
Computers and Mathematics with Applications 76 (2018) 2402–2408

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Error estimate of a finite element method using stress
intensity factor
Zhiqiang Cai a, Seokchan Kim b,*, Hyung-Chun Lee c

a Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, United States
b Department of Mathematics, Changwon National University, Changwon, Republic of Korea
c Department of Mathematics, Ajou University, Suwon, Republic of Korea

a r t i c l e i n f o

Article history:
Received 21 April 2018
Accepted 18 August 2018
Available online 14 September 2018

Keywords:
Finite element
Corner singularity
Singular function
Stress intensity factor

a b s t r a c t

An algorithm on computing accurate finite element approximation to the Poisson equation
on a polygonal domain with corner singularities was studied in Kim and Lee (2016, 2017)
numerically. The algorithm requires several iterations depending on singularities of the
solution. Each iteration requires a solution of the standard finite element approximation
to the Poisson equation with possible different Dirichlet data and the corresponding stress
intensity factors. This paper provides an error estimate of the finite element approximation
given by the algorithm, and, hence, determine the number of iterations needed to achieve
full rates of convergence in both the energy and the L2 norms.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω be an open, bounded polygonal domain in R2, and let ΓD and ΓN be a partition of the boundary of Ω such that
∂Ω = Γ D ∪ Γ N and ΓD ∩ ΓN = ∅. For simplicity, assume ΓD ̸= ∅. As a model problem, consider the following Poisson
equation with homogeneous mixed boundary conditions:⎧⎪⎨⎪⎩

−∆u = f , in Ω,

u = 0, on ΓD,
∂u
∂ν

= 0, on ΓN ,

(1.1)

where f ∈ L2(Ω), ∆ stands for the Laplacian operator, and ν denotes the outward unit vector normal to the boundary.
When the solution of (1.1) is sufficiently smooth, e.g., ΓN = ∅ and the domain is convex or smooth, the conforming

linear finite element approximation is quasi-optimal. This is no longer true if the domain is non-convex. Let ω be the largest
internal angle of reentrant corners of the domain Ω satisfying π < ω < 2π . Then the solution u of (1.1) is only in H1+r (Ω)
with r < 1 +

π
ω
, but not in H2(Ω). Such lack of regularity affects the accuracy of the finite element approximation and,

hence, the approximation to the stress intensity factor. There were several approaches in the literatures for overcoming this
difficulty by making use of the following singular function representation of the solution:

u = w + ληs,

where w ∈ H2(Ω) ∩ H1
D(Ω), η is a smooth cut-off function, and s is a singular function; the coefficient λ of the singular

function is the so-called stress intensity factor and can be computed by an extraction formula. One approach is the so-called
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singular functionmethod (SFM) by augmenting the approximation spacewith the singular functions (see, e.g., [1,2]). Another
one is the dual singular functionmethod (DSFM)where extraction formulas are used (see, e.g., [3–5]). Its multigrid version is
given in [6]. To avoid iteration, a method was studied in [7,8] to first find the regular part of the solution and then the stress
intensity factors and the solution. This approach results in a non-symmetric equation for the regular part of the solution due
to the correction term (see [7]).

Recently, we [9] showed that the regular part of the solution satisfies the original Poisson equation with an updated
Dirichlet data using the intensity factors (see (3.2)), where the intensity factors depend on the solution of the original
problem. This leads to an accurate method which solves the original equation first to compute the intensity factors and
then the Poisson equation for the regular part in (3.2). This was confirmed by numerical results for the Poisson problem
with Dirichlet boundary condition in [9]. Unfortunately, this procedure does not produce quasi-optimal approximation if
the underlying problem has a strong singularity, e.g., in the case of mixed boundary conditions with a reasonable large
inner angle. In [10], we found numerically that several repetitions of the procedure in [9] does produce quasi-optimal
approximation. The number of iterations depends on the singularity of the underlying problem. The purpose of this paper
is to analyze this procedure by establishing an a priori error estimate and to quantify the number of iterations needed to
achieve quasi-optimal approximation.

The paper is organized as follows. Section 2 introduces the singular and the dual singular functions together with the
extraction formula for computing the stress intensity factors. An accurate numerical method is described in Section 3, and
we establish a priori error estimates in Section 4.

We will use the standard notation and definitions for the Sobolev spaces H t (Ω) for t ≥ 0; the standard associated inner
products are denoted by (·, ·)t,Ω , and their respective norms and seminorms are denoted by ∥ · ∥t,Ω and |·|t,Ω . The space
L2(Ω) is interpreted as H0(Ω), in which case the inner product and norm will be denoted by (·, ·)Ω and ∥ · ∥Ω , respectively.
We will omit the subscript Ω when there is no ambiguity. Set H1

D(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD}.

2. Singular function representation

This section describes singular and dual singular functions and the singular function representation of the solution of
(1.1).

To this end, first consider the case that boundary condition does not change its type at vertices of reentrant corners with
inner angle ω ∈ (π, 2π ]. The singular function is given by

s2 = s2(r, θ ) =

⎧⎪⎨⎪⎩
r

π
ω sin

πθ

ω
, Dirichlet boundary condition (D/D),

r
π
ω cos

πθ

ω
, Neumann boundary condition (N/N)

(2.1)

for all θ ∈ [0, ω].
In the case that boundary condition does change its type, the singular function depends on both the angle and the

orientation. Denote by D/N and N/D the changes of boundary conditions passing through the singular point in the
counterclockwise orientation, where D and N mean the respective Dirichlet and Neumann boundary conditions. For ω ∈

( π
2 , 3π

2 ], there is only one singular function of the form

s1 = s1(r, θ ) =

⎧⎪⎨⎪⎩
r

π
2ω sin

πθ

2ω
, D/N,

r
π
2ω cos

πθ

2ω
, N/D,

∀ θ ∈ [0, ω]. (2.2)

For ω ∈ ( 3π2 , 2π ], there are two singular functions: s1(r, θ ) defined in (2.2) and s3(r, θ ) of the form

s3 = s3(r, θ ) =

⎧⎪⎨⎪⎩
r

3π
2ω sin

3πθ

2ω
, D/N,

r
3π
2ω cos

3πθ

2ω
, N/D

∀ θ ∈ [0, ω]. (2.3)

For convenience, denote the index set of singular functions by L = {2} for (2.1), {1} for (2.2), and {1, 3} for the third case.
To state the singular function representation of the solution, one needs to introduce a cut-off function for isolating the

singular behavior of the solution. To this end, set

B(r1; r2) = {(r, θ ) : r1 < r < r2 and 0 < θ < ω} ∩ Ω and B(r1) = B(0; r1).

Then the cut-off function of r is given as follows:

η(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, in B(

1
2
ρ),

15
16

{
8
15

− p(r) +
2
3
p(r)3 −

1
5
p(r)5

}
, in B̄(

1
2
ρ; ρ),

0, in Ω \ B̄(ρ),

(2.4)
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where p(r) = 4r/ρ −3 and ρ is a fixed constant such that the support of η(r) sj(r, θ ) is contained inside ofΩ for j = 1, 2, 3.
It is easy to see that η(r) is C2(Ω).

With the cut-off function defined above, it is well known that the solution of problem (1.1) has the following singular
function representation [7,8]:

u = w0 +

∑
j∈L

λj η sj, (2.5)

with w0 ∈ H2(Ω) ∩ H1
D(Ω). Moreover, the following regularity estimate holds:

∥w0∥2,Ω +

∑
j∈L

|λj| ≤ CR∥f ∥0,Ω , (2.6)

where CR is a positive constant depending on the domain and the diameter of the support of η.
To compute the intensity factors λj, one needs to introduce the dual singular functions. For singular functions sj =

sj(r, θ ) = r
jπ
2ω φ

( jπθ

2ω

)
with φ(θ ) = sin θ or cos θ and j ∈ L, the corresponding dual singular functions have the form

s−j = s−j(r, θ ) = r−
jπ
2ω φ

(
jπθ

2ω

)
. (2.7)

It is easy to verify that both the singular and the dual singular functions are harmonic in Ω and that

sj ∈ H1+ jπ
2ω −ϵ(Ω)

for any ϵ > 0. By some elementary computations, we have

Lemma 2.1. There exists a positive constant C such that

|sj|1,Ω ≤ C ∀ j ∈ L. (2.8)

With the dual functions defined above, the stress intensity factors λj can be computed by the following extraction formula
(see, e.g., [8,11,12]):

λj(u) :=
2
jπ

∫
Ω

f ηs−jdx +
2
jπ

∫
Ω

u∆(ηs−j)dx. (2.9)

Let u0
h (see (3.6)) be the standard conforming linear finite element approximation to problem (1.1) and let λj(u0

h) be an
approximation to the intensity factor computed by the extraction formula in (2.9). Then it iswell known [6] that the following
error estimate holds:

|λj(u) − λj(u0
h)| ≤ C ∥u − u0

h∥0,Ω ≤

{
C h

2π
ω −ϵ

∥f ∥0,Ω , for (D/D) or (N/N),
C h

π
ω −ϵ

∥f ∥0,Ω , for (D/N) or (N/D).
(2.10)

This indicates that the accuracy of the stress intensity factor approximation λj(u0
h) depends on the accuracy of the finite

element approximation which, in turn, depends on the regularity of u (see, e.g., [6]).

3. Finite element approximation

For simplicity of presentation, we assume that there is only one singular point with an inner angle ω ∈ ( π
2 , 2π ) and that

the type of boundary conditions around the singular point is D/N in the counterclockwise orientation. The algorithm and
the analysis presented in this paper may be easily carried over to the case of many singular points with various types of
boundary conditions.

For the case considered in this paper, there are either one or two singular functions depending on the inner angle. Let u
be the solution of (1.1), and let

ξ =

⎧⎪⎨⎪⎩
0, ω ∈ (

π

2
,
3π
2

],

1, ω ∈ (
3π
2

, 2π ],

then the singular part of the solution may be expressed as

g(u) = λ1(u)s1 + ξ λ3(u)s3, ∀ ω ∈ (
π

2
, 2π ]. (3.1)

with the singular functions given by

s1(r, θ ) = r
π
2ω sin

πθ

2ω
and s3(r, θ ) = r

3π
2ω sin

3πθ

2ω
,
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where λj(u) is the stress intensity factor given in (2.9). Let w be the solution of the Poisson equation with modified Dirichlet
boundary condition:⎧⎪⎨⎪⎩

−∆w = f , in Ω,

w = −g(u), on ΓD,
∂w

∂ν
= 0, on ΓN ,

(3.2)

It was proved in [9,10] that (3.2) has a unique solution w ∈ H2(Ω) satisfying

∥w∥2,Ω ≤ C ′

R∥f ∥0,Ω (3.3)

and that we have the following singular function representation of u:

u = w + g(u) (3.4)

Based on the representation in (3.4) and the extraction formula in (2.9), we proposed and numerically tested an accurate
numerical method to solve Poisson equation (1.1) in [9,10]. To describe this approach, let Th be a partition of the domain Ω
into triangular elements; i.e., Ω = ∪K∈ThK with h = max{diamK : K ∈ Th}. Let Vh and Vh,D be continuous piecewise linear
finite element spaces defined by

Vh = {φh ∈ C0(Ω) : φh|K ∈ P1(K ) ∀K ∈ Th} ⊂ H1(Ω),

and by

Vh,D = {φh ∈ Vh : φh = 0 on ΓD} ⊂ H1
D(Ω),

respectively, where P1(K ) is the space of polynomials of degree less than or equal to one on K . It is well-known that

inf
φh∈Vh,φh|ΓD=Ih,Dφ

{∥φ − φh∥0,Ω + h|φ − φh|1,Ω} ≤ CAh1+t
∥φ∥1+t,Ω (3.5)

for any φ ∈ H1
D(Ω) ∩ H1+t (Ω), where Ih,Dφ is the piecewise linear interpolant of φ|ΓD

.
Now, we are ready to introduce the numerical method as follows.

Algorithm 3.1. Let u0
h ∈ Vh,D be the standard finite element approximation to problem (1.1), i.e.,

(∇u0
h, ∇v) = (f , v), ∀ v ∈ Vh,D. (3.6)

For i = 1, 2, . . . , m,
Step 1. compute wi

h ∈ Vh such that wi
h

⏐⏐
ΓD

= −Ih,D
(
g(ui−1

h )|ΓD

)
and that

(∇wi
h, ∇v) = (f , v), ∀ v ∈ Vh,D. (3.7)

Step 2. set

ui
h = wi

h + g(ui−1
h ).

The number of iterationsm in the above algorithmdepends on singularity behavior of the underlying problem. It is shown
in Theorem 4.1 thatm = 1 and 2 are enough for ω ∈ ( π

2 , π ) and ω ∈ [π, 2π ), respectively.

4. Error estimate

Let um
h be the approximation resulted from Algorithm 3.1 defined in the previous section. As an approximation to the

solution of problem (1.1), we establish its a priori error bounds in both the energy and the L2 norms. In particular, we show
thatm = 1 or 2 is enough to obtain a quasi-optimal approximation.

To this end,we need the following lemmaon approximations to the solutionw of problem (3.2) by replacing the unknown
u by the current approximation ui−1

h .

Lemma 4.1. Let wi be the solution of the following problem:⎧⎪⎪⎨⎪⎪⎩
−∆wi

= f , in Ω,

wi
= −g(ui−1

h ), on ΓD,

∂wi

∂ν
= 0, on ΓN .

(4.1)

then u = wi
+ g(ui−1

h ) is the unique solution of (1.1). Moreover, we have

wi
= w + g(u) − g(ui−1

h ). (4.2)
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Proof. The first part of the lemma may be proven in the same fashion as that of Theorem 3.2 in [10]. Equality (4.2) is then a
direct consequence of (3.4). ■

To derive an error representation, note first that wi
h ∈ Vh is the finite element approximation to problem (4.1) with

wi
h|ΓD

= −Ih,Dg(ui−1
h ). Hence, by Lemma 4.1 and Algorithm 3.1, we have the error representation:

u − ui
h =

(
wi

+ g(ui−1
h )

)
−
(
wi

h + g(ui−1
h )

)
= wi

− wi
h (4.3)

Lemma 4.2. Let w be the solution of problem (3.2) and wI ∈ Vh be the linear interpolant of w. Assume that
⏐⏐λj(u)− λj(ui−1

h )
⏐⏐ ≤

C hαi−ϵ
∥f ∥0,Ω for i = 1, . . . , m. Then

inf
vi∈V̂ i

h,D

|wI − vi
|1,Ω ≤ C hαi−ϵ

∥f ∥0,Ω (4.4)

where V̂ i
h,D = {v ∈ Vh : v = −Ih,Dg(ui−1

h ) on ΓD}.

Proof. Choose vi
∈ V̂ i

h,D such that wI − vi
= 0 for all interior and Neumann boundary vertices, and denote by Th,D = {K ∈

Th : K̄ ∩ ΓD ̸= ∅} the collection of elements who have edges belonging to ΓD. Set

eiI = wI − vi.

It follows from integration by parts, the fact that eiI ∈ Vh, and the inverse inequality that

|eiI |
2
1,Ω =

∑
K∈Th,D

|eiI |
2
1,K =

∑
K∈Th,D

∫
∂K

eiI
∂eiI
∂ν

ds ≤

∑
K∈Th,D

|eiI |1/2,∂K

⏐⏐⏐⏐∂eiI∂ν

⏐⏐⏐⏐
−1/2,∂K

≤ C
∑

K∈Th,D

h−1/2
K |eiI |0,∂K∥eiI∥0,K . (4.5)

For any K ∈ Th,D, denote its vertices by al,K for l = 1, 2, 3. Then

eiI (al,K ) =

⎧⎨⎩
∑

j∈{1, 3}

(
λj(ui−1

h ) − λj(u)
)
sj(al,K ), al,K ∈ ΓD,

0, otherwise,

which, together with the triangle inequality and the assumption, implies(
3∑

l=1

(
eiI
)2
(al,K )

)1/2

≤

3∑
l=1

⏐⏐eiI (al,K )⏐⏐ ≤ C hαi−ϵ
∥f ∥0,Ω . (4.6)

For any K ∈ Th,D, since eiI
⏐⏐
K ∈ P1(K ), the scaling argument combining with (4.6) gives that

|eiI |0,∂K ≤ C h1/2
K

(
3∑

l=1

(
eiI
)2
(al,K )

)1/2

≤ C h1/2+αi−ϵ
∥f ∥0,Ω

and that

∥eiI∥0,K ≤ C hK

(
3∑

l=1

(
eiI
)2
(al,K )

)1/2

≤ C h1+αi−ϵ
∥f ∥0,Ω ,

which, together with (4.5) and the fact that the number of elements in Th,D is O(h−1), implies the validity of (4.4). This
completes the proof of the lemma. ■

Lemma 4.3. Let wi and wi
h be the solutions of problems (4.1) and (3.7), respectively. Under the assumption of Lemma 4.2, we

have

|wi
− wi

h|1,Ω ≤ C
(
h + hαi−ϵ

)
∥f ∥0,Ω . (4.7)

Proof. For any vi
∈ Vh satisfying vi

= −Ih,Dg(ui−1
h ) on ΓD, by the fact that wi

h − vi
∈ Vh,D and the error equation, we have

|wi
− wi

h|
2
1,Ω =

(
∇(wi

− wi
h), ∇(wi

− wi
h)
)

=
(
∇(wi

− wi
h), ∇

(
wi

− vi
− (wi

h − vi)
))

=
(
∇(wi

− wi
h), ∇(wi

− vi)
)
,
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which, together with the Cauchy–Schwarz inequality, implies

|wi
− wi

h|1,Ω ≤ |wi
− vi

|1,Ω .

Let w ∈ H2(Ω) be the solution of (3.2), and denote by wI ∈ Vh the interpolant of w. It follows from (4.2), the triangle
inequality, the approximation property, and (3.3) that

|wi
− vi

|1,Ω = |w − vi
+ g(u) − g(ui−1

h )|1,Ω
≤ |w − wI |1,Ω + |wI − vi

|1,Ω + |g(u) − g(ui−1
h )|1,Ω

≤ C h ∥w∥2,Ω + C hαi−ϵ
∥f ∥0,Ω +

∑
j∈{1, 3}

|λj(u) − λj(ui−1
h )| |sj|1,Ω ,

which, together with (2.8) and the assumption, implies the validity of (4.7). This completes the proof of the lemma. ■

We shall use the standard duality argument to estimate the error in the L2-norm. To this end, for i = 1, . . . , m, consider
the following adjoint problem:⎧⎪⎨⎪⎩

−∆z i = wi
− wi

h in Ω,

z i = 0 on ΓD,

∂z i

∂ν
= 0 on ΓN .

(4.8)

The regular part of z i is the solution of the following problem:⎧⎪⎨⎪⎩
−∆wi

z = wi
− wi

h in Ω,

wi
z = −λi

1,zs1 − λi
3,zs3 on ΓD,

∂wi
z

∂ν
= 0 on ΓN ,

(4.9)

where λi
1,z and λi

3,z are the stress intensity factors of z i. A similar argument for the solutions of (1.1) and (3.2), we have that

wi
z := z i − λi

1,zs1 − λi
3,zs3 ∈ H2(Ω) (4.10)

and that

∥wi
z∥2,Ω ≤ C ′′

R ∥wi
− wi

h∥0,Ω . (4.11)

Lemma 4.4. Let wi and wi
h be the solutions of problems (4.1) and (3.7), respectively. Then

∥wi
− wi

h∥0,Ω ≤ C h |wi
− wi

h|1,Ω . (4.12)

Proof. The lemma follows from the standard duality argument

∥wi
− wi

h∥
2
0,Ω = (∇(wi

− wi
h), ∇wi

z) = (∇(wi
− wi

h), ∇(wi
z − Iwi

z))

≤ |wi
− wi

h|1,Ω · CA h ∥wi
z∥2,Ω ≤ |wi

− wi
h|1,Ω · CA C ′′

R h ∥wi
− wi

h∥0,Ω ,

which implies (4.12) and, hence, the lemma. ■

Theorem 4.1. Let u be the solution of (1.1) and ui
h be given in Algorithm 3.1, then we have the following a priori error estimates:

|u − ui
h|1,Ω ≤ C h ∥f ∥0,Ω and ∥u − ui

h∥0,Ω ≤ C h2
∥f ∥0,Ω (4.13)

with i = 1 for ω ∈ ( π
2 , π ) and i = 2 for ω ∈ [π, 2π ).

Proof. For ω ∈ ( π
2 , π ), (2.10) for the D/N case implies that α1 = π/ω ∈ (1, 2). Now, for i = 1, the first inequality in (4.13)

is a direct consequence of (4.3) and Lemma 4.3. By Lemma 4.4, we may establish the second inequality in (4.13):

∥u − u1
h∥0,Ω ≤ ∥w1

− w1
h∥0,Ω ≤ C h |w1

− w1
h |1,Ω

≤ C h
(
h + h

π
ω −ϵ

)
∥f ∥0,Ω ≤ C h2

∥f ∥0,Ω (4.14)

in a similar fashion.
For ω ∈ [π, 2π ), then π/ω ∈ (1/2, 1]. The inequality in (4.14) with (2.10) implies

|λj(u) − λj(u1
h)| ≤ C h3/2

∥f ∥0,Ω (j = 1, 3). (4.15)

That is, α2 = 3/2. Hence, the error estimate for i = 2 may be established in a similar fashion. ■
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