3.6)

and that
G(f, p, u; 0) ≤ C |||(f, p, u)|||29 (3.7)

for any(f, p,u) in 9.

Proof
The upper bound in (3.7) follows immediately from the triangle inequality and the easily
established bounds

‖1f‖−1,0 ≤ ‖∇f‖ ≤ ‖f‖1, ‖∇(∇ · f)‖−1,0 ≤ ‖f‖1, ‖∇⊥p‖−1,0 ≤ ‖p‖ (3.8)

We proceed to show the validity of the lower bound in (3.6) for(f, p,u) ∈ 9 satisfying
thatf ∈ H 2(�)2. Then (3.6) will follow for (f, p,u) ∈ 9 by continuity. For anyp ∈
H 1(�)/5, note first that by using the well-known inequality (see, e.g., [15]),‖p‖ ≤
C‖∇p‖−1,0, and the change of variable,(x̂1, x̂2) = (−x2, x1), we have that

‖p‖ = ‖p̂‖ ≤ C‖∇̂p̂‖−1,0 = C‖∇⊥p‖−1,0 (3.9)

It then follows from the triangle inequality and the first two inequalities in (3.8) that

‖p‖ ≤ C
(
‖∇⊥p − α11f − α2∇(∇ · f)‖−1,0 + ‖f‖1

)
(3.10)

Using the Korn inequality, the integration by parts, and the Cauchy–Schwarz inequality, we
have that

C0‖f‖2
1 ≤ α1 (∇f, ∇f)+ α2 (∇ · f, ∇ · f)

= (−α11f − α2∇(∇ · f), f)
=
(
−α11f − α2∇(∇ · f)+ ∇⊥p, f

)
−
(
∇⊥p, f

)
≤ G

1
2 (f, p,u; 0)‖f‖1 − (p,∇ × f) (3.11)

and that

−(p, ∇ × f) = (p, −∇ × f + t2∇ × u)− (p, t2∇ × u)

= (p, −∇ × f + t2∇ × u)− (t∇⊥p, tu)
= (p, −∇ × f + t2∇ × u)− (t (∇⊥p − u), tu)− ‖tu‖2

≤ (‖p‖ + ‖tu‖)G 1
2 (f, p,u; 0)− ‖tu‖2 (3.12)

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 479–496 (1999)
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whereG
1
2 (f, p,u; 0) ≡ √

G(f, p,u; 0). Combining the above two inequalities implies
that

C0‖f‖2
1 + ‖tu‖2 ≤ C G

1
2 (f, p,u; 0) (‖f‖1 + ‖p‖ + ‖tu‖)

≤ C G(f, p,u; 0)+ C G
1
2 (f, p,u; 0) (‖f‖1 + ‖tu‖)

The last inequality used bound (3.10). It then follows from theε-inequality that

‖f‖2
1 + ‖tu‖2 ≤ C G(f, p,u; 0)

Now, upper bounds in (3.6) for the terms,‖p‖2, ‖t∇p‖2, and‖t2∇u‖2, are immediate
consequences of (3.10), the triangle inequality, and Theorem 2.2. This completes the proof
of the validity of (3.6) and, hence, the theorem.

4. Finite element approximations

This section presents a discreteH−1 least-squares finite element approximation for the
perturbed Stokes problem based on (3.5). We first discuss the well-posedness of the discrete
problem and then establish optimal order error estimates in the weightedH 1-norms for each
variable.

We approximate the minimum of the least-squares functionalG(f, p, u; r) defined in
(3.4) using a Rayleigh–Ritz type finite element method. Let7h be a partition of the� into
finite elements; i.e.,� = ∪K∈7h

K with h = max{hK = diam(K) : K ∈ 7h}. Assume that
the triangulation7h is quasi-uniform; i.e., it is regular and satisfies the inverse assumption
(see [14]). Let9h = Fh × Ph × Uh be a finite-dimensional subspace of9 such that for
any(c, q, v) ∈ (Hγ+1(�)2 ×Hγ+1(�)×Hγ+1(�)2) ∩ 9, there exists an interpolant of
(c, q, v), denoted by(cI , qI , vI ), in 9h satisfying

‖c − cI‖ + h‖c − cI‖1 ≤ Chγ+1‖c‖γ+1 (4.1)∑
K∈7h

hK(‖1(c − cI )‖0,K + ‖∇(∇ · (c − cI ))‖0,K) ≤ Chγ ‖c‖γ+1 (4.2)

‖q − qI‖ + h‖q − qI‖1 ≤ Chγ+1‖q‖γ+1 (4.3)∑
K∈7h

hK‖∇(q − qI )‖0,K ≤ Chγ ‖q‖γ (4.4)

‖v − vI‖ + h‖v − vI‖1 ≤ Chγ+1‖v‖γ+1 (4.5)

whereγ ≥ 0 for (4.1), (4.3) and (4.5) andγ ≥ 1 for (4.2) and (4.4), and(·, ·)0,K and‖·‖0,K
indicate the respective inner product and norm inL2(K). It is well known that (4.1)–(4.5)
hold for typical finite element spaces consisting of continuous piecewise polynomials with
respect to quasi-uniform triangulations (cf. [14]).

Note that the functionalG(f, p,u; r) defined in (3.4) involves theH−1-norm, which
requires solution of a boundary value problem for its evaluation, and second-order differ-
ential operators. Hence, we need to replace theH−1-norm in (3.4) by a computationally
feasible discreteH−1-norm that ensures the equivalence on9h between the standard norm
in 9 and that induced by the discrete homogeneous functional. (A discreteH−1 approach
was introduced in [3] for scalar elliptic equations and was extended to the Stokes problem

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 479–496 (1999)
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in [11] and linear elasticity in [13] in the context of least-squares methods and was used for
the Stokes problem in [10] in the context of stabilized finite element methods.) Also, we
need to replace the Laplacian and gradient operators in the first term of the functional by
the corresponding ‘discrete’ operators so that we can useC0 finite element approximations.

To this end, define the operatorA:H−1
0 (�)2 → H 1

0 (�)
2 as the solution operator for the

Poisson problem {−1c + c = v in �

c = 0 on ∂�
(4.6)

i.e.,Av = c for a givenv ∈ H−1
0 (�)2 is the solution of (4.6). It is well known that(A·, ·) 1

2

defines a norm that is equivalent to theH−1
0 -norm. LetAh:H

−1
0 (�)2 → Fh be the discrete

solution operatorc = Ahv ∈ Fh for the Poisson problem (4.6) defined by∫
�

(∇c · ∇w + c · w) = (v, w), w ∈ Fh

It is easy to check that(Ah·, ·) 1
2 defines a semi-norm onH−1

0 (�)2 which is equivalent to
the discreteH−1

0 semi-norm

‖ · ‖−1,h ≡ sup
c∈Fh

(·,c)
‖c‖1

Assume that there is a preconditionerBh : H−1
0 (�)2 → Fh that is symmetric with respect

to theL2(�)2-inner product and spectrally equivalent toAh; i.e., there exists a positive
constantC, independent of the mesh sizeh such that

1

C
(Ahv, v) ≤ (Bhv, v) ≤ C(Ahv, v), v ∈ Fh (4.7)

Remark 1
(1) By introducing theL2-orthogonal projection operatorQh : L2(�)2 → Fh and noting
the relations thatAh = AhQh andBh = BhQh, it is easy to check that the spectral
equivalence in (4.7) holds for everyv ∈ L2(�)2.
(2) The spectral equivalence in (4.7) implies that

| · |−1,h ≡ (Bh·, ·) 1
2

defines a semi-norm onH−1
0 (�)2, which is equivalent to‖ · ‖−1,h.

Finally, we introduce ‘discrete’ Laplacian and gradient operators: the ‘discrete’ Laplacian
operator,1h: H 1

0 (�)
2 → Fh, for given v ∈ H 1

0 (�)
2 is defined byc = 1hv ∈ Fh

satisfying
(c, w) = −(∇v, ∇w), ∀ w ∈ Fh

and the ‘discrete’ gradient operator,∇h: L2(�) → Fh, for givenq ∈ L2(�) is defined by
v = ∇hq ∈ Fh satisfying

(v,w) = −(q,∇ · w), ∀w ∈ Fh

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 479–496 (1999)
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Now, we are ready to define the discrete counterparts of the least-squares functionalG as
follows:

Gh(f, p,u; r) = |∇r + α11hf + α2∇h(∇ · f)− ∇⊥p|2−1,h

+
∑
K∈7h

h2
K‖∇r + α11f + α2∇(∇ · f)− ∇⊥p‖2

0,K

+ ‖∇ × f − t2∇ × u‖2 + ‖t (u − ∇⊥p)‖2 + ‖t2∇ · u‖2 (4.8)

Then the least-squares finite element approximation to (3.5) is to find(fh, ph, uh) ∈ 9h

such that
Gh(f

h, ph, uh; r) = inf
(c,q,v)∈9h

Gh(c, q, v; r)

The corresponding variational problem is to find(fh, ph, uh) ∈ 9h such that

bh(f
h, ph, uh; c, q, v) = r(c, q, v), ∀ (c, q, v) ∈ 9h (4.9)

where the bilinear formbh(·; ·) is induced by the quadratic formGh(·; 0) and the linear
form r(·) is given by

r(c, q, v) =
(
Bh∇r,−α11hc − α2∇h(∇ · c)+ ∇⊥q

)
+
∑
K∈7h

h2
K

(
∇r,−α11c − α2∇(∇ · c)+ ∇⊥q

)
0,K

Theorem 4.1. The homogeneous functionalGh(f, p,u; 0) is elliptic and continuous in
9h; i.e., there exists a positive constantC independent ofh andt such that

1

C
|||(f, p, u)|||29 ≤ Gh(f, p,u; 0) (4.10)

and that
Gh(f, p,u; 0) ≤ C |||(f, p, u)|||29 (4.11)

for any(f, p,u) ∈ 9h.

Proof
By the definitions of the ‘discrete’ Laplacian and gradient operators and the Cauchy–
Schwarz inequality, we have that forf ∈ Fh,

‖1hf‖−1,h = sup
c∈Fh

|(1hf,c)|
‖c‖1

= sup
c∈Fh

|(∇f,∇c)|
‖c‖1

≤ ‖∇f‖ (4.12)

and

‖∇h(∇ · f)‖−1,h = sup
c∈Fh

|(∇h(∇ · f), c)|
‖c‖1

= sup
c∈Fh

|(∇ · f, ∇ · c)|
‖c‖1

≤ ‖∇f‖ (4.13)
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The upper bound in (4.11) is then a straightforward consequence of Remark 1, the triangle
and inverse inequalities, and the bound that

|∇⊥p|−1,h ≤ C‖∇⊥p‖−1,h ≤ C‖∇⊥p‖−1,0 ≤ C‖p‖

Next, we show the validity of (4.10). Note first that (4.1) withγ = 0 implies that, for
anyc ∈ H 1

0 (�)
2,

‖c −Qhc‖ ≤ Ch‖c‖1 and ‖Qhc‖1 ≤ C‖c‖1

For anyc ∈ L2(�)2, a standard duality argument implies that

‖c −Qhc‖−1,0 ≤ Ch‖c‖ ≤ C

( ∑
K∈7h

h2
K‖c‖2

0,K

) 1
2

and

‖Qhc‖−1,0 = sup
w∈H1

0 (�)
2

(Qhc, w)
‖w‖1

≤ sup
w∈H1

0 (�)
2

(c, Qhw)
‖Qhw‖1

≤ C‖c‖−1,h

Hence,

‖c‖2
−1,0 ≤ C

( ∑
K∈7h

h2
K‖c‖2

0,K + ‖c‖2
−1,h

)

which, with the choicec = ∇⊥p and the inequality (3.9), gives

‖p‖2 ≤ C

( ∑
K∈7h

h2
K‖∇⊥p‖2

0,K + ‖∇⊥p‖2
−1,h

)
, p ∈ Ph

It then follows from the triangle and inverse inequalities, (4.12), (4.13), and Remark 1 that

‖p‖2 ≤ C

( ∑
K∈7h

h2
K(‖α11f + α2∇(∇ · f)− ∇⊥p‖2

0,K + ‖1f‖2
0,K + ‖∇(∇ · f)‖2

0,K)

)

+C
(
‖α11hf + α2∇h(∇ · f)− ∇⊥p‖2

−1,h + ‖1hf‖2
−1,h + ‖∇h(∇ · f)‖2

−1,h

)
≤ C Gh(f, p,u; 0)+ C‖f‖2

1 (4.14)

By the Korn inequality, the definitions of the ‘discrete’ Laplacian and gradient operators,
and Remark 1, we have that for anyf ∈ Fh

C0‖f‖1 ≤ α1 (∇f, ∇f)+ α2 (∇ · f, ∇ · f)
= (−α11hf − α2∇h(∇ · f), f)

=
(
−α11hf − α2∇h(∇ · f)+ ∇⊥p, f

)
−
(
∇⊥p, f

)
≤ C | − α11hf − α2∇h(∇ · f)+ ∇⊥p|−1,h‖f‖1 − (p,∇ × f)

≤ C G
1
2
h (f, p,u; 0)‖f‖1 + (‖p‖ + ‖tu‖)G

1
2
h (f, p,u; 0)− ‖tu‖2
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The last inequality follows similarly to the proof of (3.12). We then have by theε-inequality
and (4.14) that

‖f‖2
1 + ‖tu‖2 ≤ C Gh(f, p,u; 0)

Upper bounds in (4.10) for the terms,‖p‖2, ‖t∇p‖2, and‖t2∇u‖2, can be established by
an argument similar to that in the proof of Theorem 3.1. This completes the proof of the
theorem.

Theorem 4.2. Let (f, p,u) and (fh, ph, uh) ∈ 9h be the solutions of (3.5) and (4.9),
respectively. Assume that(f, p) is inHγ+1(�)2×Hγ+2(�)withγ ≥ 1. Then there exists
a positive constantC independent of the thicknesst and the mesh sizeh such that

‖f − fh‖1 + ‖p − ph‖ + ‖t∇(p − ph)‖ + ‖t (u − uh)‖ + ‖t2∇(u − uh)‖
≤ Chγ

(
‖f‖γ+1 + ‖p‖γ + ‖tp‖γ+1 + ‖tu‖γ + ‖t2u‖γ+1

)
(4.15)

Moreover, if the domain� is bounded and sufficiently smooth, then we have that forγ = 1,

‖f−fh‖1+‖p−ph‖+‖t∇(p−ph)‖+‖t (u−uh)‖+‖t2∇(u−uh)‖ ≤ Ch‖g‖−1,0 (4.16)

Proof
It is easy to see that the approximation error,(f−fh, p− ph, u − uh), satisfies the error
equation

bh(f − fh, p − ph, u − uh; c, q, v) = 0, ∀ (c, q, v) ∈ 9h

Let (fI , pI , uI ) be an interpolant of(f, p,u) satisfying (4.1)–(4.5). To show the validity
of (4.15), it suffices to prove that

‖fI − fh‖1 + ‖pI − ph‖ + ‖t∇(pI − ph)‖ + ‖t (uI − uh)‖ + ‖t2∇(uI − uh)‖
≤ Chγ

(
‖f‖γ+1 + ‖p‖γ + ‖tp‖γ+1 + ‖tu‖γ + ‖t2u‖γ+1

)
This follows from Theorem 4.1, the above error equation, the Cauchy–Schwarz triangle and
inverse inequalities, and approximation properties (4.1), (4.3) and (4.5). If the domain� is
sufficiently smooth, then the second equation in (2.7) implies that

‖t2p‖3 ≤ C‖∇ × f‖1

Now, (4.16) is then a direct consequence of (4.15), Theorem 2.1 and the relationu = ∇⊥p.
This completes the proof of the theorem.

Theorem 4.1 indicates that the discreteH−1 least-squares functionalGh(f, p,u; 0)
defined in (4.8) can be preconditioned by the functional

‖f‖2
1 + ‖p‖2 + ‖t∇p‖2 + ‖u‖2 + ‖t2∇u‖2

that decouplesf, p and u unkonwns, because they are spectrally equivalent uniformly
in the thicknesst and the mesh sizeh. This means that the discrete system (4.9) can be
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uniformly preconditioned by a block diagonal preconditioner
Ah,f 0 0

0 Ah,p 0
0 0 Ah,u




Here the blocks correspond to the ordering of unknowns off, p andu, andAh,f, Ah,p
andAh,u are the respective discrete solution operators of the Poisson problems:

find f ∈ Fh such that (∇f,∇c)+ (f,c) = (f0,c), ∀ c ∈ Fh

find p ∈ Ph such that t2(∇p,∇q)+ (p, q) = (p0, q), ∀ q ∈ Ph
find u ∈ Uh such that t4(∇u,∇v)+ t2(u, v) = (u0, v), ∀ v ∈ Uh

We can then replaceAh,i for i = f, p, u by any effective elliptic preconditioners including
those of multigrid type. Note that the Poisson problems forp andu are weighted byt in such
a way that the condition numbers of the discrete operators areO

(
( t
h
)2 + 1

)
. Therefore, we

can replaceAh,p andAh,u by simple preconditioners including those of diagonal matrix type
when the thicknesst is relatively small compared with the mesh sizeh. With preconditioners
mentioned above, the preconditioned system hash-independent condition number but we
have no estimate of its actual size.

5. Pure traction boundary conditions

The strong form of the Reissner–Mindlin plate model with pure traction boundary conditions
andλ = 1 is given by{−α11f − α2∇(∇ · f)+ t−2(f − ∇ω) = 0, in �

t−2∇ · (f − ∇ω) = g, in �
(5.1)

which satisfies the following boundary conditions

σ(f)n ≡ E

12(1 − ν2)
((1 − ν)%(f)+ ν∇ · f() n = 0 and f·n−∇ω·n = 0 on ∂�

(5.2)

where( is the 2× 2 identity matrix and%(f) =
(

1
2(∂iφj + ∂jφi)

)
2×2

the deformation.

Let + be the space of linear functions on�; i.e.,

+ = {a + bx1 + cx2 : a, b, c,∈ R}

and+⊥ its orthogonal complement inL2(�). Then (the weak form of) boundary value
problem (5.1)–(5.2) has a unique solution,(f, ω) ∈ H 1(�)2 × H 1(�), up to additive
functions in

(∇+
)× + for anyg ∈ H−1(�) ∩ +⊥.

In this section, we extend our previous discussions to the pure traction problem (5.1)–
(5.2). We also consider imposing some boundary conditions on the functional rather than the
solution space. Because the development of computable finite element approximations and
the corresponding efficient iterative solvers or preconditioners, based on the least-squares
functional involving theH−1-norm, becomes standard (see, for example, Section 4), we
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are, therefore, focusing on establishing ellipticity here and in the subsequent section.
To this end, definer ∈ H 1(�) to be the solution of{ −1r = g, in �,

∇r · n = 0, on ∂�
(5.3)

Then we again have the Helmholtz decomposition (2.2) for the transverse shear strain, but
the boundary condition forp is now that∇p · t = 0 on∂�. We may normalizep so that
p = 0 on ∂�. Substituting (2.2) into the first equation in (5.1) and the second boundary
condition in (5.2) and applying∇× to (2.2) give the perturbed Stokes equation (2.7) but
with the following boundary conditions

σ(f)n = 0 and p = 0 on ∂� (5.4)

The second equation and the second boundary condition in the respective (5.1) and (5.2)
lead to { −1ω = t2g − ∇ · f, in �

∇ω · n = f · n, on ∂�
(5.5)

Let

9P ≡ F ×H 1
0 (�)× U and F ≡ {c ∈ (H 1(�)/R)2 : σ(f)n = 0 on ∂�}

Then the similar proof as that of Theorem 3.1 gives:

Theorem 5.1. For the functionalG defined in(3.4), there exists a positive constantC
independent of the thicknesst such that

1

C
|||(f, p, u)|||29 ≤ G(f, p, u; 0) ≤ C |||(f, p, u)|||29 (5.6)

for any(f, p, u) ∈ 9P .

Instead of imposing traction boundary conditions off on the solution space, we may
enforce them weakly in the least-squares functional. More specifically, we modify the
functionalG as follows:

Ĝ(f, p, u; r) = G(f, p, u; r)+ ‖σ(f)n‖2
∂�,− 1

2

where‖ · ‖
∂�,− 1

2
isH− 1

2 (∂�) norm (see [16] for the discrete counterpart of the boundary

integral term). Let
9̂P ≡ (H 1(�)/5)2 ×H 1

0 (�)× U

and denote the weighted norm on9̂P by

|||(f, p, u)|||
9̂P

≡
(

|||(f, p, u)|||29 + ‖σ(f)n‖2
∂�,− 1

2

) 1
2

Theorem 5.2. There exists a positive constantC independent of the thicknesst such that

1

C
|||(f, p, u)|||2

9̂P
≤ Ĝ(f, p, u; 0) ≤ C |||(f, p, u)|||2

9̂P
(5.7)
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for any(f, p,u) ∈ 9̂P .

Proof
Upper bound (3.7) forG immediately implies the upper bound in (5.7). Note that

α1 (∇f, ∇f)+ α2 (∇ · f, ∇ · f) = (−∇ · σ(f),f)+
∫
∂�

f · (σ (f)n)ds

and that

|
∫
∂�

f · (σ (f)n)ds| ≤ ‖σ(f)n‖
∂�,− 1

2
‖f‖

∂�, 1
2

≤ C‖σ(f)n‖2
∂�,− 1

2
‖f‖1

for anyf ∈ (H 1(�)/R
)2

. Now the proof of the lower bound in (5.7) follows in a similar
fashion as that of lower bound (3.6).

6. Another least-squares formulation

The least-squares formulation introduced in Section 3 involves the weightedH 1-norm ofu
and hence, error estimates in Theorem 4.2 require thatp ∈ Hγ+2(�)whilef ∈ Hγ+1(�)2.
As an alternative, this section presents another least-squares formulation by introducing the
curl of the shear strain that is the quantity representing a different scale. The latter has the
same numerical properties as those of the former, but no extra regularity requirement. As
in the previous section, we are focusing on establishing ellipticity here.

To this end, letw = ∇ × f, then the perturbed Stokes equation may be rewritten as


−α11f − α2∇(∇ · f)+ ∇⊥p = ∇r, in �

w + t21p = 0, in �

w − ∇ × f = 0, in �

(6.1)

with boundary conditions

f = 0 and ∇p · n = 0 on ∂�

and the compatibility condition ∫
�

w dx = 0

Let

91 ≡ H 1
0 (�)

2 × 3 × L2
0(�) and 3 = {q ∈ H 1(�)/R : ∇q · n = 0 an∂�}

and denote the weighted norm over91 by

|||(f, p, w)|||91 ≡
(

‖f‖2
1 + ‖p‖2 + ‖t∇⊥p‖2 + ‖1

t
w‖2

−1 + ‖w‖2
) 1

2
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We then consider the following least-squares functional

G1(f, p, w; r) = ‖∇r + α11f + α2∇(∇ · f)− ∇⊥p‖2
−1,0 + ‖1

t
(w + t21p)‖2

−1
+‖w − ∇ × f‖2

(6.2)
for any(f, p,w) ∈ 91.

Theorem 6.1. There exists a positive constantC independent of the thicknesst such that

1

C
|||(f, p, w)|||291

≤ G1(f, p, w; 0) ≤ C |||(f, p, w)|||291
(6.3)

for any(f, p,w) ∈ 91.

Proof
The upper bound in (6.3) is a straightforward consequence of the triangle inequalities, (3.8),
and the easily established bound

‖1p‖−1 = sup
v∈H1(�)

(1p, v)

‖v‖1
= sup
v∈H1(�)

(∇p,∇v)
‖v‖1

≤ ‖∇⊥p‖ (6.4)

It follows from the integration by parts, the Cauchy–Schwarz and Poincaré–Friedrichs
inequalities, and the definition of theH−1-norm that

−(p,∇ ×f) = (p, w−∇ ×f)−(p,w+ t21p)+(p, t21p)
= (p, w−∇ ×f)−(tp, 1

t
(w+ t21p))−‖t∇⊥p‖2

≤ ‖p‖‖w−∇ ×f‖+C‖t∇⊥p‖‖1

t
(w+ t21p)‖−1−‖t∇⊥p‖2 (6.5)

Combining with (3.11), and using (3.10) and theε-inequality imply that

C0‖f‖2
1 + ‖t∇⊥p‖2 ≤ CG1(f, p,w; 0)

and, hence, that
‖p‖2 ≤ CG1(f, p,w; 0)

Lower bounds in (6.3) for the terms‖1
t
w‖2

−1 and‖w‖2 are immediate consequences of the
triangle inequality and (6.4). This completes the proof of the validity of the lower bound in
(6.3) and, hence, the theorem.

As in the previous section, we may enforce weakly the boundary condition ofp in the
least-squares functional by modifying the functionalG1 as follows:

Ĝ1(f, p,w; r) = G1(f, p,w; r)+ t2‖∂p
∂n

‖2
∂�,− 1

2

for any(f, p,w) in
9̂1 ≡ H 1

0 (�)
2 × (H 1(�)/R)× L2

0(�)
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By noting that the inequality (6.4) becomes

‖1p‖−1 = sup
v∈H1(�)

−(∇p,∇v)+ ∫
∂�
v
∂p
∂nds

‖v‖1
≤ ‖∇⊥p‖ + C‖∂p

∂n
‖2
∂�,− 1

2

and that (6.5) becomes

−(p,∇ × f)

= (p, w − ∇ × f)− (tp,
1

t
(w + t21p))− ‖t∇⊥p‖2 + t2

∫
∂�

p
∂p

∂n
ds

≤ ‖p‖ ‖w − ∇ × f‖ + C‖t∇⊥p‖ ‖1

t
(w + t21p)‖−1 − ‖t∇⊥p‖2

+ C‖t∇⊥p‖ ‖t ∂p
∂n

‖2
∂�,− 1

2

Then the same argument as that in the proof of Theorem 6.1 gives

Theorem 6.2. There exists a positive constantC independent of the thicknesst such that

1

C
|||(f, p, w)|||2

9̂1
≤ Ĝ1(f, p, w; 0) ≤ C |||(f, p, w)|||2

9̂1
(6.6)

for any(f, p,w) ∈ 9̂1 with

|||(f, p, w)|||
9̂1

≡
(

|||(f, p, w)|||291
+ ‖∂p

∂n
‖2
∂�,− 1

2

) 1
2
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