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Abstract: This paper develops and analyzes two least-squares methods for the numerical solution of lin-
ear elasticity and Stokes equations in both two and three dimensions. Both approaches use the L2 norm to
define least-squares functionals. One is basedon the stress-displacement/velocity-rotation/vorticity-pressure
(SDRP/SVVP) formulation, and the other is based on the stress-displacement/velocity-rotation/vorticity
(SDR/SVV) formulation. The introduction of the rotation/vorticity variable enables us to weakly enforce the
symmetry of the stress. It is shown that the homogeneous least-squares functionals are elliptic and contin-
uous in the norm of H(div; Ω) for the stress, of H1(Ω) for the displacement/velocity, and of L2(Ω) for the
rotation/vorticity and the pressure. This immediately implies optimal error estimates in the energy norm for
conforming finite element approximations. As well, it admits optimal multigrid solution methods if Raviart–
Thomas finite element spaces are used to approximate the stress tensor. Through a refined duality argument,
an optimal L2 norm error estimates for the displacement/velocity are also established. Finally, numerical
results for a Cook’s membrane problem of planar elasticity are included in order to illustrate the robustness
of our method in the incompressible limit.
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1 Introduction
Least-squares finite element method has been successfully used in computational fluid dynamics, solid
mechanics, and electro-magnetics (see, e.g., books by Bochev andGunzburger [10] and by Jiang [24], and ref-
erences therein). The method has many attractions. The two striking features are (i) it naturally symmetrizes
and stabilizes the original problem; and (ii) the corresponding least-squares functional is an accurate a pos-
teriori error estimator. Stability plays a crucial role for numerical algorithms, and symmetry is important for
developing fast solvers. Accurate error estimator guarantees reliability of the computation and efficiency of
adaptive mesh refinement algorithm.

For linear elasticity problems, least-squares finite element methods have been studied based on various
first-order system, e.g., the displacement-displacement gradient formulation in [18], the stress-displacement-
rotation formulation in [25] (see also the references therein for some other least-squares approaches in the
engineering literature), and the stress-displacement formulation in [19, 20]. One drawback of the approaches
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in [18, 25] is their requirement of sufficient smoothness on the original problem if using standard continu-
ous finite element approximations. This drawback was overcome in [19, 20] by applying the L2 norm least
squares to the stress-displacement formulation. Moreover, it was shown in [20] that the homogeneous least-
squares functional is elliptic and continuous in the H(div; Ω)d × H1(Ω)d norm, d = 2 or 3, uniform in the
incompressible limit. This implies optimal error estimates in the energy norm for conforming finite element
approximations as well as optimal multigrid solution methods if Raviart–Thomas finite element spaces are
used to approximate the stress tensor.

Recently, a “least-squares” finite elementmethodwas introduced in [27] froman engineering perspective
and analyzed in [28]. This methodmodifies the least squares approach in [20] by adding the skew-symmetric
part of displacement gradient in the test space. It was shown numerically that themodifiedmethod improves
momentum balance and gives better results in bending dominated situations. However, the resulting varia-
tional formulation is non-symmetric; the method is no longer of the least-squares type and, hence, it does
not have a natural error estimator.

Motivated by works in [27, 28], in this paper we study the L2 norm least-squares finite element method
based on the stress-displacement-rotation (SDR) formulation (see (2.7)) with a hope of improvingmomentum
balance. The rotation is defined as the curl of the displacement field, and the SDR formulation in this paper,
that is different from that in [25], has been used to develop mixed finite element methods (see, e.g., [1, 3,
23] and [4]). The degree of freedoms for mixed elements based on the SDR formulation is much less than
that of mixed elements based on the stress-displacement formulation (see, e.g., [2, 5]). This is because the
symmetry condition of the stress is imposed weakly in the SDR formulation. By employing the least-squares
principle, the number of the degrees of freedom is further reduced. For the stress-displacement formulation,
see [20]. For the stress-displacement-rotation (SDR) formulation in two dimensions, for example, the lowest
order finite element spaces for the least-squares method introduced in this paper and for the PEERs in [3] are
the respective RT20 × P21 × P0 and (RT

2
0 + B) × P

2
0 × P1, where B is the span of the gradient perp of the cubic

bubble functions. Hence, their degrees of freedomare 5 and7.5 per element, where edge and vertex freedoms
are counted as half and one-sixth, respectively.

To analyze the least-squares method, the key step is to establish the coercivity of the homogeneous least-
squares functional. For the least-squares method based on the SDR formulation, we are not able to directly
prove the coercivity bound. This is because the constitutive equation involves all three variables, but the
other two equations (the equilibrium equation and the symmetry constraint) have only the stress variables,
To circumvent this difficulty, we introduce a new variable, the hydrostatic pressure, defined as the average of
the normal stresses. Instead of using the definition of the pressure as the new equation,we derive an equation
connecting the pressure and the displacement through the trace of the constitutive equation. The resulting
first-order system is called the stress-displacement-rotation-pressure (SDRP) formulation (see (2.9)).

The main theoretical result of the paper is to establish the coercivity of the homogeneous least-squares
functional based on the SDRP formulation (see Theorem 1) uniform with respect to the Lamé constant in
the norm of H(div; Ω) for the stress, of H1(Ω) for the displacement, and of L2(Ω) for the rotation and the
pressure. As a direct consequence, the coercivity of the homogeneous least-squares functional based on the
SDR formulation follows easily. With the coercivity and the continuity, it is then easy to obtain optimal error
estimates of the least-squares finite element methods using conforming finite element approximations in the
energy norm. Aswell, the resulting algebraic systemmay be solved numerically by optimalmultigrid solution
methods if Raviart–Thomasfinite element spaces areused to approximate the stress tensor.Moreover, through
a refined duality argument introduced in [14], we are able to obtain an optimal L2 norm error estimates for
the displacement. Finally, numerical results for Cook’s membrane problem of planar elasticity are included
in order to illustrate the robustness of our method in the incompressible limit.

For incompressible Stokes equation, least-squares finite element methods based on various formula-
tions and various norms have been proposed, analyzed, implemented, and tested (see, e.g., [7–9, 12, 16, 17,
21, 24]). In particular, the least-squaresmethods based on the stress-velocity and the stress-velocity-pressure
formulations were studied in [15]. The stress-velocity formulation is identical to the stress-displacement for-
mulation of linear elasticity corresponding to the incompressible limit, i.e., the Lamé constant λ = +∞. This
means that least-squares methods studied in this paper may be directly applied to the Stokes equation with
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different physical quantities, where the displacement and the rotation of solids are replaced by the velocity
and the vorticity of fluids, respectively.

This least-squares method is closely related to the Hellinger–Reissner mixed formulation, see [11]. The
attractions mentioned at the beginning of this introduction remains valid. The approximations of the con-
strained, i.e., the momentum balance and the symmetry of the stress tensor are super-closed.

This paper is organized as follows. The SDR (SVV) and SDRP (SVVP) formulations for linear elastic-
ity (Stokes) equations are introduced in Section 2. Least-squares minimization problems based on both
the SDR and SDRP formulations are analyzed in Section 3 by establishing the coercivity and continuity of
the corresponding homogeneous least-squares functionals. In Section 4, we derive optimal error bounds
of least-squares finite element approximations in the energy norm as well as the L2 norm for the displace-
ment/velocity. Finally, numerical experiments for Cook’smembraneproblemof linear elasticity are presented
in Section 5.

1.1 Notations

Denote by δ = δd×d the identity matrix. Let

χ =
{{{
{{{
{

(
0 −1
1 0
) if d = 2,

(χ1, χ2, χ3) if d = 3,

where χi for i = 1, 2, 3 are 3 × 3 matrices given by

χ1 = (
0 0 0
0 0 −1
0 1 0

) , χ2 = (
0 0 1
0 0 0
−1 0 0

) , and χ3 = (
0 −1 0
1 0 0
0 0 0

) .

Let σ = (σij)d×d and τ = (τij)d×d be matrix-valued functions in ℜd×d, and denote the component-wise dot
product by

σ : τ =
d
∑
i,j=1

σijτij .

Note that if σ is symmetric and τ is skew-symmetric, then

σ : τ = 0.

The divergence of a tensor τ is defined by applying the divergence operator to rows by

∇ ⋅ τ = (
d
∑
i=1

∂τ1,i
∂xi

, . . . ,
d
∑
i=1

∂τd,i
∂xi
)
t

.

The trace of a tensor τ is defined by
tr τ = τ11 + ⋅ ⋅ ⋅ + τdd .

Let v = (v1, . . . , vd)t be a vector-valued function inℜd; the gradient and curl of v are given by

∇v = (
∂1v1 ⋅ ⋅ ⋅ ∂dv1
...

. . .
...

∂1vd ⋅ ⋅ ⋅ ∂dvd

) and ∇ × v =
{
{
{

∇v : χ if d = 2,
(∇v : χ1, ∇v : χ2, ∇v : χ3)t if d = 3.

Define the dot product between a vector v and a tensor τ by

v ⋅ τ = (
d
∑
i=1

viτ1,i , . . . ,
d
∑
i=1

viτd,i)
t

.
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2 Elasticity and Stokes Equations
In this section, we first describe the stress-displacement (velocity) formulation for elasticity (Stokes) equa-
tions. By introducing independent variables: vorticity and pressure, we then derive the stress-displacement/
velocity-vorticity and the stress-displacement/velocity-vorticity-pressure formulations.

Let Ω be a bounded, open, connected domain inℜd (d = 2, 3) with a Lipschitz continuous boundary ∂Ω.
Assume that ∂Ω consists of two open subsets ΓD and ΓN such that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN ̸= 0. For sim-
plicity, we assume ΓD ̸= 0. Let u = (u1, . . . , ud)t be the displacement and the velocity for the elasticity and
Stokes equations, respectively. Given external force f = (f1, . . . , fd)t, denote the stress tensor by σ = (σij)d×d;
then we have the following equilibrium equation:

−∇ ⋅ σ = f in Ω.

Denote by ϵ(u) = (ϵij(u))d×d the strain tensor; then

ϵ(u) = 12 (∇u + ∇u
t). (2.1)

The relation between the stress and the strain tensors is represented as follows by the constitutive law:

Aλσ = ϵ(u),

where Aλ is a fourth-order tensor. For an isotropic elastic material, Aλ is called the compliance tensor given
by

Aλτ =
1
2μ(τ −

λ
2μ + dλ (tr τ)δ) (2.2)

for any tensor τ = (τij)d×d, where μ and λ are the Lamé constants such that μ ∈ [μ1, μ2]with 0 < μ1 < μ2 < ∞
and 0 < λ ≤ ∞. The material is said to be nearly incompressible or incompressible when λ is very large or
infinite, respectively. As the λ approaches∞, the compliance tensor tends to

Aτ = 1
2μ(τ −

1
d
(tr τ)δ), (2.3)

which is not invertible. For incompressible Newtonian fluids, (2.3) also holds, where the μ is the viscosity
constant. Hence, the first-order system for the stress and the displacement/velocity is expressed as follows:

{
Aλσ − ϵ(u) = 0 in Ω,
−∇ ⋅ σ = f in Ω.

This system is closed with the following (for simplicity) homogeneous boundary conditions:

{
u = 0 on ΓD ,

n ⋅ σ = 0 on ΓN ,
(2.4)

where n = (n1, . . . , nd)t is the outward unit vector normal to the boundary ∂Ω.
By (2.1), the strain tensor is the symmetric part of ∇u. Hence, it may be rewritten as the difference of ∇u

and its skew-symmetric part, i.e.,

ϵ(u) = ∇u − 12 (∇u − ∇u
t) = ∇u − (−1)dω ⋅ χ, (2.5)

whereω = 1
2∇ × u denotes the vorticity, which is a scalar for d = 2 and a vector for d = 3, andω ⋅ χ is defined

by

ω ⋅ χ =
{
{
{

ωχ, d = 2,
(ω ⋅ χ1,ω ⋅ χ2,ω ⋅ χ3), d = 3.

Note that simple calculation gives

(ω ⋅ χ) : τ = (−1)dω ⋅ (χ : τ) and (ω ⋅ χ) : χ = (−1)d2ω. (2.6)
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The constitute equation becomes

Aλσ − ∇u + (−1)dω ⋅ χ = 0 in Ω.

Since the vorticity is an independent variable, the above equation no longer implies the symmetry of the
stress. Hence, we need to impose the following symmetry condition:

as σ = 0 in Ω,

where as σ denotes the skew-symmetric part of the σ given by

as σ = σ : χ =
{
{
{

σ21 − σ12, d = 2,
(σ32 − σ23, σ13 − σ31, σ21 − σ12)t , d = 3.

Now, we have the following stress-displacement/velocity-rotation/vorticity (SDR/SVV) formulation:

{{{
{{{
{

Aλσ − ∇u + (−1)dω ⋅ χ = 0 in Ω,
−∇ ⋅ σ = f in Ω,
as σ = 0 in Ω

(2.7)

with the boundary conditions given in (2.4).
In the remainder of this section, we derive the stress-displacement/velocity-rotation/vorticity-pressure

(SDRP/SVVP) formulation. To this end, introducing the hydrostatic pressure

p = −1
d
tr σ, (2.8)

then the constitutive equation becomes

1
2μ(σ +

dλ
2μ + dλ pδ) − ∇u + (−1)

dω ⋅ χ = 0 in Ω.

Applying the trace operator to the above equation and using (2.8), we have

d
2μ + dλ p + ∇ ⋅ u = 0 in Ω.

Then the SDRP (SVVP) formulation is as follows:

{{{{{{{{{
{{{{{{{{{
{

1
2μ σ +

dλ
2μ(2μ + dλ)pδ − ∇u + (−1)

dω ⋅ χ = 0 in Ω,

−∇ ⋅ σ = f in Ω,
as σ = 0 in Ω,

d
2μ + dλ p + ∇ ⋅ u = 0 in Ω

(2.9)

with the boundary conditions given in (2.4).

3 Least-Squares Variational Formulation
We use the standard notation and definition for the Sobolev spaces Hs(Ω) for s ≥ 0. The inner product and
norm are denoted by ( ⋅ , ⋅ )s,Ω and ‖ ⋅ ‖s,Ω, respectively. If s = 0, then Hs(Ω) = L2(Ω) andwe drop the subscript
in the notation of the inner product and norm. Let

H1
D(Ω)

d = {v ∈ H1(Ω)d : v = 0 on ΓD}



420 | F. Bertrand, C. Cai and E. Y. Park, Least-Squares Methods

and
H(div; Ω)d = {τ ∈ L2(Ω)d×d : ∇ ⋅ τ ∈ L2(Ω)d},

which is a Hilbert space with respect to the following norm:

‖τ‖H(div;Ω) = (‖τ‖2 + ‖∇ ⋅ τ‖2)
1
2 .

In this section, we introduce least-squares problems for both the SDR (SVV) and the SDRP (SVVP) formu-
lations and show their well-posedness.

Before applying the least-squares principle to the first-order systems introduced in the previous section,
we first describe solution spaces. Let

Σ =
{{{
{{{
{

H(div; Ω)d if ΓN ̸= 0,

{τ ∈ H(div; Ω)d : ∫
Ω

tr τ dx = 0} otherwise,

and denote its subspace by
ΣN = {τ ∈ Σ : n ⋅ τ = 0 on ΓN}.

Let

L̄2(Ω) =
{{{
{{{
{

L2(Ω) if ΓN ̸= 0,

{γ ∈ L2(Ω) : ∫
Ω

γ dx = 0} otherwise,

and let
V = ΣN × H1

D(Ω)
d × L̄2(Ω)2d−3 and W = V × L̄2(Ω).

For f ∈ L2(Ω)d and λ ∈ (0,∞], we define the following least-squares functionals:

G(τ, v, γ; f) = ‖Aλτ − ∇v + (−1)dγ ⋅ χ‖2 + ‖∇ ⋅ τ + f‖2 + ‖as τ‖2 (3.1)

for all (τ, v, γ) ∈ V based on the SDR (SVV) formulation and

F(τ, v, γ, q; f) =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1
2μ(τ +

dλ
2μ + dλ qδ) − ∇v + (−1)

dγ ⋅ χ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
+ ‖∇ ⋅ τ + f‖2 + ‖as τ‖2 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
d

2μ + dλ q + ∇ ⋅ v
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

for all (τ, v, γ, q) ∈W based on the SDRP (SVVP) formulation. The corresponding least-squaresminimization
problems are, respectively, defined as follows: finding (σ, u,ω) ∈ V such that

G(σ, u,ω; f) = inf
(τ,v,γ)∈V

G(τ, v, γ; f), (3.2)

and finding (σ, u,ω, p) ∈W such that

F(σ, u,ω, p; f) = inf
(τ,v,γ,q)∈W

F(τ, v, γ, q; f). (3.3)

For any (τ, v, γ) ∈ V and any (τ, v, γ, q) ∈W, define the following energy norms:

|||(τ, v, γ)|||2V ≡ ‖τ‖
2
H(div;Ω) + ‖v‖

2
1 + ‖γ‖

2

and
|||(τ, v, γ, q)|||2W ≡ |||(τ, v, γ)|||

2 + ‖q‖2,

respectively. In this paper,we use Cwith orwithout subscripts to denote a generic positive constants, possibly
different at different occurrences, which is independent of the Lamé constant λ ∈ (0,∞] and the mesh size
h introduced in Section 4 but may depend on the domain Ω. Note that one could scale the variables and the
right-hand side accordingly so that μ is equal to one.
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Lemma 1. There exists a positive constant C such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1
2μ( tr τ +

d2λ
2μ + dλ q) − ∇ ⋅ v

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ CF(τ, v, γ, q;0)

1
2 (3.4)

and 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1
2μ as τ − ∇ × v + 2γ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ CF(τ, v, γ, q;0)

1
2 (3.5)

for all (τ, v, q, γ) ∈W.

Proof. For all (τ, v, q, γ) ∈W, a simple calculation gives

1
2μ(tr τ +

d2λ
2μ + dλ q) − ∇ ⋅ v = (

1
2μ(τ +

dλ
2μ + dλ qδ) − ∇v + (−1)

dγ ⋅ χ) : δ.

Now, (3.4) is an immediate consequence of the Cauchy–Schwarz inequality:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1
2μ(tr τ +

d2λ
2μ + dλ q) − ∇ ⋅ v

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ √d
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1
2μ(τ +

dλ
2μ + dλ qδ) − ∇v + (−1)

dγ ⋅ χ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ CF(τ, v, γ, q;0)

1
2 .

Estimate (3.5) may be proved in a similar fashion by noting (2.6) and that

1
2μ as τ − ∇ × v + 2γ = ( 12μ(τ +

dλ
2μ + dλ qδ) − ∇v + (−1)

dγ ⋅ χ) : χ.

This completes the proof of the lemma.

Lemma 2. For all v ∈ H1
D(Ω)d, there exists a positive constant C such that

‖∇v‖2 ≤ C(‖∇v‖2 − 12 ‖∇ × v‖
2). (3.6)

Proof. A simple calculation gives

‖ϵ(v)‖2 = ‖∇v‖2 − 5 − d4 ‖∇ × v‖
2 ≤ ‖∇v‖2 − 12 ‖∇ × v‖

2.

Estimate (3.6) is then a direct consequence of Korn’s inequality.

Lemma 3. For all τ ∈ ΣN , there exists a positive constant C such that

‖τ‖2 ≤ C(‖Aτ‖2 + ‖∇ ⋅ τ‖2). (3.7)

Proof. It is shown in [19].

The next theorem shows that the homogeneous least-squares functionals G(τ, v, γ;0) and F(τ, v, γ, q;0) are
equivalent to the energy norms.

Theorem 1. Independent of the Lamé constant λ ∈ (0,∞], we have the following estimates:

1
C
|||(τ, v, γ, q)|||2W ≤ F(τ, v, γ, q;0) ≤ C|||(τ, v, γ, q)|||

2
W (3.8)

for all (τ, v, γ, q) ∈W and

1
C
|||(τ, v, γ)|||2V ≤ G(τ, v, γ;0) ≤ C|||(τ, v, γ)|||

2
V (3.9)

for all (τ, v, γ) ∈ V.

Proof. Theupper bound in (3.8) is an immediate consequence of the triangle inequality, and the upper bound
in (3.9) follows from the triangle inequality and the fact that

‖Aλτ‖2 =
1
4μ2
(‖τ‖2 − λ(dλ + 4μ)

(dλ + 2μ)2
‖ tr τ‖2) ≤ 1

4μ2
‖τ‖2.
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By the definitions of the least-squares functionals and the triangle inequality, we have

F(τ, v, γ, −1d tr τ;0) = G(τ, v, γ;0) +
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇ ⋅ v − 1

2μ + dλ tr τ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= G(τ, v, γ;0) + ‖tr(Aλτ − ∇v + (−1)dγ ⋅ χ)‖2 ≤ CG(τ, v, γ;0).

Hence, the lower bound in (3.9) follows from the lower bound of (3.8) with q = − 1d tr τ ∈ L
2
D(Ω).

To show the validity of the lower bound in (3.8), using the facts that

χ : ∇v = ∇ × v and δ : ∇v = ∇ ⋅ v,

equations (2.6), and integration by parts, we have

‖∇v‖2 ≤ ‖∇v‖2 + d2λ
2μ(2μ + dλ)2

‖q‖2

= (∇v − (−1)dγ ⋅ χ − 1
2μ(τ +

dλ
2μ + dλ qδ), ∇v) + (γ, ∇ × v) −

1
2μ (∇ ⋅ τ, v)

+
dλ

2μ(2μ + dλ)(q, ∇ ⋅ v +
d

2μ + dλ q)

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇v − (−1)dγ ⋅ χ − 1

2μ(τ +
dλ

2μ + dλ qδ)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
‖∇v‖ + |(γ, ∇ × v)| + C‖∇ ⋅ τ‖‖v‖

+ C
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇ ⋅ v + d

2μ + dλ q
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
‖q‖,

which, together with the Poincaré inequality, implies

‖∇v‖2 ≤ CF(τ, v, γ, q;0)
1
2 (‖∇v‖ + ‖q‖) + |(γ, ∇ × v)|. (3.10)

By the triangle and the Cauchy–Schwarz inequalities and (3.5), the second term on the right-hand side
of (3.10) may be bounded above as follows:

|(γ, ∇ × v)| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
2(2γ +

1
2μ as τ − ∇ × v, ∇ × v) − 1

4μ (as τ, ∇ × v) +
1
2 ‖∇ × v‖

2󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (
1
2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2γ + 1

2μ as τ − ∇ × v
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+

1
4μ ‖as τ‖)‖∇ × v‖ +

1
2 ‖∇ × v‖

2

≤ CF(τ, v, γ, q;0)
1
2 ‖∇ × v‖ + 12 ‖∇ × v‖

2,

which, together with (3.10), implies

‖∇v‖2 ≤ CF(τ, v, γ, q;0)
1
2 (‖∇v‖ + ‖q‖) + 12 ‖∇ × v‖

2.

Combining with Lemma 2, we have

‖∇v‖2 ≤ C(‖∇v‖2 − 12 ‖∇ × v‖
2) ≤ CF(τ, v, γ, q;0)

1
2 (‖∇v‖ + ‖q‖). (3.11)

To bound the L2 norm of q, we rewrite q as follows:

q = 1
d(

d2λ
2μ + dλ q + tr τ − 2μ∇ ⋅ v) +

2μ
d (
∇ ⋅ v + d

2μ + dλ q) −
1
d
tr τ.

It then follows from the triangle inequality and (3.4) that

‖q‖ ≤ 1
d
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
tr τ + d2λ

2μ + dλ q − 2μ∇ ⋅ v
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+
2μ
d
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇ ⋅ v + d

2μ + dλ q
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+
1
d
‖tr τ‖

≤ C(F(τ, v, γ, q;0)
1
2 + ‖τ‖). (3.12)
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Next, we use Lemma 3 to bound the L2 norm of τ. To this end, by the facts that

δ : Aτ = tr(Aτ) = 0 and χ : Aτ = 1
2μ as τ,

and (2.6), a simple calculation gives

‖Aτ‖2 = 1
2μ (τ,Aτ) = (

1
2μ(τ +

dλ
(2μ + dλ)qδ) − ∇v + (−1)

dγ ⋅ χ,Aτ) + (∇v,Aτ) − 1
2μ (γ, as τ),

which, together with the Cauchy–Schwarz inequality, implies

‖Aτ‖2 ≤ C(F(τ, v, γ, q;0)
1
2 + ‖∇v‖)‖Aτ‖ + 1

2μ |(γ, as τ)|.

By the ϵ-inequality, we have

‖Aτ‖2 ≤ C(F(τ, v, γ, q;0) + ‖∇v‖2 + |(γ, as τ)|).

It follows from the triangle and the Cauchy–Schwarz inequalities and (3.5) that

|(γ, as τ)| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
2(2γ +

1
2μ as τ − ∇ × v, as τ) − 1

4μ ‖as τ‖
2 +

1
2 (∇ × v, as τ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ C(F(τ, v, γ, q;0) + ‖∇v‖2).

Hence,
‖Aτ‖2 ≤ C(F(τ, v, γ, q;0) + ‖∇v‖2),

which, together with (3.7), gives
‖τ‖ ≤ C(F(τ, v, γ, q;0)

1
2 + ‖∇v‖). (3.13)

Using (3.11), (3.12), (3.13), and the ϵ-inequality, we have

‖∇v‖2 + ‖q‖2 + ‖τ‖2 ≤ CF(τ, v, γ, q;0).

Now, the lower bound in (3.8) follows from the triangle and the Poincaré inequalities. This completes the
proof of the theorem.

4 Finite Element Approximation
Let us assume that Ω is a polygonal domain, let h be measure for the mesh-size according to [11] and let
Th = {K} be a finite element partition of Ω, which is regular (see [22]). For convenience, we consider only
triangular and tetrahedral elements.

Since the least-square functionals G(τ, v, γ;0) and F(τ, v, γ, q;0) are equivalent to the energy norms
|||(τ, v, γ)|||V and |||(τ, v, γ, q)|||W, respectively, which are composed of the H(div; Ω) norm for the stress,
the H1(Ω) norm for the displacement/velocity, and the L2(Ω) norm for the rotation/vorticity and pressure
by Theorem 1, it is reasonable to use Raviart–Thomas space of index k for the stress (see [26]), standard
(conforming) continuous piecewise polynomials of degree k + 1 for the displacement/velocity, and the con-
tinuous/discontinuous piecewise polynomials of degree k for the rotation/vorticity and pressure as the
conforming finite element spaces. These spaces are denoted as follows:

Σkh = {τ ∈ ΣN : τ|K ∈ RTk(K)d for all K ∈ Th} ⊂ ΣN ,

Uk
h = {v ∈ C

0(Ω)d : v|K ∈ Pk(K)d for all K ∈ Th , v = 0 on ΓD} ⊂ H1
D(Ω)

d ,

Lk
h = {γ ∈ L

2(Ω) : γ|K ∈ Pk(K) for all K ∈ Th , ∫
Ω

γ dx = 0 if ΓN = 0} ⊂ L2D(Ω),
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where RTk(K) is local Raviart–Thomas space of index k defined by

RTk(K) = Pk(K)d + xPk(K),

and Pk(K) is the space of polynomials of degree k on K. They have the following approximation proper-
ties [13]: let k ≥ 0 be an integer and let l ∈ (0, k + 1]; then

inf
τ∈Σkh
‖σ − τ‖H(div;Ω) ≤ Chl(‖σ‖l + ‖∇ ⋅ σ‖l) (4.1)

for σ ∈ H l(Ω)d×d ∩ ΣN with ∇ ⋅ σ ∈ H l(Ω)d,

inf
v∈Uk+1

h

‖u − v‖1 ≤ Chl‖u‖l+1 (4.2)

for u ∈ H l+1(Ω)d ∩ H1
D(Ω)d, and

inf
γ∈Lk

h

‖ω − γ‖ ≤ Chl‖ω‖l (4.3)

for ω ∈ H l(Ω)2d−3 ∩ L2D(Ω)2d−3.
The finite element approximation for the least-squares problem in (3.2) on Vk

h = Σ
k
h × U

k+1
h × (L

k
h)
2d−3 is

defined as follows: find (σh , uh ,ωh) ∈ Vk
h such that

G(σh , uh ,ωh; f) = min
(τ,v,γ)∈Vk

h

G(τ, v, γ; f). (4.4)

By the fact that Vk
h ⊂ V, Theorem 1 implies that (4.4) has a unique solution and is equivalent to the weak

form: find (σh , uh ,ωh) ∈ Vk
h such that

a(σh , uh ,ωh; τ, v, γ) = −(f , ∇ ⋅ τ) for all (τ, v, γ) ∈ Vk
h ,

where the bilinear form a is defined by

a(σh , uh ,ωh; τ, v, γ) = (Aλσh − ∇uh + (−1)dωh ⋅ χ,Aλτ − ∇v + (−1)dγ ⋅ χ)
+ (∇ ⋅ σh , ∇ ⋅ τ) + (as σh , as τ).

Similarly, the minimization in (3.3) on the space Wk
h = Σ

k
h × U

k+1
h × (L

k
h)
2d−3 × Lk

h is defined as follows:
find (σh , uh ,ωh , ph) ∈Wk

h such that

F(σh , uh ,ωh , ph; f) = min
(τ,v,γ,q)∈Wk

h

F(τ, v, γ, q; f). (4.5)

Note that (4.5) has a unique solution and is equivalent to theweak form: find (σh , uh ,ωh , ph) ∈Wk
h such that

b(σh , uh ,ωh , ph; τ, v, γ, q) = −(f , ∇ ⋅ τ), ∀(τ, v, γ, q) ∈Wk
h ,

where the bilinear form b is defined by

b(σh , uh ,ωh , ph , ; τ, v, γ, q)

= (
1
2μ(σh +

dλ
2μ + dλ phδ) − ∇uh + (−1)

dωh ⋅ χ,
1
2μ(τ +

dλ
2μ + dλ qδ) − ∇v + (−1)

dγ ⋅ χ)

+ (∇ ⋅ σh , ∇ ⋅ τ) + (as σh , as τ) + (
d

2μ + dλ ph + ∇ ⋅ uh ,
d

2μ + dλ q + ∇ ⋅ v).

Furthermore, we have the following orthogonalities:

a(σ − σh , u − uh ,ω − ωh; τ, v, γ) = 0 for all (τ, v, γ) ∈ Vk
h ,

b(σ − σh , u − uh ,ω − ωh , p − ph , ; τ, v, γ, q) = 0 for all (τ, v, γ, q) ∈Wk
h .

(4.6)
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Theorem 2 (Energy Norm Error Estimate). Let k + 1 be the smallest integer greater than or equal to l > 0.
(i) Assume that the solution (σ, u,ω) of (3.2)belongs to H l(Ω)d×d × H l+1(Ω)d × H l(Ω)2d−3 with the divergence

of the stress ∇ ⋅ σ in H l(Ω)d . Then, with the least-squares finite element solution (σh , uh ,ωh) ∈ Vk
h of (4.4),

we have the following error estimate:

‖σ − σh‖H(div;Ω) + ‖u − uh‖1 + ‖ω − ωh‖ ≤ Chl(‖σ‖l + ‖∇ ⋅ σ‖l + ‖u‖l+1 + ‖ω‖l). (4.7)

(ii) Assume that the solution (σ, u,ω, p) of problem (3.3)belongs to H l(Ω)d×d × H l+1(Ω)d × H l(Ω)2d−3 × H l(Ω)
with the divergence of the stress ∇ ⋅ σ in H l(Ω)d . Then, with the least-squares finite element solution
(σh , uh ,ωh , ph) ∈Wk

h of (4.5), we have the following error estimate:

‖σ − σh‖H(div;Ω) + ‖u − uh‖1 + ‖ω − ωh‖ + ‖p − ph‖ ≤ Chl(‖σ‖l + ‖∇ ⋅ σ‖l + ‖u‖l+1 + ‖ω‖l + ‖p‖l). (4.8)

Proof. The proof of the theorem follows directly from the coercivities and continuities of the bilinear forms
in Theorem 1, the orthogonalities in (4.6), and the approximation properties in (4.1)–(4.3).

In the remainder of this section, we establish optimal L2-norm estimate of the error u − uh.

Lemma 4. Let (σ, u,ω) and (σh , uh ,ωh) be the solutions of problem (3.2) and problem (4.4), respectively.
Assume that the H2 regularity estimate for the generalized Stokes equations (see [14]) holds. Then there exists
(ζ ,w, ε) ∈ ΣN × H1

D(Ω)d × L2(Ω)2d−3 such that

‖u − uh‖2 = a(σ − σh , u − uh ,ω − ωh; ζ ,w, ε)

and that
‖ζ ‖1 + ‖∇ ⋅ ζ ‖1 + ‖w‖2 + ‖ε‖1 ≤ C‖u − uh‖.

Proof. Let Eh = σ − σh, eh = u − uh, and ẽh = ω − ωh . Then, it is easy to check that

{
n ⋅ Eh = 0 on ΓN ,

eh = 0 on ΓD .

Without loss of generality, take μ = 1
2 . Let (z, r) ∈ H

1
D(Ω)d × L2(Ω) be the solution of the following perturbed

Stokes equation:
{{
{{
{

− ∇ ⋅ (ϵ(z) − rδ) = eh in Ω,

∇ ⋅ z + 1
λ
r = 0 in Ω,

(4.9)

with the boundary conditions

{
z = 0 on ΓD ,

n ⋅ (ϵ(z) − rδ) = 0 on ΓN .

It is well known that the following H2 regularity estimate is valid:

‖z‖2 + ‖r‖1 ≤ C‖eh‖. (4.10)

First, we derive the following equality:

‖eh‖2 = (AλEh − ∇eh + (−1)dẽh ⋅ χ, −ϵ(z) + rδ) + (∇ ⋅ Eh , −z) + (asEh , −
1
2∇ × z). (4.11)

To this end, note first that
(ẽh ⋅ χ, ϵ(z) − rδ) = 0.

Then the first equation in (4.9) and integration by parts give

‖eh‖2 = (eh , −∇ ⋅ (ϵ(z) − rδ)) = (∇eh , ϵ(z) − rδ)
= (∇eh − (−1)dẽh ⋅ χ −AλEh , ϵ(z) − rδ) + (AλEh , ϵ(z) − rδ).
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Using the definition ofAλ in (2.2), the facts that

tr(AλEh) =
1

dλ + 1 trEh and δ : ϵ(z) = ∇ ⋅ z,

and the second equation in (4.9), we have

(AλEh , ϵ(z) − rδ) = (Eh −
λ

dλ + 1 (trEh)δ, ϵ(z)) − (tr(AλEh), r)

= (Eh , ϵ(z)) −
λ

dλ + 1 (trEh , ∇ ⋅ z) −
1

dλ + 1 (trEh , r)

= (Eh , ϵ(z)).

Now, (4.11) follows from the above equalities, (2.5), integration by parts, and (2.6) that

(Eh , ϵ(z)) = (Eh , ∇z) − (Eh ,
(−1)d
2 (∇ × z) ⋅ χ)

= (∇ ⋅ Eh , −z) + (asEh , −
1
2∇ × z).

With equation (4.11), to show the validity of Lemma 4, it is easy to see that it is sufficient to find
(ζ ,w, ε) ∈ ΣN × H1

D(Ω)d × L2(Ω)2d−3 such that

{{{{{
{{{{{
{

Aλζ − ∇w + (−1)dε ⋅ χ = −ϵ(z) + rδ in Ω,

∇ ⋅ ζ = −z in Ω,

as ζ = −12∇ × z in Ω,

(4.12)

and that
‖ζ ‖1 + ‖∇ ⋅ ζ ‖1 + ‖w‖2 + ‖ε‖1 ≤ C‖eh‖. (4.13)

To this end, let (w, t) ∈ H1
D(Ω)d × L2(Ω) be the solution of the following problem:

{{{
{{{
{

− ∇ ⋅ (ϵ(w) − tδ) = −∇ ⋅ (∇z − (−1)
d

4 (∇ × z) ⋅ χ) + z in Ω,

∇ ⋅w + 1
λ
t = −dλ + 2

λ
r in Ω,

(4.14)

with the boundary conditions

{
w = 0 on ΓD ,

n ⋅ (ϵ(w) − tδ) = 0 on ΓN .

It follows from the H2 regularity estimate (see, e.g., [14, Lemma 5.2]), the triangle inequality, and (4.10) that

‖w‖2 + ‖t‖1 ≤ C(
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
−∇ ⋅ (∇z −

(−1)d
4 (∇ × z) ⋅ χ) + z

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
dλ + 2

λ
r
󵄩󵄩󵄩󵄩󵄩󵄩󵄩1
)

≤ C(‖z‖2 + ‖r‖1)
≤ C‖eh‖. (4.15)

Let
ζ = −∇z + (−1)

d

4 (∇ × z) ⋅ χ + ϵ(w) − tδ

and
ε = 12∇ ×w +

1
4∇ × z.

It is then easy to check that the second equation in (4.12) is satisfied by using the first equation in (4.14). The
third equation in (4.12) is implied by (2.6) and the fact that

as(ϵ(w) − tδ) = 0.
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From the second equations in (4.9) and (4.14), we have

tr ζ = −dλ + 1
λ
(r + t). (4.16)

By using (4.16) and the fact that

ϵ(w) = ∇w − (−1)
d

2 (∇ ×w) ⋅ χ,

we can see that (ζ ,w, ε) satisfies the first equation in (4.12).
It follows from the triangle inequality and the second equation in (4.12) that

‖ζ ‖1 + ‖∇ ⋅ ζ ‖1 + ‖ε‖1 ≤ C(‖z‖2 + ‖w‖2 + ‖t‖1) + ‖z‖1 + C(‖w‖2 + ‖z‖2)
≤ C(‖z‖2 + ‖w‖2 + ‖t‖1),

which, together with (4.10) and (4.15), implies the validity of (4.13). This completes the proof.

Theorem 3 (L2-Norm Error Estimate). The following statements hold:
(i) Under assumption (i) in Theorem 2 and the assumptions in Lemma 4, we have the following L2-norm error

estimate:

‖u − uh‖ ≤ Ch|||(σ − σh , u − uh ,ω − ωh)|||V ≤ Chl+1(‖σ‖l + ‖∇ ⋅ σ‖l + ‖u‖l+1 + ‖ω‖l). (4.17)

(ii) Let (σ, u,ω, p) and (σh , uh ,ωh , ph) be the solutions of (3.3) and (4.5), respectively. Assume that the H2

regularity estimate for the generalized Stokes equations (see [14]) holds. Then, under assumption (ii) in
Theorem 2, we have the following L2-norm error estimate:

‖u − uh‖ ≤ Ch|||(σ − σh , u − uh ,ω − ωh , p − ph)|||W ≤ Chl+1(‖σ‖l + ‖∇ ⋅ σ‖l + ‖u‖l+1 + ‖ω‖l + ‖p‖l).

Proof. The second inequality in (4.17) is a direct consequence of the first inequality in (4.17) and the energy
norm error estimate in (4.7). The first inequality in (4.17) follows from Lemma 4, the orthogonality, the
continuity in (3.9), and the approximation properties in (4.1)–(4.3) that

‖u − uh‖2 = a(σ − σh , u − uh ,ω − ωh; ζ ,w, ε)
≤ C|||(σ − σh , u − uh ,ω − ωh)|||V inf

(ζ h ,wh ,εh)∈Vk
h

|||(ζ − ζ h ,w −wh , ε − εh)|||V

≤ Ch|||(σ − σh , u − uh ,ω − ωh)|||V(‖ζ ‖1 + ‖∇ ⋅ ζ ‖1 + ‖w‖2 + ‖ε‖1)
≤ Ch|||(σ − σh , u − uh ,ω − ωh)|||V‖u − uh‖.

This completes the proof of (i). The proof of (ii) follows with a similar argument.

5 Numerical Experiments
In this section, we consider two-dimensional Cook’s membrane problem of linear elasticity (see [27]). The
problem is given by the rotated trapezoidal geometry with bases of 16 and 44 units (l), and a height of 48
units (l) as in Figure 1, i.e.,

Ω = {(x, y) : 0 ≤ x ≤ 48, 1112 x ≤ y ≤
1
3 + 44}.

They are no body forces (f = 0), the left side of the computational domain is clamped and the boundary condi-
tions on it are set to u = 0 (l). The boundary conditions on the upper and lower sides are set ton ⋅ σ = 0 (N/l2)
and on the right side are set to n ⋅ σ = (0, 1)t (N/l2) (see Table 1). The material parameters are E = 200 (N/l2)
for Young’smodulus and ν = 0.499 (incompressible limit) for Poisson’s ratio and their relationwith the Lamé
constants are given by

λ = Eν
(1 + ν)(1 − 2ν) and μ = E

2(1 + ν) .
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48

44

16

Figure 1: Computational domain and boundary conditions.

Boundary conditions Material parameters

Left side u = 0 Young’s module E = 200
Upper/Lower sides n ⋅ σ = 0 Poisson’s ratio ν = 0.499
Right side n ⋅ σ = (0, 1)t

Table 1: Boundary conditions and material parameters.

DOF G(σh , uh , ωh; f) 12 ‖as σh‖ ‖∇ ⋅ σh + f‖
l = 0 1474 2.27e−01 7.93e−01 2.17e−01
l = 1 2594 2.99e−02 2.91e−01 2.88e−02
l = 2 4431 2.68e−03 8.37e−02 2.23e−03
l = 3 7513 3.53e−04 2.18e−02 1.47e−04
l = 4 12853 1.02e−04 5.50e−03 9.36e−06
l = 5 21572 4.28e−05 1.38e−03 5.90e−07
l = 6 37380 1.94e−05 3.45e−04 3.75e−08

Table 2: Adaptive refinements (k = 1, ν = 0.499).

From the definition of the least-squares functional in (3.1), it is natural to define the local functional
GK(σh , uh , ωh; f) as follows:

G(σh , uh , ωh; f) = ∑
K∈Th

(‖Aλσh − ∇uh + ωhχ‖20,K + ‖∇ ⋅ σh + f‖
2
0,K + ‖as σh‖

2
0,K)

=: ∑
K∈Th

GK(σh , uh , ωh; f).

By the equivalence in Theorem1, the local functionalGK(σh , uh ,ωh; f) canbe considered as a posteriori error
estimator (see [6]). Table 2 shows the results obtained by a sequence of adaptive refinements based on this
error estimator. In each step, triangles with the largest estimators (roughly 25 percent) were refined. We used
the Raviart–Thomas spaces of order one for the stress approximation, the standard quadratic conforming
elements for the displacement, and the standard linear conforming elements for the vorticity.

The result in Table 2 shows that themomentumbalance error ‖∇ ⋅ σh + f‖ is of higher order which implies
the fast convergence (see Figure 3 (b)). We can also infer from Table 2 the following relation between the
minimum of the functional G(σh , uh , ωh; f) and the number of degrees of freedom:

G(σh , uh , ωh; f) ∼
1

DOF2
,

which implies the optimal asymptotic convergence rate.
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(a) Initial mesh. (b) Fifth adaptive refinement step.

Figure 2: Results after five adaptive refinement steps.
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(a) G(σh , uh , ωh; f).
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(b) ‖∇ ⋅ σh + f‖.

Figure 3: Doubly logarithmic convergence graphs.

The initial triangulation and result after five adaptive refinement steps can be seen in Figure 2. It shows
that the corners of the domain are remarkably refined well based on the error estimator. The doubly loga-
rithmic convergence graphs in Figure 3 show the robustness of the problem. We can also see that the error
converges asymptotically.

Funding: This work was supported in part by the National Science Foundation under grants DMS-1217081
and DMS-1522707.
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