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Abstract. This paper introduces a discretization-accurate stopping criterion of symmetric iter-4
ative methods for solving systems of algebraic equations resulting from the finite element approxima-5
tion. The stopping criterion consists of the evaluations of the discretization and the algebraic error6
estimators, that are based on the respective duality error estimator and the difference of two consecu-7
tive iterates. Iterations are terminated when the algebraic estimator is of the same magnitude as the8
discretization estimator. Numerical results for multigrid V (1, 1)-cycle and symmetric Gauss-Seidel9
iterative methods are presented for the linear finite element approximation to the Poisson equa-10
tions. A large reduction in computational cost is observed compared to the standard residual-based11
stopping criterion.12

1. Introduction. Consider the Dirichlet boundary value problem in a bounded13

polygonal/polyhedral domain Ω ⊂ Rd (d = 2, 3) for the diffusion equation as follows:14

(1.1)

{
−∇·(A∇u) = f, in Ω,

u = g, on ∂Ω,
15

where A is a scalar diffusion coefficient, and the data f ∈ L2(Ω) and g ∈ L2(∂Ω).16

In practice, the system of algebraic equations resulting from the finite element17

approximation to (1.1) is often solved by iterative methods, e.g., Gauss-Seidel, conju-18

gate gradient, multigrid methods, etc. Instead of having the exact solution uT of the19

algebraic system at hand, ūT := u(k)
T

is the current output from an iterative solver,20

where k is the number of iterations. The total energy error of ūT to the solution u21

of the continuous problem in (1.1) consists of both discretization and algebraic errors22

as follows:23

(1.2) ‖u− ūT ‖
2
A︸ ︷︷ ︸

total error

= ‖uT − ūT ‖
2
A︸ ︷︷ ︸

algebraic error

+ ‖u− uT ‖
2
A︸ ︷︷ ︸

discretization error

,24

where ‖·‖A is the energy norm associated with the problem in (1.1) (for the norm25

notations, see section 2).26

The goal of this paper is to propose a stopping criterion for iterative solvers. To27

do so, we need to develop two error estimators for the respective discretization and28

algebraic errors. Since the discretization error is fixed for a given finite element space,29

(1.2) clearly indicates that the stopping criterion of the iterative solver is when the30

algebraic estimator is of the same magnitude as the discretization estimator, provided31

that both represent their error counterparts reliably.32

Discretization error estimators for the exact finite element approximations have33

been intensively studied during the past four decades (see books [1, 26] and references34
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therein). In the context of stopping criterion for iterative solvers, the residual-based a35

posteriori error estimator was employed for the conforming finite element approxima-36

tion by several researchers (see, e.g., [5, 24, 3, 2, 4]); recovery-based estimators were37

used by Vohralik and his collaborators in [20] for the finite volume discretization and38

in [17] for the discontinuous finite element approximation on non-matching grids.39

In this paper, we will adopt the equilibrated flux error estimator (see, e.g., [8,40

16, 21, 25, 13]) for the discretization error. This is because the reliability bound of41

estimators of this type is constant free. Using this technique, a locally post-processed42

flux based on the iterate ūT will be constructed. Unlike the exact finite element43

approximation uT , the local problems based on the current iterate ūT on vertex44

patches are not consistent. To overcome this difficulty, we modify the local problems45

by adding back the algebraic errors. The resulting discretization error estimator46

plus the algebraic error is proved to be reliable and the reliability bound for the47

discretization estimator component is constant free (see Theorem 4).48

To construct the algebraic error estimator, we first bound
∥∥uT − u(k)

T

∥∥
A

above49

by the energy norm of the difference of consecutive iterates, and the constant in the50

upper bound depends on the spectral radius of the error propagation operator (see51

Theorem 5). The unknown spectral radius is further approximated by the ratio of52

the l2 norms of the residuals of consecutive iterates. The resulting algebraic error53

estimator is then shown to be reliable when sufficiently many iterations have been54

performed.55

Lastly, in Section 6, based on the discretizaton and algebraic estimators, a new56

stopping criterion for a given linear solver is verified numerically by some test prob-57

lems. The numerics shows promising results in that the bounds are independent of58

the coefficient jump ratio even without the quasi-monotonicy assumption [6, 18, 23]59

for the distribution of the diffusion coefficient A.60

2. Finite element method and iterative solver. In this section, all prelim-61

inaries are presented. Denote H1(Ω) with a specified boundary value as H1
g (Ω) :=62

{v ∈ H1(Ω) : v = g on ∂Ω}, and then the variational problem of (1.1) is63

(2.1) Find u ∈ H1
g (Ω) such that

(
A∇u, ∇v

)
=
(
f, v

)
, ∀v ∈ H1

0 (Ω),64

where
(
·, ·
)

denotes the L2-inner product on the whole domain.65

Let T = {K} be a triangulation of Ω using simplicial element, where T is assumed66

to be quasi-uniform and regular. For each K ∈ T , hK := diam (K) = O(|K|1/d). The67

set of all the vertices of this triangulation is denoted by N . Throughout this paper,68

the term “face” is used to refer to the (d−1)-facet of a d-simplex in this triangulation69

(d = 2, 3). For the d = 2 case, a face actually represents an edge. The set of all the70

interior faces is denoted by F . For any F ∈ F , hF := diam (F ) = O(|F |1/(d−1)). Each71

face F ∈ F is associated with a fixed unit normal nF globally. For any function or72

distribution v well-defined on the two elements sharing a face F respectively, define73

[[v]]
F

= v− − v+ on an interior face. The v− and v+ are defined in the limiting sense74

of v± = lim
ε→0±

v(x+ εnF ). If F is a boundary face, the function v is extended by zero75

outside the domain to compute [[v]]
F

. For every geometrical object D and for every76

integer k ≥ 0, Pk(D) denotes the set of polynomials of degree ≤ k on D.77

For the purpose of constructing the local error estimation procedure for the finite78

element approximation, notations of the following local geometric objects are used in79

this paper. First, denote by NK the set of all the vertices of K ∈ T . For any vertex80
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z ∈ N , denote by81

ωz :=
⋃
{K∈T : z∈NK}K82

as the vertex patch, which is the union of all elements sharing z as a common vertex.83

Now Tz stands for the triangulation of this patch such that Tz := {K : K ⊂ ωz}.84

Denote85

ωK :=
⋃
z∈NK

ωz86

as the element patch for K that contains all the elements sharing a vertex with K.87

For a face F ∈ F , denote the face patch as88

ωF :=
⋃
F∩∂K 6=∅K,89

which contains the elements sharing F as a common face. The L2-inner product and90

norm on ω = ∪K ⊂ Ω are denoted by91 (
u, v

)
ω

:=
∑
K⊂ω

(u, v)K and ‖v‖20,ω := (v, v)ω,92

respectively. These notations carry through for vector-valued functions. The “energy”93

seminorm associated with the problem (2.1) is (with slight abuse of notation, because94

the local seminorm is denoted as a norm):95

(2.2) ‖v‖2A :=
(
A∇u, ∇v

)
and ‖v‖2A,ω :=

(
A∇u, ∇v

)
ω
.96

Let FK be the set of faces of an element K ∈ T . Denote the set of the interior97

faces within ωz as:98

Fz := {F ∈ F : F ∈ FK for K ⊂ ωz, F ∩ ∂ωz = ∅}.99

Denote the H1-conforming linear finite element space by100

(2.3) S1 := {v ∈ H1(Ω) : v
∣∣
K
∈ P1(K), ∀ K ∈ T },101

and the piecewise constant space with respect to the triangulation T by102

(2.4) S0 := {v ∈ L2(Ω) : v
∣∣
K
∈ P0(K), ∀ K ∈ T },103

Then the finite element approximation to (2.1) is104

(2.5)

{
Find uT ∈ S1 ∩H1

g (Ω) such that(
A∇uT , ∇v

)
=
(
f, v

)
, ∀ v ∈ S1 ∩H1

0 (Ω).
105

For the presentation purpose, here it is assumed that both the diffusion coefficient106

A and the data f are in S0, and denote A
∣∣
K

= AK , f
∣∣
K

= fK . Additionally, the107

Dirichlet boundary data g can be represented by the trace of a function in S1. In this108

setting, no data oscillation term will be present in the final error estimate bounds.109

Let φzi be the Lagrange nodal basis function of S1 associated with an interior110

vertex zi ∈ N . Using these nodal basis functions, the discrete problem in (2.5) may111

be written as the following system of linear equations:112

(2.6) Au = f ,113
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where the stiffness matrix A is A[i, j] = aij with aij =
(
A∇φzj , ∇φzi

)
; the u is the114

vector representation of the exact solution uT ; and the f is the vector representation115

of the right hand side with i-th row f [i] of f being (f, φzi). For a given initial guess116

u(0), an iterative solver for problem (2.6) has the following form117

(2.7) u(k+1) = u(k) + B(f −Au(k)),118

where u(l) is the vector representation of the l-th iterate u(l)
T

for l = 0, 1, · · · . Our119

attention in this paper is restricted to symmetric iterative methods, i.e., the matrix120

B in (2.7) is symmetric.121

Next we define the norms for vectors and matrices: with the help of the context,122

the usual 2-norm ‖·‖2 for a vector v ∈ Rn and a non-singular symmetric matrix123

M ∈ Rn×n is defined by:124

(2.8) ‖v‖2 :=
√

v · v and ‖M‖2 := sup
‖v‖2=1

‖Mv‖2 = ρ(M),125

respectively, where ρ(M) is the spectral radius of M equaling its largest eigenvalue.126

The stiffness matrix A is symmetric positive definite for the Dirichlet boundary127

value problem. As a result, A1/2 is non-singular and can be used to induce a norm:128

(2.9) ‖v‖A :=
√

Av · v =
∥∥∥A1/2v

∥∥∥
2

and ‖M‖A := sup
‖v‖A=1

‖Mv‖A .129

By definition it is straightforward to verify that:130

(2.10) ‖M‖A = sup
‖A1/2v‖

2
=1

∥∥∥A1/2Mv
∥∥∥

2
=
∥∥∥A1/2MA−1/2

∥∥∥
2
.131

For a finite element function v and its vector representation v, the following equiva-132

lence between vector norm and Sobolev norm holds as well:133

(2.11) ‖v‖A = ‖v‖A .134

3. Discretization error estimator using an equilibrated flux. In this sec-135

tion, firstly the duality theory for the error estimation is introduced. Then a locally136

post-processed flux based on the iterate ūT := u(k)
T

for a fixed k ≥ 1 is constructed.137

Lastly the reliability of the estimator based on this recovered flux is proved in order138

that a stopping criterion can be designed for the iterative solver.139

3.1. Duality theory. It is known that the variational problem in (2.1) can be140

rewritten as a functional minimization problem, where the primal functional is:141

(3.1) J (v) :=
1

2

(
A∇v, ∇v

)
−
(
f, v

)
142

Then problem (2.1) is equivalent to the following minimization problem:143

(3.2) Find u ∈ H1
g (Ω) such that J (u) = min

v∈H1
g(Ω)
J (v).144

The dual functional with respect to (3.1) is:145

(3.3) J ∗(τ ) := −1

2

(
A−1τ , τ

)
.146
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The dual problem is then to maximize J ∗(τ ) in the following space:147

(3.4) Σ := {τ ∈H(div; Ω) : ∇·τ = f},148

and can be phrased as:149

(3.5) Find σ ∈ Σ such that J ∗(σ) = max
τ∈Σ
J ∗(τ ).150

The foundation to use the dual problem in constructing a posteriori error estima-151

tor is that the minimum of the primal functional J (·) coincides with the maximum152

of the dual functional J ∗(σ) (see [19] Chapter 3):153

(3.6) J (u) = J ∗(σ) and σ = −A∇u.154

Now that (3.6) is satisfied, then a guaranteed upper bound can be obtained as follows:155

for any σT ∈ ΣT := Σ ∩RT 0 being a subspace of Σ, where RT 0 is the lowest order156

Raviart-Thomas element (e.g., see [9]),157

(3.7) ‖u− ūT ‖
2
A = 2

(
J (ūT )−J (u)

)
= 2

(
J (ūT )−J ∗(σ)

)
≤ 2
(
J (ūT )−J ∗(σT )

)
.158

One of the main goals of this paper is to locally construct such σT based on the159

current iterate ūT , so that the global reliability bound in (3.7) is automatically met.160

3.2. Localized flux recovery. Let σ∆ be the correction from the numerical161

flux σT := −A∇ūT to the true flux σ := −A∇u:162

(3.8) σ∆ := σ − σT163

Decompose σ∆ by a partition of unity {φz}z∈N , which is the set of the nodal basis164

functions for the linear finite element space S1, as follows:165

(3.9) σ∆ =
∑
z∈N

σ∆
z with σ∆

z := φzσ
∆.166

Denote the element residual on an element K and the jump of the normal component167

of the numerical flux on a face F by168

rK :=
{
f +∇·(A∇ūT )

}∣∣
K

= fK(3.10)169

and jF := −[[A∇(u− ūT ) · nF ]]
F

=

{
[[A∇ūT · nF ]]

F
, if F ∈ Fz,

A∇(u− ūT ) · nF , if F ⊂ ∂Ω,
(3.11)170

respectively. Note that rK and jF are constants in K and on F if F is an interior171

face, respectively. When z 6∈ ∂Ω is an interior vertex, σ∆
z satisfies the following local172

problem:173

(3.12)


∇·σ∆

z = φzrK −∇φz · ∇(u− ūT ), on K ⊂ ωz,
[[σ∆
z · nF ]]

F
= φzjF , on F ∈ Fz,

σ∆
z · nF = 0, on F ⊂ ∂ωz.

174

If z ∈ ∂Ω, then the first equation in (3.12) is unchanged, and the flux jump equations175

change to176

(3.13)

{
[[σ∆
z · nF ]]

F
= φzjF , on F ∈ Fz and F 6⊂ ∂ωz ∩ ∂Ω,

σ∆
z · nF = 0, on F ⊂ ∂ωz\∂Ω.

177
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To approximate problem (3.12), an approximated correction flux σ∆
z,T is sought178

in the following broken lowest-order Raviart-Thomas space:179

(3.14) RT 0
−1,ωz

:=
{
τ ∈ L2(ωz) : τ

∣∣
K
∈RT 0(K), ∀K ⊂ ωz

}
,180

where RT 0(K) denotes the local lowest-order Raviart-Thomas space on K (see [9]).181

An explicit procedure called the hypercircle method or equilibration (see [7, 8])182

is used to construct σ∆
z,T . The correction flux σ∆

z,T satisfies the following problem on183

an interior vertex patch ωz (z 6∈ ∂Ω):184

(3.15)


∇·σ∆

z,T = r̄K,z + cz, on K ⊂ ωz,
[[σ∆
z,T · nF ]]

F
= j̄F,z, on F ∈ Fz,

σ∆
z,T · nF = 0, on F ⊂ ∂ωz,

185

where r̄K,z and j̄F,z are defined as the L2-projection of φzrK and φzjF onto the186

constant space of K and interior F , respectively, for d = 2, 3:187

(3.16)

r̄K,z := ΠK(φzrK) =
1

d+ 1
fK =

1

d+ 1
rK ,

j̄F,z := ΠF (φzjF ) =
1

d
[[(A∇ūT ) · nF ]]

F
=

1

d
jF .

188

When z ∈ ∂Ω, cz = 0, and the normal fluxes in (3.15) are modified accordingly by189

(3.13).190

Note that, without cz, the compatibility condition for (3.15) is not automatically191

satisfied, that is,192 ∑
K⊂ωz

(
r̄K,z, 1

)
K
−
∑
F∈Fz

(
j̄F,z, 1

)
F
6= 0,193

which implies that (3.15) does not have a solution. To guarantee the existence of194

a solution to (3.15), an element-wise compensation term cz is added on the right195

hand side of the divergence equation in (3.15). Notice that the normal fluxes are196

kept unchanged so that the final recovered flux can still fulfill the H(div)-continuity197

condition of the space in (3.4). The cz is defined as a constant on this vertex patch198

ωz enforcing the compatibility condition for (3.15):199

(3.17)
∑
K⊂ωz

(
r̄K,z + cz, 1

)
K
−
∑
F∈Fz

(
j̄F,z, 1

)
F

= 0,200

which, together with (3.16), yields for an interior vertex z201

(3.18)

cz :=
1

|ωz|

( ∑
F∈Fz

(
j̄F,z, 1

)
F
−
∑
K⊂ωz

(
r̄K,z, 1

)
K

)

=
1

|ωz|

( ∑
F∈Fz

(
jF , φz

)
F
−
∑
K⊂ωz

(
rK , φz

)
K

)

=
1

|ωz|
(
A∇(u− ūT ), ∇φz

)
ωz
.

202
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With cz, the solution to (3.15) exists since the compatibility condition (3.17) is met203

(see [8, 13]). We note that if ūT solves (2.5) exactly, i.e., ūT = uT , then cz = 0 for204

an interior vertex by (3.18), and this is a consequence of the Galerkin orthogonality.205

In the case that ūT is not an exact solution to problem (2.5), we emphasize206

again that problem (3.15) is not solvable without the presence of cz. The Galerkin207

orthogonality, which occurs as the compatibility condition for (3.15) if z 6∈ ∂Ω, is208

violated if ūT is not the exact finite element approximation.209

We also note that if z ∈ ∂Ω, the Galerkin orthogonality does not hold either,210 (
A∇uT , ∇φz

)
6=
(
f, φz

)
=
(
A∇u, ∇φz

)
, since the nodal basis φz is not in the test211

function space for the discretized problem in (2.5). A direct usage of (3.18) implies212

cz 6= 0, yet, the degrees of freedom for σ∆
z,T on the faces on ∂ωz ∩ ∂Ω are treated as213

unknowns in (3.19), and cz is not needed in (3.15) on a boundary vertex z ∈ ∂Ω.214

The flux correction is postprocessed by a minimization procedure locally on ωz:215

(3.19)
∥∥∥A−1/2σ∆

z,T

∥∥∥
0,ωz

= min
τ∈Σz,T

∥∥∥A−1/2τ
∥∥∥

0,ωz

,216

where Σz,T :=
{
τ ∈ RT 0

−1,ωz
: τ satisfies (3.15)

}
. The element-wise and the global217

flux corrections are then:218

(3.20) σ∆
K,T :=

∑
z∈NK

σ∆
z,T and σ∆

T :=
∑
z∈N

σ∆
z,T .219

Lastly, a compensatory flux σcT , which is in the globally H(div)-conforming RT 0
220

space, is then sought using cz defined in (3.18) as data:221

(3.21) ∇·σcT = −
∑
z∈NK

cz, in any K ∈ T ,222

By the surjectivity of the divergence operator from RT 0 to S0, the above problem223

has a solution (e.g., [9, ?]). If σcT is sought by minimizing a weighted L2-norm, with224

(3.21) being a constraint, then it is equivalent to seeking the solution to a mixed225

finite element approximation problem in the RT 0–S0 pair. The energy estimate in226

a weighted L2-norm for σcT , which bridges it with the algebraic error, will be shown227

later in Lemma 3.228

The recovered flux based on the ūT is defined as:229

(3.22) σT := −A∇ūT + σ∆
T + σcT .230

In practice, only σ∆
T is explicitly computed. For explicit local constructions of σ∆

T ,231

we refer the readers to [13, 8]. The σcT is here to compensate the change in divergence232

caused by the correction term cz, and is not needed, nor explicitly computed for the233

estimator defined in (3.23).234

Lemma 1. The recovered flux σT is in the conforming finite element subspace of235

the duality space: σT ∈ ΣT := Σ ∩RT 0.236

Proof. Using (3.15) and (3.21), together with the fact that A∇ūT is a constant237

vector on each element K, we have:238

∇·σT
∣∣
K

= ∇·σ∆
T +∇·σcT =

∑
z∈NK

r̄K,z = fK .239

On F ∈ F , the continuity of the normal component implies σcT ∈H(div; Ω)240

[[σT · n]]
F

= [[σ∆
T · n]]

F
− [[A∇ūT · n]]

F
=

∑
z∈N (F )

j̄F,z − jF = 0.

241

7

This manuscript is for review purposes only.



3.3. Discretization error estimator and reliability. With the recovered flux242

correction defined in (3.20), we define the discretization error estimator ηd as:243

(3.23) ηd,K =
∥∥A−1/2σ∆

K,T

∥∥
0,K

, and ηd =
∥∥A−1/2σ∆

T

∥∥
0
.244

The reliability we show in this section is: the total error ‖u− ūT ‖A is bounded by245

the error estimator ηd plus the algebraic error.246

In (3.18), the representation of cz uses u−ūT . Nevertheless, inserting the Galerkin247

orthogonality into (3.18), which reads
(
A∇(u− uT ), ∇φz

)
ωz

= 0 for any interior248

vertex z, we have249

(3.24) cz =
1

|ωz|
(
A∇(uT − ūT ), ∇φz

)
ωz

=
1

|ωz|
∑
K⊂ωz

(
A∇(uT − ūT ), ∇φz

)
K
.250

Now the compatibility compensation term cz can be decomposed as follows:251

(3.25) cz =
∑
K⊂ωz

cz,K , with cz,K :=
1

|ωz|
(
A∇(uT − ūT ), ∇φz

)
K
.252

Lemma 2 (Nodal estimate for the compensation term). For any interior vertex253

z ∈ NK , on K ⊂ ωz, cz,K satisfies the following L2-estimate with C depending on254

the shape regularity of the patch ωz:255

(3.26) hKA
−1/2
K ‖cz,K‖0,K ≤ C ‖uT − ūT ‖A,K ,256

Proof. By the representation in (3.25), it follows from the Cauchy-Schwarz in-257

equality, the fact that ‖∇φz‖0,K ≤ C h
d
2−1

K , and the shape regularity of the patch258

that259

|cz,K | =
1

|ωz|
∣∣(A∇(u− ūT ), ∇φz

)
K

∣∣ ≤ 1

|ωz|
‖u− ūT ‖A,K ‖φz‖A,K260

≤ C h−
d
2−1

K A
1/2
K ‖u− ūT ‖A,K .261

Since cz,K is a constant on K, ‖cz‖0,K ≤ h
d
2

K |cz,K |, the validity of (3.26) is then262

verified.263

To bridge the energy estimate for σcT with the algebraic error, the following norms264

are need: let AF := maxK⊂ωF
AK , for p ∈ S0, and f ∈ L2(Ω)265

(3.27) ‖f‖−1,h := sup
q∈S0

(f, q)

‖q‖1,h
, and ‖p‖1,h :=

(∑
F∈F

h−1
F AF

∥∥∥[[p]]
∥∥∥2

0,F

)1/2

.266

Lemma 3 (A discrete energy estimate for σcT ). If σcT is obtained by267

(3.28)
∥∥∥A−1/2σcT

∥∥∥
0

= min
τ∈RT 0,
∇·τ=fc

∥∥∥A−1/2τ
∥∥∥

0
,268

where f c is defined as follows on an element K using (3.21),269

(3.29) f c|K := −
∑
z∈NK

cz270
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then the following estimate holds:271

(3.30)
∥∥∥A−1/2σcT

∥∥∥
0
≤ CA ‖uT − ūT ‖A ,272

in which C depends on the shape regularity of the triangulation, the maximum number273

of elements in each ωK , and the diffusion coefficient A.274

Proof. The minimizer of problem (3.28) satisfies the following global mixed prob-275

lem: find (σcT , p) ∈RT 0 × S0276

(3.31)

{(
A−1σcT , τ

)
−
(
p, ∇·τ

)
= 0, ∀ τ ∈RT 0,(

∇·σcT , q
)

=
(
f c, q

)
, ∀ q ∈ S0.

277

By the inf-sup stability of discrete H1-L2 analysis of the mixed problem when the278

shape regularity of the mesh is assumed (hF h hK for F ’s neighboring elements) ([7,279

Chapter 3 §5.7]), problem (3.31) has a unique solution satisfying the following energy280

estimate: letting τ = σcT , q = p, we have281

(3.32)

∥∥∥A−1/2σcT

∥∥∥2

0
≤ ‖f c‖−1,h ‖p‖1,h ≤ ‖f

c‖−1,h sup
τ∈RT 0

(p,∇ · τ )∥∥A−1/2τ
∥∥

0

= ‖f c‖−1,h sup
τ∈RT 0

(
A−1σcT , τ

)∥∥A−1/2τ
∥∥

0

≤ ‖f c‖−1,h

∥∥∥A−1/2σcT

∥∥∥
0
.

282

Now, to prove the validity of the lemma, by (3.27), it suffices to show that for q ∈ S0283

(3.33) (f c, q) ≤ C ‖uT − ūT ‖A ‖q‖1,h .284

To this end, first denote qK := q|K , and fc is written out explicitly using (3.29),285

(3.34) (f c, q) = −
∑
K∈T

( ∑
z∈NK

cz, q

)
K

= −
∑
K∈T

∑
z∈NK

czqK |K|.286

Using cz =
∑
K⊂ωz

cz,K in (3.25) for interior vertices and cz = 0 for z ∈ ∂Ω yields,287

(3.35) (f c, q) = −
∑
K∈T

∑
z∈NK ,z 6∈∂Ω

( ∑
T⊂ωz

cz,T

)
qK |K|.288

We switch the order of the summation, by summing up the inner terms cz,T last, then289

the above equation becomes290

(3.36)

−
∑
K∈T

∑
z∈NK ,z 6∈∂Ω

( ∑
T⊂ωz

cz,T

)
qK |K|

= −
∑
K∈T

∑
z∈NK ,z 6∈∂Ω

{
cz,K

( ∑
T⊂ωz

qT |T |
)}

=: −(∗),
291

in which for each vertex z ∈ NK , the term cz,K is only summed against qT |T | for292

T ⊂ ωz. The reason is that among the terms in the original summation in (3.35), a293

term involving cz,T is summed up multiplying qK |K| only when ωz ⊂ ωK .294
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Now on each K not touching ∂Ω, we have the following weighted average of cz,K ,295

using |ωz|mK as weights, being zero for any mK that is a constant on the patch ωK :296

(3.37)
∑

z∈NK ,z 6∈∂Ω

cz,K(|ωz|mK) = mK

∑
z∈NK ,z 6∈∂Ω

(
A∇(uT − ūT ), ∇φz

)
K

= 0.297

As a result, |ωz|mK can be inserted into (3.36), and mK is chosen as the average of298

q on ωK , i.e., mK := (
∑
P⊂ωK

qP |P |)/|ωK |, thus (∗) in (3.36) becomes299

(3.38)∑
K∈T

∑
z∈NK ,z 6∈∂Ω

{
cz,K

( ∑
T⊂ωz

qT |T | −
|ωz|
|ωK |

∑
P⊂ωK

qP |P |
)}

=
∑
K∈T

∑
z∈NK ,z 6∈∂Ω

{
cz,K

∑
T⊂ωz

( |T |
|ωK |

∑
P⊂ωK

(qT − qP )|P |
)}

=:
∑
K∈T

∑
z∈NK ,z 6∈∂Ω

βz,K .

300

For any T ⊂ ωz, if T and P ⊂ ωK have a common face F = ∂T∩∂P , |qT−qP | = |[[q]]
F
|301

on F ; otherwise, there always exists a path consisting of finite many elements Ki ⊂ ωK302

(i = 1, . . . , nTP ) starting from K1 := T to KnTP
:= P , such that Ki and Ki−1 share303

a face Fi, then304

(3.39) |qT − qP | = |qK1
− qK2

+ qK2
− qK3

. . . | ≤
nTP∑
i=1

∣∣∣[[q]]
Fi

∣∣∣ ≤ ∑
F∈FωK

∣∣∣[[q]]
F

∣∣∣ .305

Applying above on the innermost summation for P of (3.38), exploiting the local306

shape regularity on every element in ωK , and using the fact that cz,K and [[q]]
F

are307

constants on K and F , respectively, yields:308

(3.40)

βz,K ≤ |cz,K |

∣∣∣∣∣ ∑
T⊂ωz

( |T |
|ωK |

∑
P⊂ωK

(qT − qP )|P |
)∣∣∣∣∣ ≤ |cz,K |

 ∑
T⊂ωz

|T |
∑

F∈FωK

∣∣∣[[q]]
F

∣∣∣


≤ CA−1/2
K hK ‖cz,K‖0,K ·A

1/2
K h−1

K |K|
1/2

 ∑
F∈FωK

∥∥∥[[q]]
F

∥∥∥
0,F
|F |−1/2

 .

309

Using the Cauchy-Schwarz inequality and the shape regularity of the triangula-310

tion, (∗) can be estimated as follows:311

(3.41)

(∗) ≤ C

∑
K∈T

∑
z∈NK ,z 6∈∂Ω

A−1
K h2

K ‖cz,K‖
2
0,K

1/2

∑
K∈T

∑
z∈NK ,z 6∈∂Ω

AK
∑

F∈FωK

h−1
F

∥∥∥[[q]]
F

∥∥∥2

0,F

1/2

.

312

Finally, the lemma follows from Lemma 2 and definition (3.27).313

Theorem 4. There exists a positive constant CA, depending on the shape regu-314

larity of the mesh and the coefficient A, such that315

(3.42) ‖u− ūT ‖A ≤ ηd + CA ‖uT − ūT ‖A .316
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Proof. The proof of (3.42) starts from (3.7)317

‖u− ūT ‖
2
A ≤ 2

(
J (ūT )− J ∗(σT )

)
=
∥∥∥A1/2∇ūT

∥∥∥2

0
− 2
(
f, ūT

)
+
(
A−1σT , σT

)
.318

With σT = −A∇ūT + σ∆
T + σcT defined in (3.22), we have319

(
A−1σT , σT

)
=
∥∥∥A−1/2(σ∆

T + σcT )
∥∥∥2

0
− 2
(
σT , ∇ūT

)
−
∥∥∥A1/2∇ūT

∥∥∥2

0
,320

which, together with the above inequality, implies321

‖u− ūT ‖
2
A ≤

∥∥∥A−1/2(σ∆
T + σcT )

∥∥∥2

0
− 2
(
σT , ∇ūT

)
− 2
(
f, ūT

)
322

=
∥∥∥A−1/2(σ∆

T + σcT )
∥∥∥2

0
.323

The last equality uses the fact that
(
σT , ∇ūT

)
+
(
f, ūT

)
= 0, which follows from324

integration by parts element-wise and Lemma 1. By the triangle inequality, we have325

‖u− ūT ‖A ≤
∥∥∥A−1/2σ∆

T

∥∥∥
0

+
∥∥∥A−1/2σcT

∥∥∥
0

= ηd +
∥∥∥A−1/2σcT

∥∥∥
0
.326

Now, the theorem simply follows from estimate (3.30) in Lemma 3.327

4. Algebraic error estimator. The upper bound in (3.42) contains the al-328

gebraic error ‖uT − ūT ‖A. This section introduces an algebraic error estimator in329

terms of the energy norm of two consecutive iterates with a constant depending on330

an approximation of the spectral radius of the error propagation matrix.331

Recall the stiffness matrix A introduced in Section 2 and the iteration in (2.7).332

Denote the algebraic iteration error at the k-th iteration by333

(4.1) e(k) := uT − u(k)
T
,334

then the error propagation can be verified to be:335

(4.2) e(k+1) = (I−BA)e(k).336

Let e(k) be the function in the finite element space having e(k) as its vector represen-337

tation in the nodal basis. Define the spectral radius of the error propagation matrix338

I−BA as ρerr:339

(4.3) ρerr := ρ(I−BA) = ‖I−BA‖2 .340

Theorem 5 (Upper bound of the algebraic error). Let {u(k)} be the sequence341

generated by (2.7), then the algebraic error e(k) defined in (4.1) satisfies the following342

estimate:343

(4.4)
∥∥∥e(k+1)

∥∥∥
A
≤ ρerr

1− ρerr

∥∥∥u(k+1) − u(k)
∥∥∥

A
,344

or in the finite element function form:345

(4.5)
∥∥∥uT − u(k+1)

T

∥∥∥
A
≤ ρerr

1− ρerr

∥∥∥u(k+1)
T

− u(k)
T

∥∥∥
A
.346
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Proof. By the norm equivalence in (2.10) and the fact that (I−A1/2BA−1/2) is347

similar to (I−BA) (they have the same eigenvalues), we have348

(4.6) ‖I−BA‖A =
∥∥∥A1/2(I−BA)A−1/2

∥∥∥
2

= ρ
(
I−A1/2BA−1/2

)
= ρerr.349

Hence,
∥∥e(k+1)

∥∥
A
≤ ρerr

∥∥e(k)
∥∥

A
, and the result follows from a standard contraction350

mapping convergence theorem (see, e.g., [22, Theorem 12.1.2]).351

In Theorem 5, ρerr is the true rate of convergence of the solver. However, in352

practice, ρerr is not available during any iteration of the solver, unless an eigenvalue353

problem is solved for the error propagation matrix I−BA. What we have access to354

is the following quantity:355

(4.7) ρ(k)
err :=

‖rk‖2
‖rk−1‖2

,356

where rk := Ae(k) with j-th entry given by (f, φzj ) −
(
A∇u(k)

T
, ∇φzj

)
. The fol-357

lowing lemma describes the convergence of ρ
(k)
err provided that the iterative solver is358

convergent.359

Lemma 6 (Convergence of ρ
(k)
err ). Assuming the error propagation matrix I−BA360

has eigenvalues 1 > ρerr = λ1 ≥ λ2 ≥ · · · ≥ λN > 0, then ρ
(k)
err → ρerr as k →∞.361

Proof. First notice that, by applying (4.2) from 0 to k in a cascading fashion,362

rk = Ae(k) = A(I−BA)ke(0) = (I−AB)kAe(0) = (I−AB)kr0.363

Since A−1(I − AB)A = I − BA, I − AB and I − BA share the same eigenvalues364

and eigenvectors. Suppose that {vi}Ni=1 are the set of orthonormal eigenvectors in the365

`2-sense corresponding to the eigenvalue set {λi}Ni=1. Let ci = r0 ·vi be the coefficient366

of the eigen-expansion of r0. Without loss of generality, assume the multiplicity of367

the largest eigenvalue λ1 is 1. Then we have:368

(4.8)

ρ(k)
err =

∥∥(I−AB)kr0

∥∥
2

‖(I−AB)k−1r0‖2
=

∥∥∥∑N
i=1 λ

k
i civi

∥∥∥
2∥∥∥∑N

i=1 λ
k−1
i civi

∥∥∥
2

= λ1

∥∥∥∥∑N
i=1

(
λi

λ1

)k
civi

∥∥∥∥
2∥∥∥∥∑N

i=1

(
λi

λ1

)k−1

civi

∥∥∥∥
2

= λ1
1 +

∑N
i=2 biγ

k
i

1 +
∑N
i=2 biγ

k−1
i

,

369

where bi := (ci/c1)2, and γi := (λi/λ1)2. The lemma follows from letting k → ∞.370

When the multiplicity of λ1 is m ≥ 2, factoring out the first m terms and i starts371

from (m+ 1) in the eigen-expansion in (4.8) yields the same result.372

Lemma 7 (Monotonicity of ρ
(k)
err ). Under the same assumption as in Lemma 6,373

ρ
(k)
err ≤ ρ(k+1)

err , for any fixed k ∈ R+.374

Proof. By (4.8), to prove the validity of the lemma, it suffices to show that:375

(4.9)

(
1 +

N∑
i=2

biγ
k
i

)2

≤

(
1 +

N∑
i=2

biγ
k−1
i

)(
1 +

N∑
i=2

biγ
k+1
i

)
,376

12

This manuscript is for review purposes only.



which is equivalent to377

(4.10)

2

N∑
i=2

biγ
k
i +

(
N∑
i=2

biγ
k
i

)2

≤
N∑
i=2

bi

(
γk−1
i + γk−1

i

)
+

(
N∑
i=2

biγ
k−1
i

)(
N∑
i=2

biγ
k+1
i

)
.378

Since bi ≥ 0, λi ≥ 0, and 2γi ≤ 1 + γ2
i , we have379

2

N∑
i=2

biγ
k
i ≤

N∑
i=2

bi

(
γk−1
i + γk−1

i

)
,380

Then it suffices to show the following inequality:381

(4.11) a :=

(
N∑
i=2

biγ
k
i

)2

−

(
N∑
i=2

biγ
k−1
i

)(
N∑
i=2

biγ
k+1
i

)
≤ 0,382

which will be proved by a standard inductive argument. To this end, let N = 2, it is383

easy to see that (4.11) holds with equality. Next, assume that (4.11) holds for N = n.384

For N = n+ 1: we have385

(4.12)

a =

(
n∑
i=2

biγ
k
i + bn+1γ

k
n+1

)2

−

(
n∑
i=2

biγ
k−1
i + bn+1γ

k−1
n+1

)(
n∑
i=2

biγ
k+1
i + bn+1γ

k+1
n+1

)

≤

(
n∑
i=2

biγ
k
i

)2

−

(
n∑
i=2

biγ
k−1
i

)(
n∑
i=2

biγ
k+1
i

)
− bn+1γ

k−1
n+1

n∑
i=2

bi(γn+1 − γi)2γk−1
i .

386

Now (4.11) is a direct consequence of the induction hypothesis. This completes the387

proof of the lemma.388

After the preparation, now we define the algebraic error estimator as follows at389

the (k + 1)-th iteration of the solver: for k ≥ 1390

(4.13) η(k+1)
a := e1/k ρ

(k)
err

1− ρ(k)
err

∥∥u(k+1) − u(k)
∥∥

A
= e1/k ρ

(k)
err

1− ρ(k)
err

∥∥u(k+1)
T

− u(k)
T

∥∥
A
.391

The e1/k factor is added to remedy the fact that ρ
(k)
err converges to ρerr from below.392

Without it, the solver might stop too early, before a good estimate of ρerr is obtained.393

Theorem 8 (Reliability of the algebraic error estimator). Under the same set-394

ting with Theorem 5 and Lemma 6, there exists an N ∈ R+ such that for all k ≥ N ,395

(4.14)
∥∥e(k+1)

∥∥
A

=
∥∥uT − u(k+1)

T

∥∥
A
≤ η(k+1)

a .396

Proof. Denote p(k) := ρ
(k)
err , ξ(k) := p(k)/

(
1− p(k)

)
, and ξ := ρerr/(1− ρerr). By397

Theorem 5, it suffices to show that: there exists an N such that for k ≥ N398

(4.15) ξ ≤ e1/kξ(k).399

It is straightforward to verify that ξ(k) → ξ from below as p(k) → ρerr. Moreover,400

e1/kξ(k) → ξ as k → ∞. Now it suffices to show that when k is sufficiently large,401
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e1/kξ(k) is a decreasing function of k. Recalling from (4.8) in Lemma 6 that if k is402

sufficiently large,403

(4.16) p(k) = ρ(k)
err ' ρerr

1 + bγk

1 + bγk−1
,404

where γ := (λm+1/λ1)2 < 1, and b := (cm+1/c1)2 ≥ 0 where m is the multiplicity of405

the largest eigenvalue. Taking the derivative of e1/kξ(k) with respect to k leads to:406

(4.17)
d

dk

(
e1/kξ(k)

)
= e1/k−k

−2p(k)
(
1− p(k)

)
+ p′(k)(

1− p(k)
)2 .407

By (4.16), we have408

(4.18) p′(k) ' ρerr
b(γ − 1)γk−1 ln γ(

1 + bγk−1
)2 = O(γk−1).409

Using (4.18) in (4.17) and noting that k−2 decreases at a slower rate than γk−1, then410

for sufficiently large k, d
dk (e1/kξ(k)) < 0, and the theorem follows.411

Remark 9 (Speed up of the rate of convergence estimate). We notice that without412

the correction factor in (4.13), the closer ρ
(k)
err is to ρerr, the more accurate the algebraic413

estimator is. The convergence of ρ
(k)
err can be accelerated in the following way:414

ρ(k)
err ≈ ρerr

1 + bγk

1 + bγk−1
, and ρ(k−1)

err ≈ ρerr
1 + bγk−1

1 + bγk−2
.415

Now we define for k ≥ 2:416

(4.19) ρ̂(k)
err := ρ(k)

err

ρ
(k)
err

ρ
(k−1)
err

.417

And ρ̂
(k)
err converges to ρerr faster than the original ρ

(k)
err . To see this, taking derivative418

of ρ̂
(k)
err with respect to k gives,419

d

dk

(
ρ̂(k)

err

)
= O(γk−2),420

which is an order faster than the convergence of ρ
(k)
err in (4.18).421

5. Discretization-accurate stopping criterion. Identity (1.2) clearly indi-422

cates that the iterative solver should be stopped when the algebraic error is of the423

same magnitude as the discretization error. This observation suggests the following424

stopping criterion: let η
(k)
d be ηd from (3.23) computed using the iterate u(k)

T
, the425

iterative solver shall stop when426

(5.1) η(k)
a < ε−1 · η(k)

d and
∣∣∣ρ(k)

err/ρ
(k−1)
err − 1

∣∣∣ < ερ,427

where ε = ηd/
∥∥u− uT ∥∥A is the effectivity index. In light of the proof of Theorem 8,428

the second condition implies that ρ
(k)
err is a good approximation to ρerr and, hence,429

η
(k)
a is an accurate representation of the algebraic error

∥∥uT − u(k)
T

∥∥
A

at the k-th430

iteration. Together with the first condition, the estimated algebraic error is of the431

same magnitude in the discretization error.432

14

This manuscript is for review purposes only.



6. Numerical examples. In this section, several examples are presented to433

verify the reliability of the estimators proposed, as well as the stopping criterion. The434

error estimator ηd, using a localized equilibrated flux to solve (3.15), is implemented435

in iFEM [14]. The initial guess for all examples presented in this section is a random436

guess with each entry of u(0) satisfying a uniform distribution in [−1, 1] using a fixed437

seed. An effectivity index of ε = 1.5 or ε−1 = 2/3 ≈ 0.67 is used in (5.1). This is438

similar to typical values used in practice when uT is computed with a direct solver.439

The first test problem is the Poisson equation440

−∆u = f, in Ω = (−1, 1)2
441

with Dirichlet boundary conditions and the exact solution is given by442

u = α
(

sin(πx) sin(πy) + 0.5 sin(4πx) sin(4πy)
)
,443

where the constant α is chosen such that ‖u‖A = 1. This problem is discretized by444

the continuous piecewise linear finite element method on a uniform triangular mesh445

with mesh size h = 1/32.446

The resulting system of algebraic equations is first solved by a multigrid method447

with V (1, 1)-cycle. Convergence of the multigrid solver in the energy norm along448

with the algebraic estimator are depicted in Figure 1a (see the red and blue dot-circle449

lines), which numerically verify Theorem 8 for the algebraic estimator ηa being an450

upper bound of the algebraic error. The total and the discretization errors along with451

the discretization estimator are also depicted in Figure 1a (see the red solid-diamond,452

the red dot, and the blue solid-diamond lines, respectivley). Estimated convergence453

rates based on both ρ
(k)
err and ρ̂

(k)
err are presented to numerically verify Remark 9.454

Using the first stopping criterion in (5.1) with ε−1 = 0.67, the multigrid itera-455

tion stops after merely two iterations, and Figure 1a shows that the algebraic error456

already drops below the discretization error. For a conventional stopping criterion457

using the relative residual measured in the `2-norm:
∥∥Ae(k)

∥∥
0
/
∥∥Ae(0)

∥∥
0
≤ 10−7,458

the multigrid iteration stops after fifteen iterations. For a slower iterative solver, we459

also implement symmetric Gauss-Seidel iterative method. The first stopping criterion460

in (5.1) with ε−1 = 0.67 requires only thirty-one iterations, while the conventional461

stopping criterion with the tolerance 10−5 needs more than two hundred eighty itera-462

tions. These results show a dramatic reduction in computational cost when using the463

discretization-accurate stopping criterion introduced in this paper. The numbers of464

iterations for the multigrid and the symmetric Gauss-Seidel iterative methods with465

both the stopping criterions as well as the total and the algebraic errors are sum-466

marized in Table 1. As observed from Table 1, additional iterations needed by the467

conventional stopping criterion significantly decrease the algebraic errors but not the468

total errors. Figure 2 compares the solution uh obtained by a direct solver with that469

of a multigrid solver after 2 iterations.470

The second test problem tests the stopping criterion on a non-uniform mesh for471

the Kellogg intersecting interface problem. The Kellogg problem with a checkerboard472

coefficient distribution [10] is a commonly used benchmark for testing the efficiency473

and robustness of a posteriori error estimators ([13, 11, 12, 15, 23]):474

(6.1) −∇·(A∇u) = 0, in Ω = (−1, 1)2
475
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Table 1: The number of iterations and the total and algebraic errors for the Poisson
problem.

Stopping # Iter
∥∥u− u(k)

T

∥∥
A

∥∥uT − u(k)
T

∥∥
A

MG V(1,1) ηa ≤ 0.67ηd 2 0.0821 3.5× 10−1

MG V(1,1) ‖rk‖2/‖r0‖2 ≤ 10−7 15 0.0741 3.4× 10−8

Sym GS ηa ≤ 0.67ηd 31 0.1051 7.5× 10−1

Sym GS ‖rk‖2/‖r0‖2 ≤ 10−5 289 0.0741 2.7× 10−4
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(a) The convergence of the V (1, 1)-cycles.
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Fig. 1: The convergence results for the Poisson problem: the solution has mixed
modes, the problem is discretized on a uniform triangular mesh, and the linear system
is approximated using V (1, 1)-cycle iterations.

with Dirichlet boundary condition, where the diffusion coefficient A is given by476

A =

R in (0, 1)2 ∪ (−1, 0)2,

1 in Ω\
(

(0, 1)2 ∪ (−1, 0)2
)
.

477

The exact solution u of (6.1) is given in polar coordinates (r, θ):478

u = rγψ(θ) ∈ H1+γ−ε(Ω) for any ε > 0,479

where the definition of ψ(θ) is given in, e.g., [15]. Here the parameters are:480

γ = 0.5, R ≈ 5.8284271247461907, ρ = π/4, and σ ≈ −2.3561944901923448.481

For this example, T is a graded mesh on which the relative error for the direct482

solve ‖u− uT ‖A / ‖u‖A ≈ 10%, in addition, we choose ε−1 = 0.67 and ερ = 0.1 for the483

stopping criterion. The stopping criterion (5.1) is checked every three V (1, 1)-cycles.484

The local error distribution is shown in Figure 3.485
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(a) uh obtained by a direct solver.
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h obtained by two V (1, 1)-cycles.

Fig. 2: The comparison of the direct-solved approximation uh and the multigrid iterate

u
(2)
h in the first test problem.

Table 2: The number of iterations and the total and algebraic errors for the Kellogg
problem.

Stopping # Iter
∥∥u− u(k)

T

∥∥
A

∥∥uT − u(k)
T

∥∥
A

MG V(1,1) ηa ≤ 0.67ηd 2 0.05141 1.577× 10−3

MG V(1,1) ‖rk‖2/‖r0‖2 ≤ 10−7 6 0.05139 8.026× 10−8
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