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A DISCRETIZATION-ACCURATE STOPPING CRITERION FOR
ITERATIVE SOLVERS FOR FINITE ELEMENT APPROXIMATION*

ZHIQIANG CAIt, SHUHAO CAO¥, AND ROBERT D. FALGOUT$

Abstract. This paper introduces a discretization-accurate stopping criterion of symmetric iter-
ative methods for solving systems of algebraic equations resulting from the finite element approxima-
tion. The stopping criterion consists of the evaluations of the discretization and the algebraic error
estimators, that are based on the respective duality error estimator and the difference of two consecu-
tive iterates. Iterations are terminated when the algebraic estimator is of the same magnitude as the
discretization estimator. Numerical results for multigrid V' (1, 1)-cycle and symmetric Gauss-Seidel
iterative methods are presented for the linear finite element approximation to the Poisson equa-
tions. A large reduction in computational cost is observed compared to the standard residual-based
stopping criterion.

1. Introduction. Consider the Dirichlet boundary value problem in a bounded
polygonal /polyhedral domain 2 C R? (d = 2, 3) for the diffusion equation as follows:

(L.1) V-(AVu) = f, in Q,
U =g, on 012,
where A is a scalar diffusion coefficient, and the data f € L?(Q2) and g € L*(99).

In practice, the system of algebraic equations resulting from the finite element
approximation to (1.1) is often solved by iterative methods, e.g., Gauss-Seidel, conju-
gate gradient, multigrid methods, etc. Instead of having the exact solution u.. of the
algebraic system at hand, @, := ugc) is the current output from an iterative solver,
where k is the number of iterations. The total energy error of @, to the solution u
of the continuous problem in (1.1) consists of both discretization and algebraic errors
as follows:

(1.2) e —a sy = luy —a )%+ Ju—ul

total error algebraic error discretization error

where |[|-|| , is the energy norm associated with the problem in (1.1) (for the norm
notations, see section 2).

The goal of this paper is to propose a stopping criterion for iterative solvers. To
do so, we need to develop two error estimators for the respective discretization and
algebraic errors. Since the discretization error is fixed for a given finite element space,
(1.2) clearly indicates that the stopping criterion of the iterative solver is when the
algebraic estimator is of the same magnitude as the discretization estimator, provided
that both represent their error counterparts reliably.

Discretization error estimators for the exact finite element approximations have
been intensively studied during the past four decades (see books [1, 26] and references
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therein). In the context of stopping criterion for iterative solvers, the residual-based a
posteriori error estimator was employed for the conforming finite element approxima-
tion by several researchers (see, e.g., [5, 24, 3, 2, 4]); recovery-based estimators were
used by Vohralik and his collaborators in [20] for the finite volume discretization and
in [17] for the discontinuous finite element approximation on non-matching grids.

In this paper, we will adopt the equilibrated flux error estimator (see, e.g., [8,
16, 21, 25, 13]) for the discretization error. This is because the reliability bound of
estimators of this type is constant free. Using this technique, a locally post-processed
flux based on the iterate @, will be constructed. Unlike the exact finite element
approximation w., the local problems based on the current iterate ., on vertex
patches are not consistent. To overcome this difficulty, we modify the local problems
by adding back the algebraic errors. The resulting discretization error estimator
plus the algebraic error is proved to be reliable and the reliability bound for the
discretization estimator component is constant free (see Theorem 4).

To construct the algebraic error estimator, we first bound HuT — ug“)H 4 above
by the energy norm of the difference of consecutive iterates, and the constant in the
upper bound depends on the spectral radius of the error propagation operator (see
Theorem 5). The unknown spectral radius is further approximated by the ratio of
the [? norms of the residuals of consecutive iterates. The resulting algebraic error
estimator is then shown to be reliable when sufficiently many iterations have been
performed.

Lastly, in Section 6, based on the discretizaton and algebraic estimators, a new
stopping criterion for a given linear solver is verified numerically by some test prob-
lems. The numerics shows promising results in that the bounds are independent of
the coefficient jump ratio even without the quasi-monotonicy assumption [6, 18, 23]
for the distribution of the diffusion coefficient A.

2. Finite element method and iterative solver. In this section, all prelim-
inaries are presented. Denote H'(Q) with a specified boundary value as H}(Q) :=
{ve HY Q) : v=g on 90}, and then the variational problem of (1.1) is

(2.1) Find u € H,(Q) such that (AVu, Vv) = (f,v), Vve Hy(Q),

where (-, ) denotes the L2-inner product on the whole domain.

Let T = {K} be a triangulation of  using simplicial element, where 7 is assumed
to be quasi-uniform and regular. For each K € T, hx := diam (K) = O(|K|*/%). The
set of all the vertices of this triangulation is denoted by N. Throughout this paper,
the term “face” is used to refer to the (d — 1)-facet of a d-simplex in this triangulation
(d = 2,3). For the d = 2 case, a face actually represents an edge. The set of all the
interior faces is denoted by F. For any F € F, hp := diam (F) = O(|F|'/(¢=1)). Each
face F' € F is associated with a fixed unit normal np globally. For any function or
distribution v well-defined on the two elements sharing a face F' respectively, define
[v], = v~ —v" on an interior face. The v~ and v™ are defined in the limiting sense

of v* = limi v(x + enp). If F is a boundary face, the function v is extended by zero
e—0

outside the domain to compute [[v]]F. For every geometrical object D and for every
integer k > 0, P (D) denotes the set of polynomials of degree < k on D.

For the purpose of constructing the local error estimation procedure for the finite
element approximation, notations of the following local geometric objects are used in
this paper. First, denote by Nk the set of all the vertices of K € 7. For any vertex

2
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z € N, denote by
wz = Uiker: zeni1 K

as the vertex patch, which is the union of all elements sharing z as a common vertex.
Now T, stands for the triangulation of this patch such that 7, := {K : K C w,}.
Denote

WK = UzeNsz

as the element patch for K that contains all the elements sharing a vertex with K.
For a face F' € F, denote the face patch as

W = UFﬂ8K¢®K7

which contains the elements sharing F' as a common face. The L?-inner product and
norm on w = UK C () are denoted by

(U, U)w = Z (’LL,’U)K and ||U||§,w = (U,U)w,

KCw

respectively. These notations carry through for vector-valued functions. The “energy”
seminorm associated with the problem (2.1) is (with slight abuse of notation, because
the local seminorm is denoted as a norm):

(2.2) o]l = (AVu, Vv) and ||vH124’w = (AVu, Vo) .

Let Fi be the set of faces of an element K € 7. Denote the set of the interior
faces within w, as:

Fro={FeF:FeFkfor KCw,, FNow, =0}
Denote the H!-conforming linear finite element space by
(2.3) Sti={ve H'(Q): v|, € P(K), VK eT},
and the piecewise constant space with respect to the triangulation 7 by
(2.4) S8 :={vel’():v|, € R(K), VKeT},

Then the finite element approximation to (2.1) is

Find u, € S'N Hgl(Q) such that
(2.5)

(AVuT, Vv) = (f, U), VoeS nHN).

For the presentation purpose, here it is assumed that both the diffusion coefficient
A and the data f are in 8% and denote A’K = Ag, f‘K = fk. Additionally, the
Dirichlet boundary data g can be represented by the trace of a function in S'. In this
setting, no data oscillation term will be present in the final error estimate bounds.

Let ¢, be the Lagrange nodal basis function of S* associated with an interior
vertex z; € N. Using these nodal basis functions, the discrete problem in (2.5) may
be written as the following system of linear equations:

(2.6) Au=f,
3
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where the stiffness matrix A is A[i, j] = a;; with a;; = (AV¢s,, V¢, ); the u is the
vector representation of the exact solution u. ; and the f is the vector representation
of the right hand side with i-th row f[i] of f being (f, ¢,). For a given initial guess
u(® | an iterative solver for problem (2.6) has the following form

(2.7) uF ) = u® L B(f — Au),

where u® is the vector representation of the I-th iterate ug) for i =0,1,---. Our
attention in this paper is restricted to symmetric iterative methods, i.e., the matrix
B in (2.7) is symmetric.

Next we define the norms for vectors and matrices: with the help of the context,
the usual 2-norm ||-||, for a vector v.€ R™ and a non-singular symmetric matrix
M € R"*™ is defined by:

(2.8) [V[ly := vv-vand [[M],:= sup X Mvl|, = p(M),

Ivil,=

respectively, where p(M) is the spectral radius of M equaling its largest eigenvalue.
The stiffness matrix A is symmetric positive definite for the Dirichlet boundary
value problem. As a result, A'/2 is non-singular and can be used to induce a norm:

(2.9) vls = VAV v = HAV%H2 and [[M, == sup |[Mv],.
1

Ivila=

By definition it is straightforward to verify that:

(2.10) IM[[, =  sup HAW’MVH :HA”QMA”/QH .
[|ar/zv]],=1 2 2

For a finite element function v and its vector representation v, the following equiva-
lence between vector norm and Sobolev norm holds as well:

(2.11) [oll 4 = 1Iv]la -

3. Discretization error estimator using an equilibrated flux. In this sec-
tion, firstly the duality theory for the error estimation is introduced. Then a locally
post-processed flux based on the iterate u, := ug“) for a fixed k > 1 is constructed.
Lastly the reliability of the estimator based on this recovered flux is proved in order
that a stopping criterion can be designed for the iterative solver.

3.1. Duality theory. It is known that the variational problem in (2.1) can be
rewritten as a functional minimization problem, where the primal functional is:

(3.1) J ) = % (AVU, Vv) — (f, v)

Then problem (2.1) is equivalent to the following minimization problem:

. 1 _ .
(3.2) Find u € H () such that J(u) = ve%ilr(lfz) J(v).

The dual functional with respect to (3.1) is:

(3.3) () = —%(A‘lr, 7).
4
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The dual problem is then to maximize J*(7) in the following space:

(3.4) Y:={re Hdiv;Q): V-7 = f},

and can be phrased as:

(3.5) Find o € ¥ such that J*(o) = max T (T).
TE

The foundation to use the dual problem in constructing a posteriori error estima-
tor is that the minimum of the primal functional J(-) coincides with the maximum
of the dual functional J*(o) (see [19] Chapter 3):

(3.6) J(wu)=J" (o) and o = —AVu.

Now that (3.6) is satisfied, then a guaranteed upper bound can be obtained as follows:
forany o, € X, :=3%nN RT being a subspace of 3, where RT is the lowest order
Raviart-Thomas element (e.g., see [9]),

(B.7) lu—a, % =2(T(@)-TW) = 2(7 @)~ (@) <2(I(@,)-T"(e,)).
One of the main goals of this paper is to locally construct such o based on the
current iterate @, so that the global reliability bound in (3.7) is automatically met.

3.2. Localized flux recovery. Let o® be the correction from the numerical
flux o, := —AVa,, to the true flux o := —AVu:

(3.8) ot =0 -7,

Decompose ® by a partition of unity {¢.}.car, which is the set of the nodal basis
functions for the linear finite element space S, as follows:

(3.9) o? = Z ol with o2 = ¢, 0",
zeN

Denote the element residual on an element K and the jump of the normal component
of the numerical flux on a face F' by

(3.10) rK = {f"FV(AVﬂT)HK:fK

(3.11) and [AV(u— i) mpl, = Lo or e HEE7
A1) and  jp = — u—1a.)-n =
g TR T\ AV (u—a,) -np, i F C 09,

respectively. Note that rx and jp are constants in K and on F' if F' is an interior
face, respectively. When z ¢ 0 is an interior vertex, o2 satisfies the following local
problem:

V'UzA = ¢k — Vo -V(u—1,), on K C w,,
(3.12) [[U'ZA ‘”FHF = ¢2jF, on F € F,,
o2 np=0, on F' C dw,.

If z € 99, then the first equation in (3.12) is unchanged, and the flux jump equations
change to

(3.13) {[[azA-np]]F = ¢.iF, on FFeF, and F ¢ dw, NI,

o2 np =0, on F' C 0w, \0N.

o
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2. is sought

To approximate problem (3.12), an approximated correction flux o
in the following broken lowest-order Raviart-Thomas space:

(3.14) RT . = {r € L*(w,) : 7|, € RTO(K), VK C wz},

where RT(K) denotes the local lowest-order Raviart-Thomas space on K (see [9]).

An explicit procedure called the hypercircle method or equilibration (see [7, 8])
is used to construct 027. The correction flux JQT satisfies the following problem on
an interior vertex patch w, (z € 99Q):

V-UZA,T:FK,z—i—cz, on K C w,,
(3.15) [o2, - nrl, = jrs, on F € Fy,
o-ﬁT-'n,on, on F' C Ow,,

where 7, and jr, are defined as the L%-projection of ¢,rx and ¢.jp onto the
constant space of K and interior F, respectively, for d = 2, 3:

1 £ = 1
d+ 15T ax1 %

TK,z ‘= HK((bz'rK) =
(3.16)

- _ 1 _ 1.
Jrz = Up(¢2jr) = Jl(AVE,) -nr] , = —jp.

When z € 99, ¢, = 0, and the normal fluxes in (3.15) are modified accordingly by
(3.13).

Note that, without c,, the compatibility condition for (3.15) is not automatically
satisfied, that is,

Z (P2 1)K - Z (jFzs 1)F #0,

KCw, FeF,

which implies that (3.15) does not have a solution. To guarantee the existence of
a solution to (3.15), an element-wise compensation term c, is added on the right
hand side of the divergence equation in (3.15). Notice that the normal fluxes are
kept unchanged so that the final recovered flux can still fulfill the H (div)-continuity
condition of the space in (3.4). The ¢, is defined as a constant on this vertex patch
w enforcing the compatibility condition for (3.15):

(317) Z (FK,Z + ¢z, 1)}( - Z (5sz’ 1)F =0,

KCw, FeF.

which, together with (3.16), yields for an interior vertex z

=i (5 e 0= X e

FeF, KCw,
(3.18) _ 1 ( S Grods)p— > (ks @)K)
|wz| FeF, KCw,
1

—(AV(u—1,), Vé2)

|ws| W=

6
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With ¢, the solution to (3.15) exists since the compatibility condition (3.17) is met
(see [8, 13]). We note that if @ solves (2.5) exactly, i.e., @, = u,, then ¢, = 0 for
an interior vertex by (3.18), and this is a consequence of the Galerkin orthogonality.

In the case that @, is not an exact solution to problem (2.5), we emphasize
again that problem (3.15) is not solvable without the presence of c,. The Galerkin
orthogonality, which occurs as the compatibility condition for (3.15) if z ¢ 09, is
violated if 4. is not the exact finite element approximation.

We also note that if z € 0, the Galerkin orthogonality does not hold either,
(AVuT7 quz) #* (f7 qbz) = (AVu, V(bz)7 since the nodal basis ¢, is not in the test
function space for the discretized problem in (2.5). A direct usage of (3.18) implies
¢z # 0, yet, the degrees of freedom for O'ZA,T on the faces on dw, N JN) are treated as
unknowns in (3.19), and ¢, is not needed in (3.15) on a boundary vertex z € 9f.

The flux correction is postprocessed by a minimization procedure locally on w,:
(3.19) HA*VZUA

s ~1/2
g = min HA TH

)
Ho,wz TEX, T

0,wy

where %, , == {7 € ’R,TQL% : 7 satisfies (3.15)}. The element-wise and the global
flux corrections are then:

A A A A
(3.20) OK ;= Z ., and of = Z Oy
zENK zeN

Lastly, a compensatory flux o, which is in the globally H (div)-conforming RT"
space, is then sought using c, defined in (3.18) as data:

(3.21) V.ol =— Z ¢z, inany KeT,
zeENK

By the surjectivity of the divergence operator from RT° to S°, the above problem
has a solution (e.g., [9, ?]). If o< is sought by minimizing a weighted L?-norm, with
(3.21) being a constraint, then it is equivalent to seeking the solution to a mixed
finite element approximation problem in the RT°-S8° pair. The energy estimate in
a weighted L?-norm for o, which bridges it with the algebraic error, will be shown
later in Lemma 3.

The recovered flux based on the u.. is defined as:

(3.22) o, :=—-AVi, + o2 + 0ot

In practice, only 0'$ is explicitly computed. For explicit local constructions of 0'$,
we refer the readers to [13, 8]. The o is here to compensate the change in divergence
caused by the correction term c,, and is not needed, nor explicitly computed for the
estimator defined in (3.23).

LEMMA 1. The recovered flur o, is in the conforming finite element subspace of
the duality space: o, € X, :=3N RT.

Proof. Using (3.15) and (3.21), together with the fact that AVa., is a constant
vector on each element K, we have:
Voo, = Vot Vot = 3 e = fi
ZENK
On F € F, the continuity of the normal component implies o5 € H(div;(2)

lo, -n], =[o2 n], —[AVi, -n] = Y jre—jr=0.
ZEN(F) 0
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3.3. Discretization error estimator and reliability. With the recovered flux
correction defined in (3.20), we define the discretization error estimator g as:

(323 N = 47202 o e nd o= 47202,

The reliability we show in this section is: the total error ||u — .||, is bounded by
the error estimator 7y plus the algebraic error.

In (3.18), the representation of ¢, uses u—1u., . Nevertheless, inserting the Galerkin
orthogonality into (3.18), which reads (AV(u —u,), Vqﬁz) = 0 for any interior
vertex z, we have

1

B |we |

Wz

1

|we |

(3.24) ¢,

(AV(U’T - ﬂT)a V(ZSZ)MZ = Z (AV(U’T - ﬂT)? VQSZ)K'

KCw,
Now the compatibility compensation term c, can be decomposed as follows:
1

|we |

(3.25) Cy = Z Cz K, With ¢, g :=
KCw,

(AV(uy —ay), Vo) -

LEMMA 2 (Nodal estimate for the compensation term). For any interior vertex
z € Nk, on K C ws, ¢, i satisfies the following L*-estimate with C depending on
the shape regularity of the patch w,:

—1/2 _
(3.26) hKAK / ”CZ,KHO,K <C ||UT - uT”A,K’

Proof. By the representation in (3.25), it follows from the Cauchy-Schwarz in-

a_
equality, the fact that [|[V.|[, , < Chi 1, and the shape regularity of the patch
that

|we|

1 _ _
|Cz.rc| = o [(AV(u—r), Vo) | < = llu—tr |4k 192]4 5

_d_
<COh AL Ml — | g -

d
Since ¢, k is a constant on K, [lezlg x < hf [cz k|, the validity of (3.26) is then
verified. a

To bridge the energy estimate for o$ with the algebraic error, the following norms
are need: let Ap := maxgc,, Ak, for p € 8, and f € L*(Q)

1/2
fia _ 2
627)  Iflane= s DD and ol = (3 nae ||, )
FeF ’

qeSo HQHl,h

LEMMA 3 (A discrete energy estimate for o%). If o5 is obtained by

(3.28) HA*/%;

= min HA*UQTH
0 TERTY,
Vr=f¢

9

0

where f¢ is defined as follows on an element K using (3.21),

(3.29) fle==> e
zeENK
8
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then the following estimate holds:

(3.30) |42t < Callur —airla
in which C depends on the shape regularity of the triangulation, the maximum number
of elements in each wk, and the diffusion coefficient A.

Proof. The minimizer of problem (3.28) satisfies the following global mixed prob-
lem: find (6¢,p) € RT? x S°

(3:31) {(A_ o, 7') — (p, V-T) =0, VreRT,

(VU;, q) = (fc7 q)a vq € SO'

By the inf-sup stability of discrete H'-L? analysis of the mixed problem when the
shape regularity of the mesh is assumed (hp ~ hx for F’s neighboring elements) ([7,
Chapter 3 §5.7]), problem (3.31) has a unique solution satisfying the following energy
estimate: letting 7 = o, ¢ = p, we have

(pa V- T)
[a=127,

T

HA—1/2UC

2

< WfN-vp P, < 102y, sup
0 TERTO
(3.32)

ot 7)

=1 s T <y AT 205
M ero HA_UQTHO b Tllo

Now, to prove the validity of the lemma, by (3.27), it suffices to show that for ¢ € S°

(3.33) (f%q) < Clluy —arll4llally -
To this end, first denote gx := ¢|k, and f. is written out explicitly using (3.29),
00 a=- X (X ) <X el

KeT \zeNk K KeT zeNk

Using ¢, = ZKsz Cz k in (3.25) for interior vertices and ¢, = 0 for z € 9Q yields,

(3.35) fo=-> > (Z cz,T> x| K|.

KeT zeNk,z2¢g0Q \TCw,

We switch the order of the summation, by summing up the inner terms c r last, then
the above equation becomes

Yy (zcz,T)qu

KeT zeNk,2g0Q \TCw,

-y ¥ {cz,K( > qT|T|)} = —(%),

KeT zeNk,z2¢00Q TCwy

(3.36)

in which for each vertex z € Nk, the term ¢, k is only summed against ¢r|T| for
T C w,. The reason is that among the terms in the original summation in (3.35), a
term involving ¢, 7 is summed up multiplying ¢x |K| only when w, C wgk.

9
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Now on each K not touching 952, we have the following weighted average of ¢,
using |w.|mk as weights, being zero for any my that is a constant on the patch wgk:

(3.37) > cak(wslmi)=mkg > (AV(u, — 1), Véz), =0.
2EN K, 200 z2ENK , 200

As a result, |wz|mg can be inserted into (3.36), and mg is chosen as the average of
q on wg, i.e., mg = (X pc,,,. aP|P|)/|wk|, thus () in (3.36) becomes
(3.38)

> N {Cz,K( > qrlT) - ||:’ZI| 3 qP|P|>}

KeT zeNk ,zZ00 TCwy PCwgk

=2 > {Cz,z«gz(&Z<qT—qp>|P|)}—:Z S Bex

KeT zeNk,zZ00 PCwyk KeT zeNk,zg00Q

For any T' C ws, if T'and P C wg have a common face ' = 0TNOP, |gr—qp| = |[4] |
on F'; otherwise, there always exists a path consisting of finite many elements K; C wg
(i =1,...,npp) starting from K7 :=T to K,,, := P, such that K; and K;_; share
a face Fj, then

nrp

(339)  lgr —ap| = lax, —ar, +ars —arey | <Y [[q]]F_‘ < ) ([[q]]F’-
i=1 ‘ FEFu,

Applying above on the innermost summation for P of (3.38), exploiting the local
shape regularity on every element in wg, and using the fact that c, x and [[q]]F are
constants on K and F', respectively, yields:

(3.40)

5z,K S |Cz,K|

> (WZL > (qqup)IPD

TCwz PCwk

<lesacl | 301713 |lal,|

TCw FeFu,

—1/2 1/24 — —
< CA P huc ezl s - AKRENKT | D2 [|lal ]|, 1F172
FeFu, ’

Using the Cauchy-Schwarz inequality and the shape regularity of the triangula-
tion, (%) can be estimated as follows:

1/2

W< Y Y ARk lexll

KEeT zENk 2809

(3.41) ”
2
~1
> > A 3|,
KeT zeNk,zZ0Q FeFu,
Finally, the lemma follows from Lemma 2 and definition (3.27). |

THEOREM 4. There exists a positive constant C4, depending on the shape regu-
larity of the mesh and the coefficient A, such that

(3.42) lu—trlly <nat Calluy =z,
10
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Proof. The proof of (3.42) starts from (3.7)
2
le—a, 3 <2(7@,) - T*(e,)) = [42Va, | ~2(r.a,) + (4710, o).
With o = —AVi, + o2 + o< defined in (3.22), we have

2 2
(Alo,,0,) = HA71/2(0'$ +0o9) ’0 —2(o,, Vi, ) — HAl/QVﬁTHO,

which, together with the above inequality, implies

2
lu=a % < A28 + 00| ~2(0 Vi) —2(/, ar)

2
- ot s,

The last equality uses the fact that (o'T, VﬂT) + ( 7 ﬂT) = 0, which follows from
integration by parts element-wise and Lemma 1. By the triangle inequality, we have

e P e e

s

o
Now, the theorem simply follows from estimate (3.30) in Lemma 3. |

4. Algebraic error estimator. The upper bound in (3.42) contains the al-
gebraic error |u, — .|/ ,. This section introduces an algebraic error estimator in
terms of the energy norm of two consecutive iterates with a constant depending on
an approximation of the spectral radius of the error propagation matrix.

Recall the stiffness matrix A introduced in Section 2 and the iteration in (2.7).
Denote the algebraic iteration error at the k-th iteration by

(4.1) e =u_— ug“),
then the error propagation can be verified to be:
(4.2) et — (1 -BA)e®.

Let e®) be the function in the finite element space having e(*) as its vector represen-
tation in the nodal basis. Define the spectral radius of the error propagation matrix
I—-BA as pey:

(4.3) perr = p(I—BA) = [I-BA[,.

THEOREM 5 (Upper bound of the algebraic error). Let {u'®)} be the sequence
generated by (2.7), then the algebraic error e®) defined in (4.1) satisfies the following
estimate:

Perr
4.4 H (k+1)” < _Perr
( ) © AT 1 - perr

a1 _ H ’
A

or in the finite element function form:

k+1 Perr k+1 k
T R R
11
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Proof. By the norm equivalence in (2.10) and the fact that (I — AY/2BA~1/2) is
similar to (I — BA) (they have the same eigenvalues), we have

(46)  T-BAJ, = |[AV2@-BA)AT2| = p(1-AVPBATY2) = por.
k+1

Hence, He( )||A < Perr ||e(k) ||A, and the result follows from a standard contraction
mapping convergence theorem (see, e.g., [22, Theorem 12.1.2]). d

In Theorem 5, pe is the true rate of convergence of the solver. However, in
practice, pery is not available during any iteration of the solver, unless an eigenvalue
problem is solved for the error propagation matrix I — BA. What we have access to
is the following quantity:

[l
(4.7) Pl =
[rr—1ll
where r, := Ae(®) with j-th entry given by (f, bz;) — (AVug“), Véz,). The fol-
lowing lemma describes the convergence of pé’ﬁr) provided that the iterative solver is

convergent.

LEMMA 6 (Convergence of pgf)). Assuming the error propagation matriz I—BA

has eigenvalues 1 > perr = A1 > Ao > +-- > Ay > 0, then pé’ﬁ? — Perr aS k — 00.
Proof. First notice that, by applying (4.2) from 0 to k in a cascading fashion,

r; = Ae® = A(I-BA)*e® = (1- AB)*Ael®) = (I — AB)*r,.

Since A=1(I - AB)A =1 - BA, I - AB and I — BA share the same eigenvalues
and eigenvectors. Suppose that {v;}¥ | are the set of orthonormal eigenvectors in the
¢%-sense corresponding to the eigenvalue set {\;} ;. Let ¢; = rq-v; be the coefficient
of the eigen-expansion of ro. Without loss of generality, assume the multiplicity of
the largest eigenvalue A; is 1. Then we have:

A N k
p(k) _ ||(I ) I‘0||2 HZzzl )\1, C;V; 5
(T = AB)R I, HZL Aoy, 2

k
N \;
=2 (3)" e
k—1
N s
Zi:l (Tl) CiV;

(4.8)

N
2 _ 1+ bi”/fc ,
1+ sz\iz bﬂ’fil

:)\1

2

where b; = (¢;/c1)?, and v; := (A\;/A1)?. The lemma follows from letting k — oc.
When the multiplicity of A\; is m > 2, factoring out the first m terms and 7 starts
from (m + 1) in the eigen-expansion in (4.8) yields the same result. d

LEMMA 7 (Monotonicity of pgf)). Under the same assumption as in Lemma 6,

péﬁ) < pé’ﬁil), for any fized k € RT.
Proof. By (4.8), to prove the validity of the lemma, it suffices to show that:

N 2 N N
(4.9) (1 +> bi%k) < (1 + bi751> (1 + bwf“) :
i=2 =2 i=2

12
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which is equivalent to

(4.10)
N N 2 N N N
23 bk + (me) < bi(F el + (me’“ 1) (Zbﬂf“)
i—2 i—2 i—2 i—2 i—2

Since b; > 0, \; >0, and 2v; <1+ %-2, we have

N N
2 bk < Zb( Lk 1),
1=2 1=2

Then it suffices to show the following inequality:

N 2 N
(4.11) a = (Zm{“) - (Z byl ) <Z bnf“)
=2 1=2

which will be proved by a standard inductive argument. To this end, let N = 2, it is
easy to see that (4.11) holds with equality. Next, assume that (4.11) holds for N = n.
For N =n + 1: we have

(4.12)

n 2 n
a= (Z by + bn+1%’§+1> - (Z bivi T+ bn+17n+1> (Z biyi 4 bnﬂyzi%)
i=2

i—2
n 2 n n n

< (Z bmf) - (Z bﬂfl> <Z bﬁf“) — bnayiit D bilmer —7i)*
i—2 i—2 i=2 i=2

Now (4.11) is a direct consequence of the induction hypothesis. This completes the
proof of the lemma. ]

After the preparation, now we define the algebraic error estimator as follows at
the (k + 1)-th iteration of the solver: for k > 1

(4.13) (k+1) . p1/k_Perr Pgrr) H (k+1) _ (k)” — ol/k ngr) } (k+1) _u(k)H
. Na : 1_ A 1_ (k) Uy T lla
err err

The e/ factor is added to remedy the fact that pé’fﬁ converges to pery from below.
Without it, the solver might stop too early, before a good estimate of pe,, is obtained.

THEOREM 8 (Reliability of the algebraic error estimator). Under the same set-
ting with Theorem 5 and Lemma 6, there exists an N € R™ such that for all k > N,

(119 D] = [ty — ], <4
Proof. Denote p(k) := pgfr), &(k) = p(k)/(l —p(k;)), and € := perr/(1 = perr). By

Theorem 5, it suffices to show that: there exists an N such that for £ > N

(4.15) € <el/ke(k).

It is straightforward to verify that (k) — £ from below as p(k) — perr. Moreover,
e/kE(k) — € as k — oo. Now it suffices to show that when k is sufficiently large,

13
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118
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e'/*¢(k) is a decreasing function of k. Recalling from (4.8) in Lemma 6 that if k is
sufficiently large,

1+by*
— (k) ~
(4.16) p(k) = pgrg = Perr 1+ byh1

where v := (A\n11/M1)% < 1, and b := (¢;ur1/c1)? > 0 where m is the multiplicity of
the largest eigenvalue. Taking the derivative of e'/*&(k) with respect to k leads to:
d

) ur—k7 (k) (1 = p(k)) + ' (k)
A sk _ Ak .

By (4.16), we have

b(y — Dy 1lny _
(4.18) P (k) = perr 1) s =0(" ).
(1+ byk=1)
Using (4.18) in (4.17) and noting that k=2 decreases at a slower rate than v*~1, then
for sufficiently large k, - (el/*¢(k)) < 0, and the theorem follows. O

REMARK 9 (Speed up of the rate of convergence estimate). We notice that without

the correction factor in (4.13), the closer pglﬁr) 18 10 perr, the more accurate the algebraic

estimator is. The convergence of péfr) can be accelerated in the following way:

(k) 1+ by* he1) o Ly

Pert = perrm s and  pyy R perrW-
Now we define for k> 2:
k k Pt(elrcr)
(419) ﬁt(err) = prgrr) (k—1)°
Perr

And ﬁ‘(sfr) converges to pery faster than the original pé’ﬁ} . To see this, taking derivative
of f)gfr) with respect to k gives,

(p5)) = 004",

which is an order faster than the convergence of pgﬁr) in (4.18).

5. Discretization-accurate stopping criterion. Identity (1.2) clearly indi-
cates that the iterative solver should be stopped when the algebraic error is of the
same magnitude as the discretization error. This observation suggests the following
stopping criterion: let n((ik) be 74 from (3.23) computed using the iterate ug“), the
iterative solver shall stop when

err

(5.1) n < et and |pE) /i) — 1) <ep,

where € = 14/ Hu — “THA is the effectivity index. In light of the proof of Theorem 8§,
the second condition implies that p&’ﬁ} is a good approximation to pe, and, hence,
n((Lk) is an accurate representation of the algebraic error Hu,r - ug)H , at the k-th
iteration. Together with the first condition, the estimated algebraic error is of the
same magnitude in the discretization error.

14
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6. Numerical examples. In this section, several examples are presented to
verify the reliability of the estimators proposed, as well as the stopping criterion. The
error estimator 74, using a localized equilibrated flux to solve (3.15), is implemented
in ¢FEM [14]. The initial guess for all examples presented in this section is a random
guess with each entry of u(® satisfying a uniform distribution in [~1, 1] using a fixed
seed. An effectivity index of ¢ = 1.5 or e7! = 2/3 ~ 0.67 is used in (5.1). This is
similar to typical values used in practice when u, is computed with a direct solver.

The first test problem is the Poisson equation

—Au=f, in Q= (-1, 1)
with Dirichlet boundary conditions and the exact solution is given by
u=a ( sin(mzx) sin(my) + 0.5 sin(4mx) sin(47ry)) ,

where the constant « is chosen such that ||u]| , = 1. This problem is discretized by
the continuous piecewise linear finite element method on a uniform triangular mesh
with mesh size h = 1/32.

The resulting system of algebraic equations is first solved by a multigrid method
with V(1,1)-cycle. Convergence of the multigrid solver in the energy norm along
with the algebraic estimator are depicted in Figure la (see the red and blue dot-circle
lines), which numerically verify Theorem 8 for the algebraic estimator 7, being an
upper bound of the algebraic error. The total and the discretization errors along with
the discretization estimator are also depicted in Figure la (see the red solid-diamond,
the red dot, and the blue solid-diamond lines, respectivley). Estimated convergence
rates based on both pgﬁ) and ﬁé’iB are presented to numerically verify Remark 9.

Using the first stopping criterion in (5.1) with e=! = 0.67, the multigrid itera-
tion stops after merely two iterations, and Figure la shows that the algebraic error
already drops below the discretization error. For a conventional stopping criterion
using the relative residual measured in the £2-norm: HAe(k)HO / HAe(O)HO < 1077,
the multigrid iteration stops after fifteen iterations. For a slower iterative solver, we
also implement symmetric Gauss-Seidel iterative method. The first stopping criterion
in (5.1) with e=! = 0.67 requires only thirty-one iterations, while the conventional
stopping criterion with the tolerance 10~> needs more than two hundred eighty itera-
tions. These results show a dramatic reduction in computational cost when using the
discretization-accurate stopping criterion introduced in this paper. The numbers of
iterations for the multigrid and the symmetric Gauss-Seidel iterative methods with
both the stopping criterions as well as the total and the algebraic errors are sum-
marized in Table 1. As observed from Table 1, additional iterations needed by the
conventional stopping criterion significantly decrease the algebraic errors but not the
total errors. Figure 2 compares the solution u; obtained by a direct solver with that
of a multigrid solver after 2 iterations.

The second test problem tests the stopping criterion on a non-uniform mesh for
the Kellogg intersecting interface problem. The Kellogg problem with a checkerboard
coefficient distribution [10] is a commonly used benchmark for testing the efficiency
and robustness of a posteriori error estimators ([13, 11, 12, 15, 23]):

(6.1) ~V-(AVu) =0, in Q = (—1,1)?
15
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Table 1: The number of iterations and the total and algebraic errors for the Poisson

problem.
Stopping # Iter Hu — ug“)HA ||uT — ugf“)HA
MG V(1,1) Ne < 0.671g 2 0.0821 3.5 x 1071
MG V(1,1) | [Jrglly/[Iroll, <1077 15 0.0741 3.4 x 1078
Sym GS Na < 0.671q 31 0.1051 7.5 x 1071
Sym GS | [[rll,/llroll, <1075 [ 289 0.0741 2.7 x 1077
g‘tructurcd grid h = 1/32, Mixed modes, MG V-cycle Structured grid h = 1/32, Mixed modes, MG V-cycle
1091 < 06
a3
Rl \c\ \\\ 0.5
) \® 8
E o g
=" .
g = = llu—urlla \\\ ; 04
= —o— [lu—uP | & 2
SE = UT*U(TH A \\\ .
10 _O_- l\](u% I 3\“ 0.35
o) RS .
10 R
1 2 3 4 5 6 7 8 025 s 2 2

. 10 1
k: Number of Iterations k: Number of Tterations

(a) The convergence of the V/(1,1)-cycles. | (b) The convergence of the estimated rate oll

convergence

Fig. 1: The convergence results for the Poisson problem: the solution has mixed
modes, the problem is discretized on a uniform triangular mesh, and the linear system
is approximated using V (1, 1)-cycle iterations.

with Dirichlet boundary condition, where the diffusion coefficient A is given by
R in (0,1)2U(-1,0)2,

S PR Q\(((), 1)2U (4,0)2).
The exact solution u of (6.1) is given in polar coordinates (r,8):
u=r7Y(0) € H7¢(Q) for any € >0,
where the definition of ¥(0) is given in, e.g., [15]. Here the parameters are:
v = 0.5,

R = 5.8284271247461907, p=m/4, and o =~ —2.3561944901923448.

For this example, T is a graded mesh on which the relative error for the direct
solve [|u — u || 4 / lull 4 & 10%, in addition, we choose e ™! = 0.67 and ¢, = 0.1 for the
stopping criterion. The stopping criterion (5.1) is checked every three V(1,1)-cycles.
The local error distribution is shown in Figure 3.

16
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(a) up, obtained by a direct solver.

(b) uf) obtained by two V/(1,1)-cycles.

Fig. 2: The comparison of the direct-solved approximation u;, and the multigrid iterate
u'? in the first test bl
5 problem.

Table 2: The number of iterations and the total and algebraic errors for the Kellogg

problem.
Stopping # Iter Hu — ug“)HA ||uT — ug“)”A
MG V(1,1) Tla < 06714 2 0.05141 | 1577 x 1073
MG V(1,1) | [Irxllo/lIroll, <1077 6 0.05139 8.026 x 10~8
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