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This article considers a mixed finite element method for linear elasticity. It is based on a modified mixed
formulation that enforces the continuity of the stress weakly by adding a jump term of the approximated
stress on interior edges. The symmetric stress are approximated by nonconforming linear elements and the
displacement by piecewise constants. We establish �(h) error bound in the (broken) L2 norm for the
divergence of the stress and �(h) error bound in the L2 norm for both the displacement and the stress
tensor. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 21: 1043–1051, 2005
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1. INTRODUCTION

Assume that � � ℜd (d � 2 or 3) is a bounded, open, connected domain with Lipschitz
boundary ��. Let � � (�ij)d�d be the stress, u � (u1, . . . , ud)t be the displacement, and f �
( f1, . . . , fd)t be the body force. Denote by �(u) � (�ij(u))d�d the linearized strain tensor with
�ij(u) � (�ui /�xj � �uj /�xi)/2, tr the trace operator, and � � the divergence operator. Consider
linear elasticity in the stress-displacement formulation:

��� � ��u� � 0 in �,
�� � � � f in �,
u � 0 on ��

(1.1)

where � is the compliance tensor of fourth order defined by
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1

2� �� �
�

d� � 2�
�tr����.

Here, � � (	ij)d�d is the Kronecker tensor, and positive constants � and � are the Lamé
constants such that � � [�1, �2] with 0 	 �1 	 �2 and � � (0, �0]. For simplicity, we assumed
homogeneous Dirichlet boundary conditions and finite �0. Results in this article can be extended
to general boundary conditions and incompressible materials.

There have been many efforts during past four decades to develop stable mixed finite element
methods for the system of planar linear elasticity (see [1–11]). Unlike mixed methods for
second-order scalar elliptic problems, stress-displacement finite elements are extremely difficult
to construct. This is due to the symmetry constraint on the stress tensor. Arnold and Winther in
[12] only recently constructed the first family of stable conforming elements in two dimensions
on a triangular tessellation. Besides its complication, this family has yet to be extended to three
dimensions and to types of nonsimplicial meshes often favored by practitioners. Previous works
include two types of approaches. One uses composite elements in which the displacement is
approximated on one triangulation of the domain and the stress on a refined triangulation (see
[4–6, 11]). The other is to modify the Hellinger-Reissner variational principle to enforce the
symmetry constraint in a weak sense by introducing a Lagrange multiplier or to be abandoned
altogether (see [1–3, 8–10, 13]).

The purpose of this article is to study nonconforming linear finite elements of Crouzeix-
Raviart (CR) [14] for linear elasticity. More specifically, each component of the symmetric
stress is approximated by the CR elements and each component of the displacement by
piecewise constant elements. This pair is stable and economic, but not convergent. This failure
is due to discontinuity of the normal stress on each interior edge. Therefore, we modify the
stress-displacement formulation by adding a jump term in the constitutive equation to weakly
enforce continuity.

1.1. Notation

We use standard notation and definitions for the Sobolev spaces Hs(B)d, associated inner
products (�, �)s,B, and respective norms ���s,B and semi-norms ���s,B, s 
 0. We suppress the
designation d because their dependence on dimension is clear by context. We also omit the
subscript B from the designation when B � �. For s � 0, Hs(B)d coincides with L2(B)d. In this
case, the inner product and norm will be denoted by ���B and (�, �)B or ��� and (�, �) when B � �,
respectively. Set

H�div; �� � 
v � L2���2 : � � v � L2����

which is a Hilbert space under the norm

�v�H�div; �� � ��v�2 � �� � v�2�1/2.

2. MIXED FINITE ELEMENT APPROXIMATION

In this section, we introduce a mixed finite element approximation for (1.1). The symmetric
stress is approximated by nonconforming piecewise linear elements and the displacement by
piecewise constant elements. This pair is stable but not convergent because of its discontinuity
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of the normal stress across interior edges. To enforce the continuity, we add a jump term of the
stress in the constitutive equation.

To this end, assume that the domain � is a polygon in two dimensions. Let �h be a regular
triangulation of � with triangular elements of size �(h) (see [15]). Let �h denote the collection
of interior edges of elements in �h. Let Pk(K ) denote the space of polynomials of degree at most
k 
 0 on K � ℜ2. The Crouzeix-Raviart nonconforming linear elements [14] are defined as
follows:

��h � 
v � L2��� : v�K � P1�K � @K � �h and v is continuous at edge midpoints�.

Its degrees of freedom are midpoint values on all edges. For each element K � �h, denote its
three edges by eK

i and the corresponding midpoints by mK
i (i � 1, 2, 3). There is an interpolation

operator �K : H1(K ) 3 P1(K ) defined by

�Kv �mK
i � �

1

�eK
i � �

eK
i

v d�,

where �eK
i � denotes the length of the edge eK

i . It was shown that for all v � Ht(K )

�v � �Kv�K � h�v � �Kv�1,K Cht�v�t,K, t � 1, 2� (2.1)

��Kv�1,K C�v�1,K. (2.2)

The displacement is approximated by piecewise constant vector functions

Uh � �v � �v1

v2
� : vi � L2���, vi�K � P0�K � @K � �h, i � 1, 2�.

Let Ph be the L2(�)2 projection operator onto Uh, one has the following estimate on each
element K � �h:

�v � Phv�K Ch�v�1,K @v � H1�K �2. (2.3)

Each component of the symmetric stress is approximated by the Crouzeix-Raviart element:

�h � 
� : �t � �, �ij � ��h, i, j � 1, 2�.

For a symmetric tensor �, define an interpolation operator �h onto �h as follows:

��h���K � ��K�ij�2�2 @K � �h.

It then follows easily from (2.1) and (2.2) that

�� � �h��K � h�� � �h��1,K Cht���t,K, t � 1, 2� (2.4)
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��h��1,K C���1,K. (2.5)

To define our mixed finite element method, let us first introduce some notations. Let v R n
denote the matrix whose ijth component is vini for two vectors v and n. For two matrix valued
variables � and �, we define � : � � ¥i, j�1

2 �ij�ij. Denote the average and jump of scalar, vector
tensor functions on an interior edge shared by triangles K� and K� by


p� �
1
2

�p� � p��, p� � p�n� � p�n�,


v� �
1
2
�v� � v��, v� � v� � n� � v� � n�,


�� �
1
2
��� � ���, �� � �� � n� � �� � n�,

where n� and n� are unit outward normals to the common edge of the respective K� and K�.
We define a matrix valued jump ��	 for a vector w as �w	 � w� R n� � w� R n�.

Define bilinear and linear forms as follows:

as��, �� � ���, �� �  

e��h

�
e

hs�� � �� d� @�, � � �h,

b��, v� � 

K��h

�v, � � ��K � � � �h, � v � Uh, and f �v� � ��f, v� � v � Uh,

where  is a positive constant and s � [�1, 1]. Now, the mixed finite element approximation
to (1.1) is then to seek (�h, uh) � �h � Uh such that

�as��h, �� � b��, uh� � 0 @� � �h,
b��h, v� � f �v� @v � Uh. (2.6)

Let �h � v be an L2(�) function whose restriction to each K � �h is given by � � v�K. For any
� � H(div; �)2 and any v � Uh, it follows from Gauss Divergence Theorem and the definition
of the operator �h that

b�� � �h�, v� � 

K��h

vK � �
K

� � �� � �h�� dx � 

K��h

vK � �
�K

�� � �h��n d� � 0.

That is

b�� � �h�, v� � 0 @v � Uh, (2.7)

which implies the commutativity property:

Ph�h � � � �h � �h� @� � H�div; ��2. (2.8)
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Remark 2.1. The second equation in (2.6) gives local “conservation”:

�
�K

�hn d� � �
K

� � �h dx � ��
K

f dx @K � �h.

If the body force f is piecewise constant with respect to the triangulation �h, then the finite
element approximation satisfies the equilibrium equation exactly at each element; i.e.,

�h � �h � �f in K � �h

since the divergence of the stress is piecewise constant.

3. ERROR ESTIMATION

Let (�, u) be the exact solution of (1.1) and it is well known that u and �n are continuous in
the domain �� . For any � � �h, symmetry of � and integration by parts give

���u�, �� � ��u, �� � � 

K��h

�u, � � ��K � 

K��h

�
�K

u � ��n� d�.

Using notations of the average and jump and the continuity of u, edge integral terms in the above
equalities may be rewritten as



K��h

�
�K

u � ��n� d� � 

e��h���

�
e

�
�� : �u	 � 
u� � ��� d� � 

e��h

�
e


u� � �� d�.

The continuity of �n yields [�] � 0 on each interior edge of �h. Hence, as(�, �) � (��, �).
It is then easy to see that the exact solution, (�, u), satisfies the following equations:

�as��, �� � 

e��h

�
e


u� � �� d� � b��, u� � 0 @� � �h,

b��, v� � f �v� @v � Uh.

(3.1)

Difference of (3.1) and (2.6) gives the following error equations:

�as�� � �h, �� � 

e��h

�
e


u� � �� d� � b��, u � uh� � 0 @� � �h,

b�� � �h, v� � 0 @v � Uh.

(3.2)

Denote
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�������s � � 

e��h

�
e

��2 d�

for a tensor and

���v����s � � 1





e��h

h�s �
e


v�2 d�

for a vector. We will need the following estimations.

Lemma 3.1. For any � � Ht(�)4 with t � [1, 2], one has

���� � �h����s Cht��s�1/2����t. (3.3)

For any v � H1(�)2, one has

���v � Phv����s Ch�1�s/2��v�1. (3.4)

Proof. (3.3) follows easily from the trace theorem and (2.4) that

���� � �h����s2 �  

e��h

hs �
e

� � �h��2 d�C 

K��h

hs�� � �h��K�� � �h��1,K Ch2t�s�1���t2.

(3.4) follows easily from the trace theorem and (2.3) that

���v � Phv����s
2 �

1





e��h

h�s �
e


v � Phv�2 d�C 

K��h

h�s�v � Phv�K�v � Phv�1,K Ch1�s�v�12.

(We used the fact that �Phv�1,K � 0 for any K � �h.) This completes the proof of the lemma.y
Now, we are ready to establish the following error estimations.

Theorem 3.1. Let (�, u) be the solution of (1.1) and (�h, uh) � �h � Uh be the solution of
(2.6). Then for f � H1(�)2, we have

��h � �� � �h�� Ch�f�1. (3.5)

Assume that (�, u) � Ht(�)4 � H1(�)2 (t � [1, 2]). Then we have for f � L2(�)2

�� � �h�as
C�ht��s�1/2����t � h�1�s/2��u�1�, (3.6)

where ���as
denotes a norm induced from the bilinear form as(�, �). Furthermore, if (1.1) is

H2-regular, then we have for f � L2(�)2
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�u � uh� C�hmin
1, �3�s/2���u�1 � hmin
t�s, t����t�. (3.7)

Proof. Since �h � �h � Uh, the second equation in (2.6) gives

�h � �h � �Phf. (3.8)

Then the error bound in (3.5) follows easily from the second equation in (1.1) and the
approximation property of the L2 projection operator Ph in (2.3).

Next, we will establish the following estimate:

�� � �h�as

2 C��h� � ��as

2 � C���u � Phu����s
2 . (3.9)

This, together with Lemma 3.1 and (2.4), implies the error bound of �� � �h�as
in (3.6). To this

end, by the commutativity property in (2.8), the second equation of (1.1), and (3.8), we have that

�h � ��h� � �h� � Ph�h � � � �h � �h � �Phf � Phf � 0. (3.10)

Taking � � �h� � �h in the first equation of (3.2) and using the orthogonality of noncon-
forming elements and the Cauchy-Schwarz and triangle inequalities lead to

as�� � �h, �h� � �h� � 

e��h

�
e


u� � �h� � �h� d� � 

e��h

�
e


u � Phu� � �h� � �h� d�

���u � Phu����s����h� � �h���s���u � Phu����s�����h� � ����s � ���� � �h���s�
1
2

���u � Phu����s
2

�
1
2

����h� � ����s2 � ���u � Phu����s���� � �h���s.

Now, it follows from the Cauchy-Schwarz inequality that

�� � �h�as

2 � as�� � �h, � � �h�� � as�� � �h, �h� � �h��� � �h�as
�� � �h��as

� as��

� �h, �h� � �h��� � �h�as

�� � �h��as

� ���u � Phu����s� �
1
2

���u � Phu����s
2 �

1
2

����h� � ����s2.

This implies (3.9).
Finally, we estimate error bound of the displacement in the L2 norm by using standard duality

argument. Let (�̃, ũ) satisfy the elasticity equation in (1.1) with f � uh � u; i.e.,

���̃ � ��ũ� � 0 in �,
� � �̃ � u � uh in �,
ũ � 0 on ��.

(3.11)

Multiplying the second equation above by u � uh, integrating over the domain �, and using
(2.7) and the Cauchy-Schwarz inequality give

�u � uh�2 � b��̃, u � uh� � b��̃ � �h�̃, u � uh� � b��h�̃, u � uh�
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� b��̃ � �h�̃, u � Phu� � b��h�̃, u � uh���h � ��̃ � �h�̃�� �u � Phu� � b��h�̃, u � uh�.

(3.12)

It follows from (3.2) with � � �h�̃, the orthogonality of nonconforming elements, the
continuity of �̃n on interior edges, and the Cauchy-Schwarz inequality that

b��h�̃, u � uh� � �as�� � �h, �h�̃� � 

e��h

�
e


u� � �h�̃� d� � �as�� � �h, �h�̃�

� 

e��h

�
e


u � Phu� � �h�̃ � �̃� d� � �as�� � �h, �h�̃� � ���u � Phu����s����h�̃ � �̃���s.

(3.13)

By the definition of as(�, �), the continuity of �̃n, and the Cauchy-Schwarz inequality, we have
that

as�� � �h, �h�̃� � ���� � �h�, �h�̃ � �̃� � ���� � �h�, �̃� �  

e��h

�
e

hs� � �h� � �h�̃

� �̃� d�C�� � �h� ��h�̃ � �̃� � ���� � �h���s����h�̃ � �̃���s � ���̃, � � �h�. (3.14)

Multiplying the first equation of (3.11) by � � �h, integrating over the domain �, and using
integration by parts lead to

���̃, � � �h� � b�� � �h, ũ� � 

e��h

�
e


ũ� � � � �h� d� � 0.

This, together with the second equation of (3.2), the orthogonality of nonconforming elements,
(3.10), and the Cauchy-Schwarz inequality, implies

���� � �h�, �̃� � b�� � �h, Phũ � ũ� � 

e��h

�
e


ũ � Phũ� � � � �h� d�

� b�� � �h�, Phũ � ũ� � 

e��h

�
e


ũ � Phũ� � � � �h� d���h � �� � �h��� �Phũ � ũ�

� ���ũ � Phũ����s���� � �h���s. (3.15)

Combining inequalities (3.12)–(3.15) and using Lemma 3.1 and (3.6), we have that
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�u � uh�2 ��h � ��̃ � �h�̃�� �u � Phu� � ���u � Phu����s����h�̃ � �̃���s � C�� � �h� ��h�̃

� �̃� � ���� � �h���s����h�̃ � �̃���s � ��h � �� � �h��� �Phũ � ũ� � ���ũ � Phũ����s����
� �h���sC
h��̃�1�u�1 � h�1�s/2��u�1h�1�s/2���̃�1 � �ht��s�1/2����t � h�1�s/2��u�1��h��̃�1 � h�s�1/2���̃�1�

� ht�1���th�ũ�1 � h�1�s/2��ũ�1ht��s�1/2����t�.

Now, (3.7) follows from the H2 regularity estimate: �ũ�2 � ��̃�1 C�u � uh�. This completes
the proof of the theorem. y
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