
SELF-ADAPTIVE RELU NEURAL NETWORK METHOD1

IN LEAST-SQUARES DATA FITTING∗2

ZHIQIANG CAI† AND MIN LIU‡3

Abstract. This chapter provides a comprehensive introduction to a self-adaptive ReLU neural network method4
proposed recently in [11, 10, 5]. The purpose of the method is to design a nearly minimal neural network architecture5
to achieve the prescribed accuracy for a given task in scientific machine learning such as approximating a function6
or a solution of partial differential equation. Starting with a small one hidden-layer neural network, the method7
enhances the network adaptively by adding neurons in the current or new hidden-layer based on accuracy of the8
current approximation. In addition, the method provides a natural process for obtaining a good initialization in9
training the current network. Moreover, initialization of newly added neurons at each adaptive step is discussed in10
detail.11

Key words. Self-adaptivity, Least-squares data fitting, Deep neural network, ReLU activation12

1. Introduction. Given a data set {(xi, yi)}Mi=1 with xi ∈ Ω = [−1, 1]d and positive weights13

{wi}Mi=1, consider the discrete least-squares problem: finding fnn(x) ∈ M(l) such that14

(1.1) fnn = argmin
v∈M(l)

L(v),15

where M(l) is a ReLU neuron network defined in section 2 with l hidden-layers and L(·) is a16

least-squares loss functional given by17

L(v) =

M∑
i=1

wi (v(xi)− yi)
2
.18

For a prescribed tolerance ϵ > 0, this chapter presents a self-adaptive algorithm, the adaptive19

neuron enhancement method (ANE), to adaptively construct a nearly optimal network M∗ such20

that the neural network approximation fnn(x) satisfies21

(1.2) L(fnn) ≤ ϵ L(0),22

where L(0) =
M∑
i=1

wiy
2
i is the square of the weighted l2 norm of the output data {yi}Mi=0.23

Multi-layer ReLU neural network is described in this chapter as a set of continuous piece-wise24

linear functions. Hence each network function is piece-wise linear with respect to a partition of25

the domain. This partition, referred as the (domain) physical partition (see section 3), provides26

geometric feature of the function and hence plays a critical role in the design of self-adaptive27

neural network method. Determination of this physical partition for a network function is in28

general computationally expensive, especially when the input dimension d is high. To circumvent29

this difficulty, we introduce a network indicator function that can easily determine such partition.30

The idea of the ANE is similar to that of standard adaptive mesh-based numerical methods,31

and may be written as loops of the form32

(1.3) train → estimate → mark → enhance.33

∗This work was supported in part by the National Science Foundation under grant DMS-2110571.
†Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067

(caiz@purdue.edu.
‡School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-

2088(liu66@purdue.edu).

1

This manuscript is for review purposes only.

mailto:caiz@purdue.edu
mailto:liu66@purdue.edu

2 Z. CAI AND M. LIU

Starting with a small one hidden layer network, the step train is to iteratively solve the opti-34

mization problem of the current network; the step estimate is to compute error of the current35

approximation; the step mark is to identify local regions that need refinement; and the step36

enhance is to add new neurons to the current network with good initialization. This adaptive37

algorithm learns not only from given information (data, function, partial differential equation) but38

also from the current computer simulation.39

When the current error does not satisfy (1.2), an efficient ANE method relies on strategies to40

address the following questions at each adaptive step:41

(a) how many new neurons should be added at the last hidden layer?42

(b) when should a new hidden layer be added?43

By exploiting the geometric feature of the current approximation, the enhancement strategy (see44

section 4) determines the number of new neurons to be added at the last hidden layer. A new layer45

is added if a computable quantity measuring the improvement rate of two consecutive networks46

per the relative increase of parameters is small.47

Problem (1.1) is a non-convex optimization that has many solutions, and the desired one is48

only attainable when one begins with an initial approximation that is sufficiently close. A common49

approach to obtaining a good initialization is through the method of continuation, as described in50

[1]. The ANE method offers a natural way to acquire a well-suited initialization. Essentially, the51

approximation provided by the previous network serves as a good starting point for the current52

network at each adaptive step. Additionally, we outline an approach for initializing the weights and53

biases of newly added neurons, leveraging the geometric properties of the current approximation,54

which is detailed in section 5.55

2. ReLU Neural Network. A neural network defines a new class of approximating functions56

which is suitable for some computationally challenging problems. This section describes l-hidden-57

layer ReLU neural network as a set of continuous piece-wise linear functions and introduces related58

notations. This chapter is restricted to one dimensional output nl+1 = 1 for simplicity of presen-59

tation. Extension of materials covered by this chapter to multi-dimensional output nl+1 > 1 is60

straightforward.61

ReLU refers to the rectified linear activation function defined by62

(2.1) σ(t) = max{0, t} =

{
t, t > 0,

0, t ≤ 0.
63

The σ(t) is a continuous piece-wise linear function with one breaking point t = 0. For k = 1, . . . , l,64

let nk denote the number of neurons at the kth hidden-layer; denote by65

b(k) ∈ Rnk and ω(k) ∈ Rnk×nk−166

the biases and weights of neurons at the kth hidden-layer, respectively. Their ith rows are denoted67

by b
(k)
i ∈ R and ω

(k)
i ∈ Rnk−1 , that are the bias and weights of the ith neuron at the kth hidden-68

layer, respectively. Introduce a vector-valued function N(k) : Rnk−1 → Rnk as69

(2.2) N(k)
(
x(k−1)

)
= σ

(
ω(k)x(k−1) + b(k)

)
for x(k−1) ∈ Rnk−1 ,70

where application of the activation function σ to a vector-valued function is defined component-71

wisely and n0 = d is the input dimension.72

A ReLU neural network with l hidden-layers and nk neurons at the kth hidden-layer may be73

defined as the collection of continuous piece-wise linear functions:74

(2.3) M(l) =

{
c1
(
N(l) ◦· · ·◦N(1)(x)

)
+ c0 : (c0, c1) ∈ Rnl+1, ω(k) ∈ Rnk×nk−1 ,

b(k) ∈ Rnk for k = 1, . . . , l

}
,75

This manuscript is for review purposes only.

ADAPTIVE NEURAL NETWORK METHOD 3

where the symbol ◦ denotes the composition of functions. The total number of parameters of M(l)76

is given by77

(2.4) M(l) = (nl + 1) +

l∑
k=1

nk × (nk−1 + 1).78

As in [4], the biases and weights of all hidden-layers79

(2.5) Θ(l) =

l⋃
k=1

{(
b
(k)
i ,ω

(k)
i

)}nk

i=1
=
{(

b(k),ω(k)
)}l

k=1
80

are referred as nonlinear parameters, and the output bias and weights81

c = (c0, c1) = (c0, c1, . . . , cnl
) ∈ Rnl+1

82

are referred as linear parameters for a neural network function.83

Remark 2.1. Domain of the nonlinear parameter Θ(l) in (2.3) is too large in general and84

hence admit infinite many global minimizers of (1.1). One may add some constraints to the domain85

in order to reduce the number/dimension of the global minimizers. For example, the weights of86

each neuron can be normalized (see, e.g., [4, 11, 8]).87

Linearity of the output parameter c here means that c is uniquely determined by a system of88

linear algebraic equations with given nonlinear parameter Θ(l). In the remainder of this section,89

we introduce this linear system and show that the corresponding mass matrix is always symmetric;90

moreover, it is positive definite under some condition. To this end, let91

(2.6) φ
(l)
0 (x) = 1 and φ

(l)
i (x) = σ

(
ω

(l)
i

(
N(l−1)◦· · ·◦N(1)(x)

)
+ b

(l)
i

)
,92

then any function v ∈ M(l) has the form of93

(2.7) v(x) =

nl∑
i=0

ciφ
(l)
i (x).94

A solution fnn of (1.1) satisfies the critical point equation95

(2.8) ∇cL(fnn) = 096

for the linear parameter c = (c0, c1). This implies that c satisfies the following system of linear97

algebraic equations98

(2.9) M (l)
(
Θ(l)

)
c = F (l)

(
Θ(l)

)
,99

where M (l)
(
Θ(l)

)
and F (l)

(
Θ(l)

)
are the discrete mass matrix and the right-hand side vector100

given by101

(2.10)


M (l)

(
Θ(l)

)
=

(
M∑
e=1

weφ
(l)
j (xe)φ

(l)
i (xe)

)
(nl+1)×(nl+1)

and

F (l)
(
Θ(l)

)
=

(
M∑
e=1

weyeφ
(l)
i (xe)

)
(nl+1)×1

.

102

This manuscript is for review purposes only.

4 Z. CAI AND M. LIU

Lemma 2.2. The mass matrix M (l)
(
Θ(l)

)
defined in (2.10) is symmetric. Assume that func-103

tions
{
φ
(l)
i (x)

}nl

i=0
are linearly independent, then M (l)

(
Θ(l)

)
is positive definite.104

Proof. Obviously, M (l)
(
Θ(l)

)
is symmetric. For any c ∈ Rnl+1, we have105

cTM (l)
(
Θ(l)

)
c =

nl+1∑
i,j=0

M∑
e=1

cicjweφ
(l)
j (xe)φ

(l)
i (xe) =

M∑
e=1

we

(
nl+1∑
i=0

ciφ
(l)
i (xe)

)2

,106

which, together with the assumption, implies positive definiteness of M (l)
(
Θ(l)

)
.107

Even though M (l)
(
Θ(l)

)
is symmetric, positive definite, it could be highly ill-conditioned.108

This fact, in turn, implies inefficiency of the optimization methods of gradient descent type.109

3. Physical Partition. A neural network function in M(l) has the form of110

(3.1) v(x) = c1

(
N(l)◦· · ·◦N(1)(x)

)
+ c0 =

nl∑
i=0

ciφ
(l)
i (x),111

where φ
(l)
i (x) is defined in (2.6). Obviously, v(x) is a continuous piece-wise linear (CPWL) function112

defined in Rd. This means that there exists a partition of Rd such that v(x) is linear on all113

subdomains of this partition. This section studies such a partition for a given neural network114

function v(x) of the form in (3.1).115

Definition 3.1. For a given network function v(x) of the form in (3.1) defined in Ω =116

[−1, 1]d, a partition K(l)(v) of Ω is said to be the physical partition of v(x) with respect to Ω117

if118

(i) K(l)(v) is a partition of Ω, i.e.,119

Ω =
⋃

K∈K(l)(v)

K̄ and K ∩ T = ∅ if K ̸= T for all K,T ∈ K(l)(v).120

(ii) for each subdomain K ∈ K(l)(v), the restriction of v(x) on K is a linear function.121

Remark 3.2. The physical partition K(l)(v) defined in Definition 3.1 depends on the nonlinear122

parameter Θ(l) but not on the linear parameter c.123

For a shallow neural network M(1), each function v ∈ M(1) has the form of124

v(x) = c1

(
N(1)(x)

)
+ c0 =

n1∑
i=1

ciσ
(
ω

(1)
i x+ b

(1)
i

)
+ c0 =

n1∑
i=0

ciφ
(1)
i (x).125

where Θ(1) =
{
θ
(1)
i

}n1

i=1
:=
{(

b
(1)
i ,ω

(1)
i

)}n1

i=1
is nonlinear parameter. For i = 1, . . . , n1, denote126

the pre-activation function of the ith neuron by127

(3.2) g
(1)
i (x) = ω

(1)
i x+ b

(1)
i128

and its zero level set, called the breaking hyper-plane, by129

(3.3) P(1)
i

(
θ
(1)
i

)
=
{
x ∈ Ω : g

(1)
i (x) = 0

}
=
{
x ∈ Ω : ω

(1)
i x+ b

(1)
i = 0

}
.130

This manuscript is for review purposes only.

ADAPTIVE NEURAL NETWORK METHOD 5

For fixed Θ(1), the physical partition K(1)(v) is formed by the set of the breaking hyper-planes131 {
P(1)
i

}n1

i=1
and the boundary of the domain Ω.132

The breaking hyper-planes
{
P(1)
i

}n1

i=1
in one dimension (d = 1) degenerate to the breaking133

points

{
− b

(1)
i

ω
(1)
i

}n1

i=1

(blue dots in Fig. 1(a)), which partitions the interval Ω = [−1, 1] into sub-134

intervals. The breaking hyper-planes in two dimensions (d = 2) degenerate to the breaking lines135

(blue lines in Fig. 1(b))136

P(1)
i

(
θ
(1)
i

)
=
{
x = (x1, x2) ∈ Ω = [−1, 1]2 : ω

(1)
i1 x1 + ω

(1)
i2 x2 + b

(1)
i = 0

}
,137

which partition the domain Ω ∈ R2 into irregular, polygonal sub-domains (see also Fig. 2(c)).138

For a two-hidden-layer neural network M(2), each function v ∈ M(2) has the form of139

v(x) = c1

(
N(2)◦N(1)(x)

)
+ c0 =

n2∑
i=0

ciφ
(2)
i (x),140

where
{
φ
(2)
i (x)

}n2

i=1
are similarly defined as in (2.6) by141

φ
(2)
0 (x) = 1 and φ

(2)
i (x) = σ

(
ω

(2)
i

(
N(1)(x)

)
+ b

(2)
i

)
= σ

(
ω

(2)
i σ

(
ω(1)x+ b(1)

)
+ b

(2)
i

)
142

for i = 1, . . . , n2 and nonlinear parameters are given by143

(3.4) Θ(2) = Θ(1) ∪
{
θ
(2)
i

}n2

i=1
:= Θ(1) ∪

{(
b
(2)
i ,ω

(2)
i

)}n2

i=1
.144

Similar to the shallow network M(1), denote pre-activation functions of neurons at the 2nd hidden-145

layer by146

(3.5) g
(2)
i (x) = ω

(2)
i σ

(
ω(1)x+ b(1)

)
+ b

(2)
i for i = 1, . . . , n2147

and their zero level sets, called the breaking poly-hyper-planes, by148

(3.6) P(2)
i

(
Θ(1),θ

(2)
i

)
=
{
x ∈ Ω : ω

(2)
i σ

(
ω(1)x+ b(1)

)
+ b

(2)
i = 0

}
.149

Remark 3.3. Note that g
(2)
i (x) is a single-valued, continuous piece-wise linear function. This150

fact implies that P(2)
i

(
Θ(1),θ

(2)
i

)
as a zero level set is either empty or consists of poly-hyper-planes151

that do not intersect. Here, the poly-hyper-plane means a continuous hyper-plane that is composed152

of one or more connected hyper-plane segments. Moreover, each poly-hyper-plane is either closed153

or from part of the boundary to another part of the boundary.154

Remark 3.4. The physical partition K(2)(v) is the refinement of the partition K(1)(v) by using155

the breaking poly-hyper-planes
{
P(2)
i

(
Θ(1),θ

(2)
i

)}n2

i=1
.156

In one dimension, K(2) (v) is the refinement of K(1) (v) by adding the 2nd layer breaking points157

(red crosses in Fig. 1(a)) satisfying158

n2∑
j=1

ω
(2)
ij σ

(
ω
(1)
j x+ b

(1)
j

)
+ b

(2)
i = 0 for i = 1, . . . , n2.159

This manuscript is for review purposes only.

6 Z. CAI AND M. LIU

(a) Breaking points generated by the jth neu-
ron of the second layer

(b) Breaking lines generated by the jth

neuron of the lth-layer

Fig. 1. Breaking points/lines in the first two hidden layers.

In two dimensions, the K(2) (v) is the refinement of K(1) (v) by adding the 2nd layer breaking160

poly-lines (red poly-lines in Figs. 1(b) and 2(d)) satisfying161

n2∑
j=1

ω
(2)
ij σ

(
ω

(1)
j x+ b

(1)
j

)
+ b

(2)
i = 0 for i = 1, . . . , n2.162

For k = 1, . . . , l − 1, denote the nonlinear parameter of the first k hidden-layers of v(x) by163

(3.7) Θ(k) = Θ(k−1) ∪
{
θ
(k)
i

}nk

i=1
:= Θ(k−1) ∪

{(
b
(k)
i ,ω

(k)
i

)}nk

i=1
.164

Let K(k) (v) denote the physical partition determined by the nonlinear parameters Θ(k). Then165

the physical partition K(l)(v) may be described through a refinement process starting from the166

physical partition K(1) (v). For k = 2, . . . , l, the physical partition K(k) (v) is the refinement of the167

previous physical partition K(k−1) (v) by adding the following poly-hyper-planes168

(3.8) P(k)
i

(
Θ(k−1),θ

(k)
i

)
=
{
x ⊂ Rd : g

(k)
i (x) = 0

}
for i = 1, . . . , nk,169

where g
(k)
i (x) is the pre-activation function of the ith neuron at the kth hidden-layer given by170

(3.9) g
(k)
i (x) = ω

(k)
i

(
N(k−1)◦· · ·◦N(1)(x)

)
+ b

(k)
i .171

The procedure for determining the physical partition K(l)(v) of the domain Ω involves calculating172

the arrangement of a domain formed by a set of hyper-planes and poly-hyper-planes. This may be173

computationally expensive, especially when the input dimension d is high.174

In practice, computation is usually done over a set of points in Ω, e.g., the input data set175

D = {xi}Mi=1 for problem (1.1) and integration point set as in [6, 10]. This motivates introduction176

of the data physical partition, i.e., the physical partition of v(x) ∈ M(l) with respect to a given177

data set D = {xi}Mi=1. In a similar fashion as Definition 3.1, we define the data physical partition178

D(k) as follows179

(3.10) D(k) = D ∩K(k) =
{
D ∩K : K ∈ K(k)

}
180

This manuscript is for review purposes only.

ADAPTIVE NEURAL NETWORK METHOD 7

for k = 1, . . . , l.181

Next, we describe how to form D(l) for a given nonlinear parameters Θ(l). To this end, let182

H(t) be the Heaviside step function given by183

H(t) =

{
1, t > 0,

0, t < 0.
184

For k = 1, . . . , l, introduce vector-valued layer indicator function I(k) : Rd → Rnk as185

(3.11) I(k) (x) = H
(
g(k)(x)

)
,186

where g(k)(x) =
(
g
(k)
i (x)

)
nk×1

is the pre-activation function defined in (3.9) and application of H187

to a vector-valued function is defined component-wisely. For a given nonlinear parameter Θ(l), we188

define the network indicator function by189

I(l)(x) =
(
I(1)(x), . . . , I(l)(x)

)
.190

Let the data physical partition D(l) be of the form191

(3.12) D(l) =
{
D

(l)
j

}ml

j=1
,192

where ml is the number of disjoint elements of the data physical partition D(l) and each element193

D
(l)
j is a subset of the input data set D such that the value of the network indicator function I(l)194

is same for all points in D
(l)
j . Denote this value by I(l)

D
(l)
j

, then we have195

(3.13) I(l) (x) = I(l)

D
(l)
j

for x ∈ D
(l)
j .196

For each element D ∈ D(l), denote the centroid of D by197

(3.14) xD =
1

|D|
∑
xi∈D

wixi,198

and the covariance matrix of D formed by vectors xi − xD for all xi ∈ D by199

(3.15) CoVD =
∑
xi∈D

[xi − xD]
T
[xi − xD] ,200

where xi−xD is a d-dimensional row vector. Then each element D ∈ D(l) has d principal directions201

that correspond to the eigenvectors of CoVD.202

4. Adaptive Network Enhancement Method. This section describes the adaptive net-203

work enhancement method (ANE) for problem (1.1).204

To this end, denote the current neural network, approximation, and error at the kth adaptive205

step by206

M(k)(lk), f (k)(x), and ξ(k) = L
(
f (k)

)
,207

respectively, where lk is the number of hidden-layers of the network M(k)(lk). When accuracy of208

the current approximation f (k)(x) is not within the prescribed tolerance, i.e., ξ(k) > ϵL(0), the209

This manuscript is for review purposes only.

8 Z. CAI AND M. LIU

network M(k)(lk) is enhanced by adding neurons at the either lk-th or (lk + 1)-th hidden-layer.210

The latter means that we starts a new hidden-layer.211

To determine the number of neurons to be added at the lk-th hidden-layer, we use the local212

network enhancement strategy based on the data physical partition of D = {xi}Mi=1:213

D(lk)
(
f (k)

)
= D ∩K(lk)

(
f (k)

)
=
{
D ∩K : K ∈ K(lk)

(
f (k)

)}
214

by the current approximation f (k)(x). Specifically, we divide D(lk)
(
f (k)

)
into two disjoint subsets,215

D(lk)
(
f (k)

)
= D̂(lk)

(
f (k)

)⋃(
D(lk)

(
f (k)

)
\ D̂(lk)

(
f (k)

))
216

where D̂(lk)
(
f (k)

)
= D∩K̂(lk)

(
f (k)

)
is a subset of D(lk)

(
f (k)

)
consisting of elements in D(lk)

(
f (k)

)
217

such that f (k)(x) is not yet a good approximation. Then the enhancement strategy is to add218 ∣∣D̂(lk)
(
f (k)

) ∣∣ new neurons to the lk-th hidden-layer, where219

(4.1)
∣∣D̂(lk)

(
f (k)

) ∣∣ = the number of elements of D̂(lk)
(
f (k)

)
.220

To generate D̂(lk)
(
f (k)

)
, we employ the so-called marking strategy. There are two commonly221

used marking strategies for adaptive mesh refinement. One is the average marking strategy and222

the other is the bulk marking strategy. To describe these marking strategies, let us first introduce223

the following local error indicator224

(4.2) ξ
(k)
D =

(∑
xi∈D

wi

(
f (k)(xi)− yi

)2)1/2

225

for each element D ∈ D(lk)
(
f (k)

)
. Clearly, we have226

(4.3) ξ(k) =

(
M∑
i=1

wi

(
f (k)(xi)− yi

)2)1/2

=

 ∑
D∈D(lk)(f(k))

(
ξ
(k)
D

)2
1/2

.227

The average marking strategy is given by228

(4.4) D̂(lk)
(
f (k)

)
=

D ∈ D(lk)
(
f (k)

)
: ξ

(k)
D ≥ 1∣∣D(lk)

(
f (k)

)∣∣ ∑
D∈D(lk)(f(k))

ξ
(k)
D

 .229

The bulk marking strategy is to find a minimal subset D̂(lk)
(
f (k)

)
such that230

(4.5)
∑

D∈D̂(lk)(f(k))

(
ξ
(k)
D

)2
≥ γ1

∑
D∈D(lk)(f(k))

(
ξ
(k)
D

)2
for γ1 ∈ (0, 1).231

The enhancement strategy adding
∣∣D̂(lk)

(
f (k)

) ∣∣ new neurons is suitable for all hidden-layers.232

Nevertheless, it may not be efficient for hidden-layers beyond the first hidden-layer. Notice that a233

multi-layer network is capable of generating piece-wise breaking hyper-planes in connected subdo-234

mains by one neuron. This observation motivates the notion of the reduced number of elements in235

D̂(lk)
(
f (k)

)
. To this end, let236

(4.6) D̂(l)
(
f (k)

)
=
{
D̂

(l)
j

}m̂l

j=1
.237

This manuscript is for review purposes only.

ADAPTIVE NEURAL NETWORK METHOD 9

That is, there are m̂l marked elements in D(l)
(
f (k)

)
. Any two elements in D̂(lk)

(
f (k)

)
are said238

to be disconnected if there is no pass connecting these two elements by elements of D̂(lk)
(
f (k)

)
.239

Let us group connected elements of D̂(l)
(
f (k)

)
to form a set, whose elements are disconnected,240

denoted by241

(4.7) D̃(l)
(
f (k)

)
=
{
D̃

(l)
j

}m̃l

j=1
,242

where each element D̃
(l)
j ∈ D̃(l)

(
f (k)

)
is either an element of D̂(l)

(
f (k)

)
or a union of connected243

elements in D̂(l)
(
f (k)

)
. Obviously, m̃l ≤ m̂l. Now, we define the reduced number of elements in244

D̂(lk)
(
f (k)

)
by245

(4.8)
∣∣∣D̂(lk)

(
f (k)

)∣∣∣
r
=

{
m̂l, lk = 1,

m̃l, lk ≥ 2.
246

where any two elements in D̂(lk)
(
f (k)

)
are disjoint if there is no pass connecting these two elements247

by elements of D̂(lk)
(
f (k)

)
.248

Remark 4.1. For any two elements in D̂(lk)
(
f (k)

)
, if values of their network indicator func-249

tion differ only for one neuron, e.g., the ith neuron at the kth hidden-layer, then these two elements250

are neighbor and share part of the poly-hyper-plane P(k)
i

(
Θ(k−1),θ

(k)
i

)
defined in (3.8).251

To address question (b) in section 1, i.e., when to add a new hidden-layer, we introduce a252

computable quantity, referred as the improvement rate, defined by253

(4.9) η(k)r =

(
ξ(k−1) − ξ(k)

ξ(k−1)

)/((M (k)(lk)
)r − (M (k−1)(lk−1)

)r(
M (k)(lk)

)r
)
,254

where M (k−1)(lk−1) and M (k)(lk) denote the numbers of parameters of the networks M(k−1)(lk−1)255

and M(k)(lk), respectively; and r is the order of the approximation with respect to the number256

of parameters and may depend on the activation function and the layer. The improvement rate257

measure a rate of improvement of two consecutive networks per the relative increase of parameters.258

If the improvement rate η
(k)
r is less than or equal to a prescribed expectation rate δ ∈ (0, 2), i.e.,259

(4.10) η(k)r ≤ δ,260

for two consecutive adaptive steps, then the ANE adds a new hidden-layer. Otherwise, the ANE261

adds neurons to the lk-th hidden-layer of the current network M(k)(lk).262

The ANE method for generating a nearly minimal multi-layer neural network is described in263

Algorithm 3.1.264

5. Initialization of training. This section discusses initialization strategies of parameters265

of neural network in two dimensions. Extensions to three dimensions are straightforward.266

The optimization problem in Step (7) of Algorithm 3.1 is non-convex and, hence, computa-267

tionally intensive and complicated. Currently, this problem is often solved by either the first- or268

second-order iterative optimization methods such as gradient-based methods or Newton-like meth-269

ods (see survey papers [2, 3] and references therein). Since non-convex optimizations usually have270

many solutions and/or many local minimums, it is then critical to start with a good initial guess271

in order to obtain the desired solution.272

The ANE method itself is a natural continuation process for generating good initialization.273

That is, the approximation f (k)(x) of the previous network M(k)(lk) is in general a good approxi-274

mation to f (k+1)(x) defined in Step (7) of Algorithm 3.1 for the enhanced network M(k+1)(lk+1).275

This manuscript is for review purposes only.

10 Z. CAI AND M. LIU

Algorithm 3.1 Adaptive Network Enhancement.
Given a data set {(xi, yi)}Mi=1 with xi ∈ Ω = [−1, 1]d, positive weights {wi}Mi=1, and a tolerance
ϵ > 0 for accuracy, starting with a one hidden-layer network M(0)(l0) with a small number of
neurons, compute f (0) = argmin

v∈M(0)(l0)

L(v) by an iterative solver, then for k = 0, 1, 2, . . .,

(1) use the network indicator function to determine the data physical partition D(lk)
(
f (k)

)
;

(2) for each D ∈ D(lk)
(
f (k)

)
, compute the local indicator ξ

(k)
D in (4.2) and the estimator ξ(k)

in (4.3);

(3) if ξ < ϵ, then stop; otherwise, go to Step (4);

(4) use a marking strategy to form the subset D̂(lk)
(
f (k)

)
and calculate

∣∣∣D̂(lk)
(
f (k)

)∣∣∣
r
;

(5) for a prescribed expectation rate δ ∈ (0, 2), if (4.10) holds for two consecutive steps, then
set lk+1 = lk + 1; otherwise, set lk+1 = lk;

(6) form network M(k+1)(lk+1) by adding
∣∣∣D̂(lk)

(
f (k)

)∣∣∣
r
new neurons to the lk+1-th hidden-

layer;

(7) compute f (k+1) = argmin
v∈M(k+1)(lk+1)

L(v) by an iterative solver.

Therefor, the trained nonlinear parameters of M(k)(lk) for f
(k)(x) are good initials for the corre-276

sponding nonlinear parameters of the enhanced network M(k+1)(lk+1). Based on this observation,277

below we discuss our initialization strategies for (1) parameters of the network M(0)(l0), (2) pa-278

rameters of newly added neurons, and (3) linear (output) parameters of f (k+1).279

Starting with a one hidden-layer network M(0)(l0) with relatively small number nl0 of neurons,280

the approximation f (0)(x) has of the form281

f (0)(x) = c1 σ
(
ω(1)x+ b(1)

)
+ c0,282

where Θ(l0) =
{
θ
(1)
i

}nl0

i=1
:=
{(

b
(1)
i ,ω

(1)
i

)}n1

i=1
are nonlinear parameters and c = (c0, c1) ∈ Rnl0

+1283

are linear parameters. Initial of Θ(l0) is chosen such that the hyper-lines284

P(1)
i

(
θ
(1)
i

)
: ω

(1)
i x+ b

(1)
i = 0 for i = 1, ..., n1285

partition the domain Ω = (0, 1)2 uniformly. Initial of c is set to be the solution of the system of286

linear algebraic equations287

(5.1) M (l0)
(
Θ(l0)

)
c = F (l0)

(
Θ(l0)

)
288

defined in a similar fashion as (2.9).289

Next, we discuss how to initialize the biases and weights of newly added neurons of the network290

M(k+1) (lk+1). There are three cases:291

(1) lk+1 = 1, (2) lk+1 = lk + 1, and (3) lk+1 = lk ≥ 2.292

Case (1) means that the new neurons are added at the first hidden-layer. By associating each new293

neuron with an element D ∈ D̂(lk)
(
f (k)

)
, we initialize this neuron by setting its corresponding294

breaking line to pass through the centroid xD and orthogonal to the principal direction that295

corresponds to the smallest eigenvalue of the covariance matrix CoVD.296

This manuscript is for review purposes only.

ADAPTIVE NEURAL NETWORK METHOD 11

Consider Case (2). When lk+1 = lk + 1, we start a new hidden-layer with
∣∣∣D̂(lk)

(
f (k)

)∣∣∣
r

297

neurons. By the definition in (4.8), we associate each neuron at the new hidden-layer lk+1 = lk+1298

with an isolated element or an element consisting of several connected elements in D̂(lk)
(
f (k)

)
and299

denote its bias and weights by300

(5.2) θ(lk+1) =
(
b(lk+1), ω(lk+1)

)
∈ Rnlk

+1 =
(
b(lk+1), ω

(lk+1)
1 , · · · , ω(lk+1)

nlk

)
∈ Rnlk

+1.301

As section 2, denote the corresponding pre-activation function of the neuron by302

g(lk+1)(x) = ω(lk+1)
(
N(lk)◦· · ·◦N(1)(x)

)
+ b(lk+1)303

If the corresponding element D is an isolated element in D̂(lk)
(
f (k)

)
, let lD(x) = 0 be the line304

that passes through the centroid xD of D and is orthogonal to the direction vector with the lowest305

variance of D (see section 3). Denote by xd the projection of a point in D onto the line lD(x) = 0306

and whose distance to xD is the largest among projections of all points in D onto the line. Then307

initial θ
(lk+1)
D of the parameter θ(lk+1) is set to be308

(5.3) θ
(lk+1)
D = argmin

θ(lk+1)∈Rnlk
+1

{(
g(lk+1)(xD)

)2
+
(
g(lk+1)(xd)

)2}
.309

When the corresponding element D consists of several connected elements in D̂(lk)
(
f (k)

)
, denote310

the collection of these connected elements by C. For each element C ∈ C, denote by xC the centroid311

of C. Then initial θ
(lk+1)
C of the parameter θ(lk+1) is set to be312

(5.4) θ
(lk+1)
C = argmin

θ(lk+1)∈Rnlk
+1

∑
C∈C

(
g(lk+1)(xC)

)2
.313

Now, let us consider Case (3) where new neurons are added at the current layer lk+1 = lk. Let314

s ∈ {1, . . . , k − 1} be the largest integer such that lk−s = lk − 1. Then M(k−s)(lk−s) is the final315

network with lk−s = lk − 1 hidden-layers. Hence the weights and bias of each neuron associated316

with an element in D̂(lk)
(
f (k)

)
has the form of317

(5.5) θ(lk+1) =
(
b(lk+1), ω(lk+1)

)
=
(
b(lk+1), ω

(lk+1)
1 , · · · , ω(lk+1)

nlk−s

)
∈ Rnlk−s

+1.318

Initial of θ(lk+1) in (5.5) can then be defined in a similar fashion as Case (2). Specifically, we have319

(5.6)


θ
(lk+1)
D = argmin

θ(lk+1)∈R
nlk−s

+1

{(
g(lk+1)(xD)

)2
+
(
g(lk+1)(xd)

)2}
and

θ
(lk+1)
C = argmin

θ(lk+1)∈R
nlk−s

+1

∑
C∈C

(
g(lk+1)(xC)

)2
,

320

where xD, xd, and xC are defined in a similar way as in Case (2).321

Finally, initial of the linear parameter c = (c0, c1) ∈ Rnlk+1
+1 of fk+1(x) is set to be the322

solution of the system of algebraic linear equations323

(5.7) M (lk+1)
(
Θ(lk+1)

)
c = F (lk+1)

(
Θ(lk+1)

)
324

defined in a similar fashion as (2.9).325

This manuscript is for review purposes only.

12 Z. CAI AND M. LIU

6. Numerical Experiment. In this section, we report the numerical experiment on using326

the ANE method to approximate a function using the least-squares loss. The target function is327

defined on the domain Ω = [−1, 1]2, and is given by328

(6.1) f(x, y) = tanh

(
1

α
(x2 + y2 − 1

4
)

)
− tanh

(
3

4α

)
.329

For small constant α, this function exhibits a sharp transitional layer across a circular interface.330

For this experiment, we set a small α = 0.01 to test approximation accuracy using ANE. and331

the corresponding target function f is depicted in Fig. 2(a). A data set D for training network is332

generated using a fixed set 200 × 200 of quadrature points that are uniformly distributed in the333

domain Ω.334

During the ANE process, we adopt the bulk marking strategy defined in (4.5) with γ1 = 0.5335

and choose the expectation rate δ = 0.6 with r = 1 in (4.9); and the expected precision ϵ =336

0.05. The ANE method started with an initial network of 12 neurons in one hidden layer. The337

corresponding breaking lines {Pi}12i=1 of these 12 neurons were uniformly initialized within the338

domain. Specifically, half of breaking lines are parallel to the x-axis339

ω
(1)
i = (0, 1) and b

(1)
i = −1 +

1

3
i for i = 0, · · · , 5340

and the other half are parallel to the y-axis341

ω
(1)
i = (1, 0) and b

(1)
i = −1 +

1

3
(i− 6) for i = 6, · · · , 12.342

In addition, the output weights and bias are initialized by solving the linear system in (5.1).343

For each iteration of the ANE process, the corresponding minimization problem in (1.1) is344

solved iteratively using the Adam version of gradient descent [9] with a fixed learning rate 0.005.345

Adam’s iterative solver is terminated when the relative change of the loss function ∥f − f̂∥T is less346

than 10−3 per 2000 iterations.347

Table 1
Numerical results for using ANE to approximate function with a circular transitional layer

NN structure # parameters
Approximation accuracy

∥f − f̂∥T /∥f∥
Improvement rate

η

2-12-1 37 0.357414 –
2-18-1 55 0.323118 0.293198
2-26-1 93 0.272614 0.382528

2-18-5-1 137 0.025483 1.538967

The ANE process is automatically terminated after four loops (see Table 1 for the interme-348

diate and final result), and the final network model generated by the ANE is 2-18-5-11 with 137349

parameters. The final network approximation model and the corresponding physical partition are350

shown in Figs. 2 (e) and (d). Using a relatively small set of parameters, ANE is able to accurately351

approximate a function with a thin transition layer without any oscillations. This remarkable352

approximation property can be explained by the fact that the circular interface of the underlying353

function is captured very effectively by a few breaking poly-lines generated in the second hidden354

layer, see the closed breaking lines formed by the 5 neurons in the second hidden layer in Fig. 2355

(d).356

1The structure of a two- or three-hidden-layer network is expressed as 2-n1-1 or 2-n1-n2-1, respectively, where
n1 and n2 are the number of neurons at the first and second hidden-layer.

This manuscript is for review purposes only.

ADAPTIVE NEURAL NETWORK METHOD 13

(a) The target function f with a circular
transitional layer

(b) PP of the 2-12-1 network and centroids of the
marked elements (red dots)

(c) PP by 2-18-1 network and iso-
lated and connected sub-domains
(dots)

(d) PP by adaptive 2-18-5-1 net-
work

(e) Approximation result using adaptive
2-18-5-1 network

Fig. 2. Adaptive approximation results for function with a transitional layer

Figs. 2 (b)-(c) plot the physical partitions of the NN models at the intermediate adaptive357

process. In Fig. 2 (b), the centroids of the marked elements are illustrated by red dots; the358

breaking lines corresponding to the current and newly added neurons are shown by blue and red359

lines, respectively. Notice that the newly added neurons are initialized with break lines that pass360

through the centroids and align with the principal directions of the marked elements. Fig. 2(c)361

shows that there are 8 marked elements and 5 disjoint elements, which explains that 5 neurons are362

added to the second hidden layer during the neuron enhancement step.363

Table 2
Numerical results of adaptive and fixed networks for function with a transitional layer

Network structure # parameters
Approximation accuracy

∥f − f̂∥T /∥f∥
2-18-5-1 (Adaptive) 137 2.5483 %
2-18-5-1 (Fixed) 137 4.6199%
2-174-1 (Fixed) 523 11.1223%

For the purpose of a comparative study, we conducted function approximation experiments364

using two fixed network structures. As outlined in Table 2, when utilizing the same network365

structure (2-18-5-1), the resulting approximation accuracy is inferior to that achieved by the ANE366

This manuscript is for review purposes only.

14 Z. CAI AND M. LIU

(a) Approximation using fixed 2-174-1 network (b) PP of the approximation by 2-174-1 network and
centers of elements with large errors (red)

Fig. 3. Approximation results generated by a fixed 2-174-1 network for function with a transitional layer

method. The first two rows of Table 2 suggest that the ANE method provides a good initialization,367

which may simplify the non-convex optimization problem.368

In the second experiment, we employed a fixed one- hidden-layer network (2-174-1) with nearly369

four times the number of parameters compared to the adaptive network. Despite the increased370

degrees of freedom and complexity, its approximation is less accurate (refer to the third row of371

Table 2). Furthermore, the approximated NN model exhibits a certain degree of oscillation (see372

Fig. 3 (a)), although the corresponding physical partition (Fig. 3(b)) still captures the narrow373

transition layer.374

In general, a one-hidden-layer network necessitates dense breaking lines to approximate a cir-375

cular interface, and oscillations along the interface can be attributed to the global basis functions376

generated from the first hidden layer. This experiment highlights that a deeper network, as il-377

lustrated by the two-hidden-layer network in this example, is more efficient in approximating a378

function with a thin nonlinear transition layer or interface. This experimental observation aligns379

with the theoretical findings presented in [7].380

7. Conclusion. Designing an optimal deep neural network for a given task is important381

and challenging in many machine learning applications. This chapter provides a comprehensive382

introduction to the adaptive network enhancement (ANE) method, proposed recently in [11, 10, 5],383

which generates a nearly optimal multi-layer neural network for a given task within some prescribed384

accuracy. This self-adaptive algorithm is based on the novel network enhancement strategies385

that determine when a new hidden-layer and how many new neurons should be added when386

the current network is not sufficient for the task. This adaptive algorithm learns not only from387

given information (data, function, partial differential equation) but also from the current computer388

simulation, and it is therefore a learning algorithm at a level which is more advanced than common389

machine learning algorithms.390

The resulting non-convex optimization at each adaptive step is computationally intensive and391

complicated with possible many global/local minimums. The ANE method provides a natural392

process for obtaining a good initialization that assists training significantly. Moreover, to provide393

a better initial guess, this chapter discusses an advanced procedure for initializing newly added394

neurons at the current or next hidden-layer.395

Functions and partial differential equations with sharp transitions or discontinuities at un-396

known location have been computationally challenging, when approximated using other functional397

classes such as polynomials or piece-wise polynomials with fixed meshes. It was demonstrated398

This manuscript is for review purposes only.

ADAPTIVE NEURAL NETWORK METHOD 15

numerically in [11, 10, 5] that the ANE method can automatically design a nearly minimal two-399

or multi-hidden-layer network to learn functions exhibiting sharp transitional layers as well as400

continuous/discontinuous solutions of partial differential equations.401

REFERENCES402

[1] E. L. Allgower and K. Georg. Numerical Continuation Methods: An Introduction. Springer-Verlag, Berlin,403
1990.404

[2] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning. SIAM Review,405
60:223–311, 2018.406

[3] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning. SIAM Review,407
60(2):223–311, 2018.408

[4] Z. Cai, J. Chen, and M. Liu. Least-squares ReLU neural network (LSNN) method for linear advection-reaction409
equation. Journal of Computational Physics, 443 (2021) 110514.410

[5] Z. Cai, J. Chen, and M. Liu. Self-adaptive deep neural network: Numerical approximation to functions and411
PDEs. J. Comput. Phys., 455 (2022) 111021.412

[6] Z. Cai, J. Chen, M. Liu, and X. Liu. Deep least-squares methods: An unsupervised learning-based numerical413
method for solving elliptic pdes. J. Comput. Phys., 420 (2020) 109707.414

[7] Z. Cai, J. Choi, and M. Liu. Least-squares neural network (LSNN) method for linear advection-reaction415
equation: general discontinuous interface. arXiv:2301.06156v3[math.NA], 2023.416

[8] Z. Cai, T. Ding, M. Liu, X. Liu, and J. Xia. A damped block gauss-newton method for shallow relu neural417
network. manuscript, 2023.418

[9] D. P. Kingma and J. Ba. ADAM: A method for stochastic optimization. In International Conference on419
Representation Learning, San Diego, 2015; arXiv preprint arXiv:1412.6980.420

[10] M. Liu and Z. Cai. Adaptive two-layer relu neural network: II. Ritz approximation to elliptic PDEs. Comput.421
Math. Appl., 113:103–116, 2022.422

[11] M. Liu, Z. Cai, and J. Chen. Adaptive two-layer ReLU neural network: I. best least-squares approximation.423
Comput. Math. Appl., 113:34–44, 2022.424

This manuscript is for review purposes only.

	Introduction
	ReLU Neural Network
	Physical Partition
	Adaptive Network Enhancement Method
	Initialization of training
	Numerical Experiment
	Conclusion
	References

