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Abstract. In [13], we introduced and analyzed a recovery-based a posteriori error
estimator for conforming linear finite element approximation to interface problems.
It was shown theoretically that the estimator is robust with respect to the size of
jumps provided that the distribution of coefficients is locally monotone. Numerical
examples showed that this condition is unnecessary. This paper extends the idea in
[13] to mixed and nonconforming finite element methods for developing and analyzing
robust estimators. Numerical results on test problems are also presented.

1 Introduction

The recovery-based a posteriori error estimators have been extensively studied for conform-
ing finite elements by many researchers due to their many appealing properties: simplicity,
asymptotic exactness, and universality. The universality is in the sense that there is no
need for the underlying residual or boundary value problem. For the mixed and noncon-
forming finite element methods, Carstensen and Bartels in [16] introduced and analyzed
recovery-based error estimators. Their estimators for both the mixed and the nonconform-
ing elements are based on the recovery of the gradient in H!(Q)2. These estimators work
well for the Poisson equation even though the gradient of the exact solution only belongs
to H(div) N H(curl) for non-convex polygonal domains. For other types of estimators on
the mixed and the nonconforming methods, see [1, 2, 3, 5, 9, 15, 16, 17, 22, 23, 25, 28, 29,
30, 41, 42] and references therein.

As demonstrated numerically in [36, 37, 13] and theoretically in [14], for conforming fi-
nite element approximations to the interface problem with large jumps, existing estimators
of the recovery type over-refine regions where there are no errors and, hence, fail to reduce
the global error. This is also true for the recovery-based estimators in [16] for the mixed
and nonconforming finite element methods (see Figures 1, 2, 7, and 8). The reason for
the over-refinements is that the recovered gradient is continuous but the true gradient is
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discontinuous. In other words, the over-refinements are caused by using continuous func-
tion to approximate discontinuous function in the recovery procedure. To overcome this
difficulty, one often applies the method on each subdomain separately. For reasons why
this local approach is not favorable, see detailed discussions in [37]. More importantly,
the local approach fails when triangulations do not align with interfaces, which occurs
when interfaces are curves/surfaces or have unknown locations. In [13], we introduced
and analyzed a global approach for the conforming linear finite element approximation by
recovering the flux in the H(div) conforming finite element spaces. The resulting estima-
tor is then free of over-refinements and satisfies the efficiency and reliability bounds with
constants independent of the size of jumps.

The purpose of this paper is to extend the idea in [13] to mixed and nonconforming
finite element approximations. To do so, we need to determine what quantities to be
recovered and which finite element spaces to be used. The guideline for such choices
is based on our view that a recovery-based estimator is a measurement of the violation
of finite element approximations on physical continuities. Therefore, the quantities to
be recovered are those whose finite element approximations do not preserve the physical
continuity. The interface problems in (2.1) have two physical continuities: the solution u
and the normal component of the lux o = —kV u. Mathematically, this means

u€ H'(Q) and o € H(div) C L*(Q)>. (1.1)

For the mixed method, the continuity of the solution is violated while that of the flux
is preserved. To measure such a violation, we recover the gradient of the solution. To
choose proper finite element spaces, we notice that the first property in (1.1) implies

Vu € H(curl). (1.2)

Physically, the tangential components of vector fields in H (curl) are continuous. There-
fore, the quantity to be recovered is the gradient and the proper finite element space is
the H(curl) conforming finite element space. This choice accommodates discontinuity of
the normal component of the gradient and, hence, eliminates over-refinements. For non-
conforming finite element approximations, since both continuities are violated, we recover
both the flux and the gradient in the H(div) and H (curl) conforming finite element spaces,
respectively, through weighted L? projections. The estimator is then the average of two
measurements: the weighted L? norms of differences between the direct and the recovered
approximations of the flux and the gradient.

Estimators introduced in this paper are analyzed by establishing the standard relia-
bility and efficiency bounds and are supported by numerical results. In particular, we
prove theoretically that the estimators are robust, in the sense that the reliability and
efficiency constants are independent of the size of jumps, provided that the distribution
of coefficients is locally monotone. (In this paper, we will use C' to denote a generic
positive constant that is independent of the mesh parameter hx and the size of jumps
Emax/kmin introduced in subsequent sections.) We also show numerically that there is
no over-refinements along interfaces for a benchmark test problem whose coefficients are
not locally monotone. Results in this paper may be extended to three-dimensions in a
straightforward manner.



It is important to point out that research on robust estimators for interface problems
is limited. For the conforming finite element method, robust a posteriori error estimators
have been studied by Bernardi and Verfiirth [8] and Petzoldt [38] for the residual-based
estimator, Luce and Wohlmuth [31] for the equilibrated estimator, and us [13] for the
recovery-based estimator. For the nonconforming elements, Ainsworth [2] studied a robust
equilibrated estimator. For the mixed method, see a recent work by Ainsworth [3].

This paper is organized as follows. Section 2 introduces interface problems and vari-
ational formulations. Various finite element spaces and both mixed and nonconforming
finite element approximations are described in section 3. Recovery procedures and a poste-
riori error estimators are defined in sections 4 and 5, respectively. Interpolation operators
needed for analysis are introduced in section 6. We establish the efficiency and reliability
bounds of estimators introduced in this paper in section 7. Finally, we present numerical
results for test problems in section 8.

1.1 Function Spaces and Preliminaries

Let © be a bounded polygonal domain in ®? with boundary 0Q = TpUL'y and TpNTy =
(). For a subdomain G C €2, we use the standard notations and definitions for the Sobolev
spaces H*(G) and H*(0G) for s > 0. The standard associated inner products are denoted
by (-, -)s,c¢ and (-, -)s o, and their respective norms are denoted by || - ||s,¢ and || - ||s.6¢-
We omit the subscript G or dG if G = ) from the inner product and norm designation
when there is no risk of confusion.

In two dimensions, for a vector-valued function 7 = (71, )¢, define the divergence
and curl operators by
= on -1-@ and VXT::@—%

VoTis 871‘1 8332 8901 81}2’

respectively. For a scalar-valued function v, define the operator V- by

ov  Ov 0 -1
Vo= QVo = (— towith Q=
v o= 8m2’8x1) ith <1 0 )

We shall use the following Hilbert spaces
H(div;Q) = {Tr € L?(0)? : V-1 € L*(Q)}
and  H(cwrl; Q) = {7 € L}(Q)? : Vx1 € L*(Q)}

equipped with the norms

N|=

171l v ) = (ITl5.0 + 1V - TH(Q),Q)% and |7l gieurt0) = (17150 + IVxTl50)?,
respectively. Denote their subspaces by
Hy(div; Q) = {7 € H(div;Q) : T- n|FN =0}
and  Hp(cwrl; Q) ={r € H(cwr; Q) : 7- t‘FD =0},
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where n = (n1,n2)! and t = (t1,t2)! = Qn = (—ng,nq)" are the unit vectors outward
normal to and clockwise tangent to the boundary OS2, respectively. Finally, we will also
use the following formula of integration by parts

(VxT,v) + (7, Vi) = /m(r “t)vds (1.3)

for all 7 € H(curl; Q) and all v € H(Q).

2 Interface Problems and Variational Forms
Consider the following interface problem
—V - (k(x)Vu)=f inQ (2.1)
with boundary conditions
u=0 onIp and n-(kVu)=0 onTy, (2.2)

where f is a given scalar-valued function in L?(£2), and k(z) is positive and piecewise con-
stant on polygonal subdomains of {2 with possible large jumps across subdomain bound-
aries (interfaces):

k() =k >0 in Q

for i = 1, ..., n. Here, {4}, is a partition of the domain  with €; being an open
polygonal domain. Define

kmin = min k; and kpax = max k;.
1<i<n 1<i<n

For simplicity, we consider only homogeneous boundary conditions. Also, we assume that
I'p is not empty (i.e., mes (I'p) # 0).
Let

HHQ):={ve H' Q) :v=00nTp} and HN(Q):={vec H(Q):v=0o0nTy}.

The corresponding variational form of system (2.1) and (2.2) is to find u € H} () such
that
a(u, v) = f(v) VveHp(Q), (2.3)

where the bilinear and linear forms are defined by
a(u, v) = (k(z)Vu, Vo) and  f(v) = (f, v),

respectively.
Introducing the flux defined by

o =—k(x)Vu in Q,



then (2.1) may be rewritten as an equivalent first-order system:

klo+Vu = 0 inQ,
(2.4)
V.o = f inQ
with boundary conditions
u=0 onT'p and o-n=0 only. (2.5)

The corresponding mixed variational formulation is to find (o, u) € Hy(div;Q) x L%(Q)
such that
(k7lo, )= (V-T,u) = 0 V1 € Hy(div; ),

2.6
(V.o,v) = (f,v) VvelL*Q). (26)

3 Finite Element Approximations

3.1 Finite Element Spaces

For simplicity of presentation, consider only triangular elements. Let 7 = { K} be a finite
element partition of the domain 2. Assume that the triangulation 7 is regular (see [20]);
i.e., for all K € T, there exists a positive constant x such that

hK S RPK,

where hy denotes the diameter of the element K and pg the diameter of the largest circle
that may be inscribed in K. Note that the assumption of the regularity does not exclude
highly, locally refined meshes. Furthermore, assume that interfaces

F= {691089]\1,3 =1, ..., n}

do not cut through any element K € 7. (This assumption is needed for analysis and for
explicit estimators, but not for implicit estimators introduced in this paper.)
Denote the set of all edges of the triangulation by

E:=E,UE, UE,,

where &, is the set of all interior element edges and £, and &, are the sets of all boundary
edges belonging to the respective I'p and I'y. For each e € &, denote by m. and h. the
midpoint and the length of the edge e, respectively; denote by n. a unit vector normal to
e. When e € £, U€,, assume that n, is the unit outward normal vector. For each interior
edge e € &, let K and K_ be the two elements sharing the common edge e such that
the unit outward normal vector of K coincides with n,.

Let Py(K) be the space of polynomials of degree k on element K. Denote the con-
forming continuous piecewise linear finite element space and the Crouzeix-Raviart non-

conforming piecewise linear finite element space [21] associated with the triangulation 7°
by

U={ve HY(Q) :v|g e P(K) VKeT}
and U™ ={ve L*Q) : v|g € P(K)V K € T, and vis continuous atm. Ve € £q}



and their subspaces by
Up={velU:v=00onTp} and U ={veld™ : v(me.)=0Vecp},

respectively.
Denote the local lowest order Raviart-Thomas [39, 12] and Brezzi-Douglas-Marini
spaces [11, 12] on element K € 7 by

RTH(K) = Py(K)?> + xPy(K) and BDM;(K) = P, (K)?

respectively, where x = (x1,22). Then the standard H(div; Q) conforming Raviart-
Thomas and Brezzi-Douglas-Marini spaces are defined by

RTy={7 € Hy(div; Q) : T|x € RToH(K) VK €T}

and
BDM;, ={1 € Hy(div; Q) : 7|k € BDM(K) V K € T},

respectively. For convenience, denote RTy or BDM; by V. Also, let
Py={veL*Q) : v|g € PR(K)Y K €T}.

Denote the first and second types of local lowest order Nedelec spaces [34, 35] on
element K € 7 by

NDi(K) = Py(K)* + (z2, —21) Py(K) and NDy(K) = Py(K)>.
Then the standard H (curl; Q) conforming Nedelec spaces are defined by
NDy={r € Hp(curl; Q) : 7|[x e ND1(K) VK €T}

and
NDy ={1 € Hp(curl; Q) : 7|x € NDy(K) VK €T},

respectively. For convenience, denote by Wp the Nedelec space ND; or N D».
Finally, we define the discrete gradient, divergence, and curl operators as follows:

(Vh’l))‘[( = V(U|K), (vh-T)|K 2:V'(T‘K), and (VhXT)|K = VX(T|K)
for all K € T, respectively.
3.2 Finite element approximations
The mixed finite element method is to find (o, um) € VN X Py such that

(k‘_lo'm, ) — (V- T, up) = 0 V1€ Vy,
(Veom,v) = (f,v) YveDPR.



Let (o, u) and (o, uy,) be the solutions of (2.6) and (3.1), respectively, and denote the
true error of the mixed finite element approximation by

(B, em) = (00— Om, U — Up,). (3.2)

Then the difference between (2.6) and (3.1) gives the following error equations

E'E,, T)—(V-T,epn) = 0 V1€V,
( )= ( ) (3.3)
(V-En,v) = 0 VYvehR,.
Let Qp : L?(2) — Py be the L? projection, then the second equation in (3.1) gives
Veom=0Qnf =/n€ R (3.4)

with )
fh|K:|I{|/de$ VKeT.

Let IIj, : H(div; ) N LY(2)? + Vy for fixed t > 2 be the well-known RT/BDM
interpolation operator which satisfies the commutativity property:

V- -I,7)=QnV -7 V1 € H(div; Q) n LY(Q)?
and the approximation property for 7 € H*(Q)%:
1/2
| — 7o, <C Z h%?HTHiK for0<s<landi=1, .., n.

KeTNQ;

Here and thereafter, we use C with or without subscripts in this paper to denote a generic
positive constant, possibly different at different occurrences, that is independent of the
mesh parameter hyx and the ratio kpax/kmin but may depend on the domain €.

Theorem 3.1. Assume that the solution, (o,u), of problem (2.6) belongs to H*(Q) x
H'T5(Q) with 0 < s < 1. Then we have the following a priori error bound:

1k~ Y2E o0 < C[|h°EY2Vul|s 0 (3.5)

with [A°K2Vul g = (L ey b3 62902 )
Proof. By the commutativity property and (3.4), we have
V-lho)=QnV -o=Qnf =V on,
which, together with the first equation in (3.3) and the Cauchy-Schwarz inequality, implies
17230 = (k7 'En, 0 —10) + (K Ep, Hyo — o)
= (k'Ep, 0 —11o) + (V- (Ilho — 0.m), em)
— (B, 0~ o) < K2 Blloq [0 — o) 0.

Now, (3.5) is a direct consequence of the approximation property and o = —kVu. O



The nonconforming finite element method is to find wu,. € U such that
(kViptune, Viv) = (f,v) Vo e Uup. (3.6)

Let u and up. be the solutions of (2.3) and (3.6), respectively, and denote the true error
of the nonconforming finite element approximation by

Ene = U — Upe- (3.7)
Since Up C UF’, then we have the following error equation:
(kVhene, Vv) = (k(Vu — Vpupe), Vo) =0 YV v € Up. (3.8)

Lemma 3.2. Let v, be the orthogonal projection of v € H5(Q) N H*(Q) with 0 < s < 1
onto Up with respect to the inner product (kV-,V-), then

1/2
B2V (0 = ve) o0 < C (Z hig ||k1/2W|r§,K> :
KeT

Proof. This can be proved similarly as that of Proposition 2.4 in [8]. O
For and K € 7 and any v € H'*$(K), 0 < s < 1, denote by

s ||KY2 V0| k se(1/2,1],
Bk (hg, v) = i
W5 IEY2Volls i + bk [l fllox s € (0, 1/2].

Lemma 3.3. For any w € U} and any K € T, let wi,. be the mean value of w|x
over edge e € OK. Assume that the solution u of problem (2.3) belongs to H'T5(Q) with
€ (0, 1], then

> | /(n KVu) (w0~ wge) ds| < O By se(hac, w) [V (3.9)
ecdK ¢

For v € H'*%(K), note that integral [ (n-kVv)wds is the standard integration in L?(e)
if s > 1/2. When s € (0,1/2], it should be viewed as the duality pairing ((n - kVv), w)e,
where (n - kVv)|. € HY2(e) and w|. € HY?>¢(e) for any positive € < s.

Proof. The definition of wg . implies
/ (n- kVa) (w — i) ds = / (- kVu— G) (w0 — i) ds, (3.10)
& e
for any constant (.. When s € (1/2, 1], let . = h;' [, n- kVuds. It then follows from
(3.10), the Cauchy-Schwarz inequality, the approximation property, and the trace theorem
that

| [0 590) (0= ) ds| < - KV = Gl o = o

< Chiln-kVulyy e Vwlox < ChilE2Volls k|6 >Vl

0,K >
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which implies (3.9) for s € (1/2, 1].
When s € (0, 1/2], using (3.10), the definition of the dual norm, and the approximation
property, we have

‘ /(1’1 ) kvu) (w - wK,e) ds) < Hn -kVu — C€H71/2+6,€Hw - wK,e”l/Qfe,e

Chfln-kVu = Cll—1/24eel Vwllox-

IN

Let ¢ be the mean value of kVu over K. Choosing (. = ¢ - n. and using (2.1) and the
fact [7] that V¢ nll_1/21ee < C ([Vlle.x + by [|Adllo,x) for any ¢ € HIT¢(K) with

A¢ € L*(K) and for any 0 < € < 1/2, we have

- kVu = Cell—1/24ce = [0+ (FVU = Q) -1/24¢
< O (IkVu = Lllex + hilIfllo.xc) < C (i NkVullsx + hig I flos) -

Combining the above two inequalities yields (3.9) for s € (0, 1/2]. This completes the
proof of the lemma. O

Theorem 3.4. Assume that the solution u of problem (2.3) belongs to H'75(Q) with
0 < s <1. Then we have the following a priori error bound

1/2
1KYV (1 = tne) oo < C (Z B? ;o (hg, )) :

KeT

Proof. Since Up C UF’, Lemma 3.2 with v = u gives

1/2
é%gc Y2V (u — v)lo.g < IEY2Vi(u — ue)|on < C (Z h3 ||k Va2 ) :
Y KeT

For any w € U} and any K € 7, let wg . be the mean value of w|x over e € OK. Let
K~ be the element sharing the common edge e, then the continuity of w at the midpoint
of e implies that wx . = wk- .. For e € Ep, w(m,) = 0 implies that W, = 0. Then it
follows from integration by parts, (2.1), and the continuity of n - kVu across edge e that

(kVu, Vyw) — Z/ n-kVu)wds = Z Z /n EVu) (w — Wk ) ds,

KeT KeT ecOK

which, together with the triangle inequality, Lemma 3.3, and the Cauchy-Schwarz inequal-
ity, give

1/2
(kVu, Vyw) — (f, w ’ <C (Z B (hk, u)> Hkl/thwHoﬂ.
KeT

Now, Theorem 3.4 is a direct consequence of Strang’s Lemma (e.g., [20]). O



4 Gradient and/or Flux Recovery

4.1 Implicit Approximation

For the mixed finite element approximation (o, tn, ), the continuity of the solution and,
hence, the continuity of the tangential component of the gradient are violated while that
of the flux is preserved. This suggests to recover the gradient in the H(curl) conforming

finite element space N Ds. Since
Vu=—k"'o, (4.1)

we recover the gradient by solving the following variational problem: find p,, € N Dy such
that
(kpp, )= —(Om, T) VT END,. (4.2)

Theorem 4.1. There exists a positive constant C independent of the ratio kmax/kmin such
that the following a priori error bound

||k‘1/2(Vu —po)lloa <C (Teh}vaQ ||k1/2(Vu — 7)o+ ||k:—1/2(0 — am)||0,g> (4.3)

holds.
Proof. (4.1) and (4.2) give the following error equation

(k(Vu—p,,), )= (Om —0, T) V71 e NDo,

which, together with the Cauchy-Schwarz, the triangle, and the arithmetic and geometric
means inequalities, implies

||k1/2(Vu - pm)”%,ﬂ = (k(vu - pm)a Vu — T) + (k(vu - pm)a T — pm)
= (k(Vu—-p,,),Vu—7)+ (60 —0om, 7—Vu)+ (6 — om, Vu—p,,)

IN

152 (Vu = p,,) o0 (Hkl/Q(Vu = Tllog + [k7*(o - am)HO’Q)
+k2 (0 = om)loq IE/2(Vu — 1) o0

1 _ 1/2
< SIETu=p)IRa+C (2T =) 3a+ k20 - am)l3a) -
This yields (4.3) and, hence, completes the proof of the theorem. ]

For the nonconforming finite element approximation u,., both the continuities of the
tangential component of the gradient and the normal component of the flux are violated.
Hence, we recover both the gradient and flux as follows: finding p,,. € Wp such that

(kpne» T) = (kVhune, T) ¥V T € Wp (4.4)
and finding o . € Vy such that
(k_lanc, 7)=—(Vhtpe, 7) VT € VpN. (4.5)
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Theorem 4.2. There exists a positive constant C independent of the ratio k:max/k‘min such
that the following a priori error bounds

[K2(Vu = poc)loq < € (TiG% [EY2(Vu = 7)llog + 1K/2(Vu = Vyaune)| 0,Q> (4.6)
D

and

1k~2(0 — one)lloo <C (TigN k=20 — )]0 + 16Y2(Vu — Viytne)

|O,Q) (4.7)

hold.

Proof. (4.6) and (4.7) may be proved in a similar fashion as that of Theorem 4.1 with the
error equations:

(k(Vu —p,.), T) = (E(Vu — Vipupe), 7) V1T €Wp

and

(kYo — one), T) = (Vitine — Vu, ) ¥V 7 € Vy,
respectively. O

4.2 Explicit Approximations
Let 6. denote the Kronecker delta:
1, ife=¢,
6@ e =
0, ife#e.

Nodal basis functions of RTy, BDM;, NDy, and N Dy corresponding to the edge e € £
are characterized as follows:

(1) For RTp, ¢, is uniquely determined by

/(j)e-ne/dS—deer Ve eg;

566’

el

Notice that ¢,|e - nes is a constant and equals to
(2) For BDMj, ¢, ; (i =1,2) are uniquely determined by

/ ¢e,1 * Ny ds = 666/ and / Sd)e,l c e ds=0 V 6/ € g?

/ ¢e,2 ‘ngds =0 and / S¢e,2 ‘Ngrds = 0o V ¢ e g,

where s is a local coordinate on €’ ranging from —1 to 1;

Notice that ¢, ; of BDM; and ¢ of RTy are the same. Since ¢, 1|e - ne = 1/[e|, we
have the following orthogonality property:

1
/e(¢e,1 : ne)(¢e72 ' ne)ds = m /e(¢e’2 : n@)dS =0.

11



(3) For ND, 1, is uniquely determined by

/1Pe'te/d8=5ee' Ve eg;

566’
le| -

(4) For NDa, 9, ; (i = 1,2) are uniquely determined by

Similarly, ¥_|e - ter =

/ ¢e,1 : te’ds = 566’ and / Sd)e,l ' te’ds =0 Vv e € 57

/ '%,2 . te/dS =0 and / 51#672 . teldS = 666/ Y e cé.

Similarly, 1., of NDy and v of ND; are the same. The following orthogonality
property holds:

/ (o1 be) (hes - te)ds = 0. (48)

Lemma 4.1. For any element K € T, every constant vector T on K has the following
representations in R1Ty and NDq:

T = Z Te®p, with Te—/(T'ne)dS

ecOK

and
T = Z Te P, with 7. = /(T-te)ds,
ecOK €
respectively; Every linear vector T on K has the following representations in BDMy and
NDs:

T = Z (7'571 d)e,l + Te,2 (1)672) with Tei = /Sil(T . ne) ds

ecOK €
and
T= Z (TeqWeq +Tepen) with Te; = /si_l(T - te) ds,
ecOK €
respectively.

Proof. The lemma is a direct consequence of the fact, that both RTy(K) and ND;(K)
and both BDM;(K) and N Ds(K) contain the respective constant and linear vectors, and
the characteristic equations for nodal basis functions. ]

Lemma 4.2. For a linear function v on edge e, let {1,06’1-}12:1 be the N Ds basis functions
on e, then

V=01 te + 02 te with v; = /silv ds (4.9)

and

/ [of? ds = o3 / e 1[2ds + o3 / e o2 ds. (4.10)

12



Proof. By the fact that 1), ; - t. span the linear function space on e and the characteristic
properties of 1, ;, we have (4.9). (4.10) is the result of (4.9) and (4.8). O

Now we are ready to introduce explicit approximations to the gradient based on the
mixed finite element solution, and the flux and the gradient based on the nonconforming
finite element solution.

For o,, € Vv, let 71 = —k o, which is a linear vector-valued function on each K,
so we first define its approximation p,, € N Dy by

Pin(Om) =D (Peather + feathes) , (4.11)

ec&

where p.1 and pe 2 are the zero- and one-moments of the tangential component of p,, on
the edge e € £, U £, respectively. For i =1, 2, p.; is defined by

) Me fe 81'*1(7'1\Ke+ te)ds+ (1 —y1e) fe siil(rl\Kg “te) ds for e € &,,
Peyi ‘= )
fe 8’_1(7'1 ‘t.)ds foree &,
(4.12)
for some constant ;. € [0, 1].
Let 79 = —kV}j upe. Since 19 is piecewise constant, then it suffices to approximate it
using RTp. Define the explicit approximation 6 ,.(un.) in RTy = span{¢, : e € £} by

neltine) = Y _ G &, (4.13)

ecf

where . is the normal component of &,.(u,c) on the edge e € £ defined by

Y2 fe(7'2|K+ ‘ng)ds + (1 —72.) fe(rg\}( ‘ng)ds for e € &,,
Ge = ‘ ‘ (4.14)
fe(7-2|e : ne) ds for e € SD

for some constant v, € [0, 1]. To ensure the efficiency bound independent of the size of

jumps, we choose
N
V2,6 = . (4.15)
Vo R

Let 73 = Vjune. Since T3 is piecewise constant, we approximate it in ND; =
span{vy, : e € £} by

i)nc(unc) = Z pAe 'l»bea (416)

ecf
where p, is the tangential component of p,,.(un) on the edge e € £ defined by
V3,e fe(7'3\K+ “te)ds + (1 —73,e) fe(T3|K, ‘te)ds  foreeé&,,

pe i= (4.17)
J. (T3 te)ds foree€ &,
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for some constant 3. € [0, 1]. To ensure the efficiency bound independent of the size of

jumps, we choose
s /k:K:
V3, = .
A /kKj + 4 /kKe_

5 A Posteriori Error Estimators

(4.18)

5.1 Error estimators for mixed elements

For any element K € 7, define the following local a posteriori error estimator based on
the solution of (4.2) by
i = K2 (o + K ) o1

Then the corresponding global a posteriori error estimator is

_ 1/2 —1 _ : 1/2 —1
M = K12 (0, + k7 om0 = min [[K/2(r +k om) o0 (5.1)

This estimator essentially measures the violation of the continuity of the tangential deriva-
tives of the true solution on the edges by the mixed elements.
Based on the explicit approximation in (4.11), we define explicit local a posteriori error
estimator by
i = 1By + kL) o (5.2)

for any K € 7 and explicit global a posteriori error estimator by
i = 62 (D, + K~ o) o0 (5.3)

It is obvious that
Nm < fim- (5.4)

5.2 Error estimators for nonconforming elements

For any element K € 7T, define the following local a posteriori error estimator based on
the solutions of (4.5) and (4.4) by

7772LC,K = 027]1210,1,[( + (1 - C2)"73LC,2,K for 0<c<1 (55)
with 7,e1,x and 7,2,k given by
Mne,1,K = Hk_l/Qanc + k‘l/2Vum||0,K and  Npeo Kk = Hkl/z(pnc — Vune)lo,x -
Then the corresponding global a posteriori error estimator is

Moo= ey + (1= Py for 0<c<L. (5.6)
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with

et = K7 20ne + K2 Vuncllog = min K727 + K2 Vhunelloo,  (5.7)
N
ez = [K2(Pne + Vitme) oo = min [[k2(1 = Vaune) oo (5.8)
D

The reason we put a c here is to make the error estimator is comparable with the energy
norm of the true error, so the efficiency constant can be close to 1. In the real computa-
tion, we can choose ¢> = 1/2. This estimator essentially measures the violations of the
continuity of both the normal components of the flux and the tangential derivatives of the
true solution on the edges by the nonconforming elements.

Next, based on the explicit approximations in (4.13) and (4.16), we define explicit local
a posteriori error estimator by

ﬁ?zc,K = 0277721@1,1( + (1 - 02)777215,21{ for 0<e<1 (5.9)
with
fne i = K726 me mry + Y Vnellox  and  fneax = K72 (Pnen — Vtne) o,
for any K € 7. The corresponding explicit global a posteriori error estimator is given by
Moo = Clpey + (1= )iy for 0<c<1 (5.10)
with

ﬁnc,l = Hkil/z&nc,RTo + kl/zVunC

0,2 and ﬁnc,? = ||k1/2(i)nc,N - vunC)HQQ‘

Let upe and 1y be the solutions of (3.6) with the right-hand sides f and f3, respec-
tively, where f, is piecewise constant with fj,|x = W . fdx for all K € T. It is easy
to see that

Hkl/th(unc — lne)lloo < C ||k_1/2h(f — fn)

0,0 (5.11)
Let o, € RIy be the mixed finite element approximation and let xx be the center of
inertia of K. By the well-known fact [32] that (o, + kVpine)|x = —% fnlr(x—xK), we
have 1

(om + kViptune) |k = —3 Inlr(x = xK) + (kViptune — kVRtne) k-

Hence, to avoid the flux recovery, we may replace 7,1,k by

1, _
Nne,f, K = § Hk? 1/2fh(x — XK)’ 0,K

to obtain the following estimators

ﬁ?w,K = nch,f,K + nzc,Q,K VK € T? ﬁ?lc = 62773Lc,f + (1 - 62)777210,2 (512)
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and

=2 2 ~2 ) 2, 2 2\ ~2
nnc,K - nnc,f,K + nnc,ZK VK € T’ Mpe = € nnc,f + (1 —C )nnc,Z? (513)

1/2

1

where 1y, f = 3 <Z k=2 f(x — XK)H%K> . Now, it follows from (5.7), (5.11), and
KeT

the triangle inequality that

Tne < ﬁnca Tine < ﬁnc +C Hk71/2h(f - fh) 0,9 and TInc < Nne + C Hkil/zhﬁf - fh)HO,Q-

(5.14)

6 Clément-type Interpolations

Clément-type interpolation operators (see, e.g., [8, 38]) are often used for establishing
the reliability bound of a posteriori error estimators. We define a weighted Clément-type
interpolation operator and to state its approximation and stability properties (see more
details in [13]).

Denote by N and N the sets of all vertices of the triangulation 7 and of element
K € T, respectively. For any z € N, denote by ¢, the nodal basis function, let w, =
suppt (¢, ), and denote by @&, the union of elements in w, where the coefficient kx achieves
the maximum for K C w,. For a given function v, define its weighted average over w, by

][A vdr = W (6.1)

Now, following [8], define the interpolation operator 7 : L?(2) — Up by
Jv = Z (m20)¢2 (), (6.2)
zeN

where the nodal value at z is defined by
f, vdz zeN\TIp,

(Jv)(z) =m0 = #
0 zeNN I'p.

In this and next sections, assume that the Hypothesis 2.7 in [8] holds. That is, assume
that any two different subdomains €2; and Q;, which share at least one point, there is a
connected path passing from ; to Qj through adjacent subdomains such that the diffusion
coefficient k(x) is monotone along this path. This assumption is weakened to the quasi-
monotonicity in [38].

Lemma 6.1. [13] For any K € T and v € H}(SY), the following estimates hold
lo = Tvllox < Chicki*|IK*V0 0., (6.3)

and
IV (v = To)llox < Chi?[KY2V0]lo g, (6.4)

where Ag is the union of all elements that share at least one verter with K.
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Lemma 6.2. [13] For any v € H},(Q), there exists a positive constant C such that

(f, v —Tv)| < CHy |KY*Vvog. (6.5)
with
1/2
H= S S IR Y S ke S - ][ f ]2
2€ENN(FUT'p) KCw; 2€EN\(FUl'p) KCw:

Remark 6.3. The second term in Hy is a higher order term for f € L?(2) and so is the
first term for f € LP(Q) with p > 2 (see [18]).

Denote by @, the union of elements in w, where the coefficient ki achieves the mini-
mum for K C w,. Similarly, we can define a robust interpolation 7’ : L?(Q) — Uy, where
Uy ={v el : v=0onTy}. Similar proofs as those of Lemmas 6.1 and 6.2 (see [13])
yield the following properties.

Lemma 6.4. For any K € T and v € H'(Q), the following estimates hold

o — T'vllox < Chickyl? k™Y 0llo.a, (6.6)
and
IV4 (@ = T"0)loxe < C R lk29 0o,a- (6.7)
Lemma 6.5. For any v € HY(Q), there exists a positive constant C such that
(f, v = T'W)| < CGy IV olloq (6.8)
where
1/2
Gr=| X Y kBt S Y hlils - f fdalf
2zeNN(FUl'y) K Cw. 2eN\(FUT'y) K Cw. wz

7 Reliability and Efficiency Bounds

This section analyzes the estimators introduced in section 5 by establishing the reliability
and efficiency bounds with constants independent of the size of jumps. It is now a standard
technique (see, e.g., [5]) to analyze estimators for the mixed and nonconforming elements
by using the Helmholtz decomposition (see, e.g., [26]) stated in the following lemma.

Lemma 7.1. For a vector-valued function T € L*(Q)?, there exist o € HL(Q) and B €
H(Q) such that

T = k(z)Va + V3. (7.1)
Integrating by parts gives
(Va, V1) =0 (7.2)
for all o € HL(Q) and all 8 € Hi (). Hence, we have
(k~'r,7) = (kVa,Va) + (k71V16,Vi3). (7.3)
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7.1 Reliability on mixed elements

Theorem 7.2. The estimator 0, defined in (5.1) satisfies the following global reliability
bound:

172 Ellog < C (o + [K720(F = )l + Gyxerr) (74)

If Vi x (k7 to,) =0, then

162 Epllo.q < C ( + 157200 = fi)llog) - (7.5)

Proof. Let E,, = 0 — 0y, = —kVu — o, € Hy(div;Q), by Lemma 7.1 and (7.3), there
exist oy, € HH(Q) and By, € HL () such that

Em = kVam, + V8,

and that
152 B0 = K2 VamlBg + 152V bl 0. (7.6)

The upper bound of the first term in (7.6) follows easily from (7.2), integration by parts,
E, -n=0onTy, a, =0 on I'p, the first equation in (3.3), and the Cauchy-Schwarz
inequality that

IE Vol = (Bm, Vam) =—=(V - En, am) = (V- B, Qroim — o)
= (f = fur Qnam — am) < CE720(f = fu)lloellk/*Vamlog,

which implies
K2V aml§q < ClIK2R(f = f)lf - (7.7)

To bound the second term in (7.6), Hk‘_l/QVLﬁmHaQ, notice first that V-Uy C RTp.
Then the first equation in (3.3) gives

(k7 'E,, Vo) = (V-V1v,e,) =0 Yovely. (7.8)
By (7.2), the fact that J'G,, € Uy, (7.8), (1.3), boundary conditions of p,, — Vu on T'p
and (I — J')By on 'y, the Cauchy-Schwarz inequality, and (6.7), we have
K2 Bl = (5 By, V) = (57 B, V(B — T'60)

= (P = V. VHI = T)80) = (P + b o, THI = T

= — (vxp'rrw (I - j/)ﬂm) - (pm + kilo-mm VL(I - j/)ﬂm)

< (V%P (L= T)Bm) + Crin |72V B0,

= —(Vax(pm+ k" om), (I =T)8m) + (Vo x (5 'om), (I = T)Bm)

+C 1 |E7Y2V L B,

0,0
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Using the Cauchy-Schwartz inequality, the inverse inequality, (6.6), and (6.8), we obtain
that

(vh X (pm + kilam% (I - j/)ﬂm)

ClK a1 x (o + K am)llog K720 = T')Ballog

IN

IN

Cm ||k_1/2vj_ﬂm ”O,Q
and that

(Vi x (k7o) (I = T)Bm) < C Gy, upiom Ik 2V B

0,2,

Combining the above three inequalities and dividing the quantity ||k~ 2V B o and
squaring on both sides give

_ 2
|k 1/2Vlﬁm”(2),9 <C (77m + thx(k—lo'm)) )

which, together with (7.6) and (7.7), yields (7.4).
Finally, (7.5) is a direct consequence of (7.4) and the fact that Gy = 0. This completes
the proof of the theorem. O

Remark 7.3. In the case that VN = RI}, the condition
Vi x (ktom) =0
holds.

Corollary 7.4. The reliability bounds in Theorem 7.2 hold for the explicit error estimator
Nm as well.

Proof. The corollary is a direct consequence of Theorem 7.2 and (5.4). O

7.2 Reliability on nonconforming elements

Theorem 7.5. The estimator n,. defined in (5.6) satisfies the following global reliability
bound:
1KV hencllo.o < C (e + Hy) (7.9)

Proof. Let epe = w — Upe, by Lemma 7.1 and (7.3), there exist ay,. € H})(Q) and G, €
H(Q) such that
EVhene = kV e + V= Bre

and that
|EY2Vnellg 0 = 162V eancl§ o + IIk™/*V " Bucllf o (7.10)

By using (3.8), integrations by parts, boundary conditions on kVu + . and (I —
J)ane, the Cauchy-Schwarz inequality, (6.4), the fact that Vy, - (EVpup,e) = 0, the inverse
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inequality, (6.3), and (6.5), we have
162V anelld o = (kVhene, Vane) = (kVhene, V(I — T o))
= (kVu+one, VI — T)ane)) — (6ne + EVptne, V(I — T)tne)
< (f =V nes ane — Tane) + C et ||EY*Vanelloo

= (fa One — janc) - (vh : (Unc + thUnc), One — janc) + Cnnc,l ||k1/2vancH0,Q

IN

C (nes + Hy) |K*Vane||o.0-

To bound the second term in (7.10), first by integration by parts and the orthogonality
of nonconforming elements, i.e., fe [une] ds = 0 for any e € &, we have

(vhunm vlj/ﬁnc) = Z / Unc (VLj/ﬁnc) -nds
KeT e€cOK

= S (VT Be) -n/[unc] ds = 0.

ecf €

It then follows from integration by parts, boundary conditions on p,,. and (I — J')0ue,
the fact that Vj, x (k~'Vjupne) = 0, the Cauchy-Schwarz and inverse inequalities, (6.7),
and (6.6) that

1572V BrelB 0 = (Vie, VEBue) = (= Vitine, VE(I = T')Bre)
= (Pne = Vittne, V(I = T")Bue) = (Pper V(I = T')Bne)
= (Pne — Vittne, VI = T)Bne) + (Vi X (Ppe — Vitine)s (I — T")Bne)
< Cinea IV Buello.g-

Now, the reliability bound in (7.9) is a direct consequence of the above two inequalities.
This completes the proof of the theorem. O

Corollary 7.6. Let n denote the estimators fine, Nne, O Tne, then we have the following
reliability bound

1K Vhencllon < C (m+ Hy + [k~ 2h(f = fi)los)

Proof. The corollary is a direct consequence of Theorem 7.5 and (5.14). O

7.3 Efficiency

To establish the efficiency bounds, we make use of the known result on the edge error
estimators in [16]. To this end, for any e € £ and any vector-valued function 7 that is
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piecewise linear with respect to the triangulation 7, denote the jump of the normal and
tangential components of 7 across e = K} N K_ by

Ine(T) =[1 ne] = (T|g+ —T|g-) ne and  Joo(7) = [7-te] = (T|er — T-) - te,
respectively. For any e € £\&q, we set

Jne(T) =0, and Jg(7)=0.

7.3.1 Efficiency on mixed elements

We define an edge error estimator for mixed elements as follows:

1/2 ko + e 1/2
T, = (Zn%,e) with  fln.e = (KQKh / \Jt,e<klam>|2ds) - (7.11)

eel

Proposition 7.7. There exists a constant C > 0 such that

Nme < C 2V 800w, (7.12)

and that
e < Ck™Y2VBulloa < Clk™Y2Enlloq. (7.13)

Proof. A similar proof as those of Lemmas 6.1 and 6.2 in [15] shows that there exists a
constant C' > 0 impendent of k£ such that

he/ut,e(k—lam)ﬁds < Ok V4B

ngn,e S O(kKj+ng)||k_1vlﬂmH(2),wc
= Clhyr +hy )k K PV B} s + B LRV 8017 )
< ClkV 65,

which proves (7.12). Summing it over all edges e € £ leads to (7.13). O

Theorem 7.8. The following local efficiency bound for the explicit error estimator fy, Kk
holds:
Mo ic < CIE2V " Brallo.wre (7.14)

where wg is the union of elements sharing a common edge with K. The following global
efficiency bound holds for all error estimators:

M < fm < C k™24 Bl < O [|EY2 Enllo.0- (7.15)
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Proof. (7.15) follows straightforward from (5.4) and (7.14). To show the validity of (7.14),
by Proposition 7.7 it suffices to prove that for any element K € T

he _
7772n,K <C Z 773,1,@ =C Z o (kK;r + kK;)/|Jt,6(k 1a'm)|2d$- (7.16)
€€OK eCIK\ON ¢

To do so, for any edge e € OK, without loss of generality let K be K and let K, be the
adjacent element with the common edge e. Since T = k~'a,, is piecewise linear, we have

Tk = Z (Te,l,K ¢e,1 + Te2,K 1/’672) ’

ecOK

where 7. x = [, 871(T - te) i ds is the (i — 1)-th moment of the tangential component of
7 on e and v, ; is the nodal basis function of NDj. For any x € K,

Pm+T = Z (ﬁe,1 - Te,l,K) ¢e71 + (Pe,2 — Te2,K) ¢e72

ecOK

= Y (11— ((Te,l,K; - TaLK) Yea + (Tez,K; - Tele) ‘peﬂ)
€K\

= Z (’Yl,e - 1) <11be,l /Jt,e(T)dS + ¢e,2 /SJt,e(T)ds>
c€OK\09 € ¢

= Z (1,e = 1) (Jeg $ey + Je2Pe2)
e€HK\ON

with je; = fe s Ji e (T)ds. Since Ji o(T) is a linear function on e, Lemma 4.2 gives

Jt,e(T) = Jen (¢e,1 “te) + Je,2 ("/)e,Q “te)

and

/|Jt,e(7)|2d8:jg,l/|¢e,1|2d$+j3,2/|¢e,2|2d5'
e e e

Now, by the triangle inequality and the fact that [, |'¢,be,i|2d3: < Che [, |'l,be’i|2d8, we have

g = &Yy + 7)llo.xc
1/2
) 2 -2 2

< ot X a-mo (@[ WaP o [ 1weak)

€K \OQ K K

1/2

< Ok Y b [lhnPas] < >

e€cdK\OQ e €K\

This proves (7.16) and, hence, the theorem. O
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7.3.2 Efficiency on nonconforming elements

A weighted edge error estimator for nonconforming elements is defined by

1/2
- (z n)

ec
with
he ket ke

- / | Jt,e(Vitine)|* ds. (7.17)

2h,
2 e 2
=2 [ |Jne(kVihune) > ds + — L He
nnC,e kK;F kK; L‘ ) ( hU )’ S kK;F kKe

Theorem 7.9. There exists a constant C > 0 such that

h2
Moo <C (|rk1/2vhemu%,we LD DN L fhnaK) (7.18)
KeT Nwe
and
B2 1/2
e < C IR *Viencloo +C( Y. Elf = fllix] (7.19)
icer kK

Proof. A similar proof as that for the conforming linear elements in [38] shows that the
first term of 77, defined in (7.17) satisfies (7.18). It then suffices to show that (7.18)
holds for the second term of 17,216,6. To do so, we recall the following inequality (estimate

(3.3) in [17)):
he/ut,e(vhum)y?ds < C|Vihenel[§ . » (7.20)
which holds with a constant C' > 0 independent of the jump of k. Hence,

hekp+ k- ks Fres
[ / [ ee(Vhtine) [P ds < €= e[ Vnenel 3.,
kit Je Frs +hi;

k - k‘ +
< C Ke kl/? 2 Ke k1/2 ne 2 -~
= (kKj n ng H vheHQK;L + kK;r n kK(; H Ve HO,KE

< C ||k1/2vhen0||%,we'
This proves (7.18). The global bound (7.19) is a direct result of (7.18). O

Theorem 7.10. The following local efficiency bound for the explicit error estimator M K
defined in (5.9) holds:

R h3
Mnee < C | 182 Vhencllp e + Y ﬁﬂf —fullgr ] (7.21)
Tewk
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where wg is the union of elements sharing a common edge with K. The following global
efficiency bound for both error estimators npe and M, holds:

1/2
5 h3
Mne < Tne < C Hkl/thencHO,Q +C Z K Hf - fh”(%,K : (722)
icer M

Proof. (7.22) is a direct consequence of (5.14) and (7.21). To show the validity of (7.21),
by Theorem 7.9 it suffices to prove that for any element K € 7
ﬁ?%c,K < C Z 777210,6' (723)
e€OK

To this end, for any edge e € 0K, without loss of generality let n. be the outward unit
vector normal to 0K and denote by K. the adjacent element with the common edge e.
Let 79 = —kVjup. that is piecewise constant, then 75|x may be represented in terms of,
{¢.}ecor, the nodal basis function of RTp:

Tolk = Z 26K e

ecOK

For any x € K, (4.13) and (4.14) give

a'nc — T2 = Z (a'e - 7_2,e,K) ¢e = Z ('72,6 - 1) (7-2,e,K - TQ,e,KE) ¢e

e€OK e€OK\0Q
= Y (e DJae(r2) ¢
€K\
Similarly, for 73 = —Vjun. and any x € K, we have
Pre—Ts = D (pe—Taer) bo(x) = > (e~ 1) (Ter — Taek.) Y.
c€OK €K\
= Z (’73,6 - 1)Jt,e(T3) ¢e'
e€OK\OQ

Now, it follows from the triangle inequality, the facts that

/\¢e|2d$§0h§ and /|1/:e|2dx§C’h§,
K K
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(4.15), and (4.18) that

e = IR (6ne = 72) 5k + (1= K2 (e — 73) 17 1

IA

C (kx'llone — T2llg k + kxllone — 7513 k)

< C Z Qk;(l(l - 72,6)2hzun,e(7'2)’2 + Z kr(1— 73,e>2hzut,e(7'3)’2
cCOK\99 c€OK\O

_ he 2 2

= C Ty 12 2 | |Jne(T2)|ds + kx ki, | |Js,e(T3)|* ds
e€OK\OQ (kK/ + kK/> € €

he 2 2

<ol Y e (z/eun,e(n)\ ds+kKkK6/eut,e(73)y ds>
cCOK\O9 e

= C Z 777210,6 )
€K \OQ

which proves (7.23) and, hence, (7.21). This completes the proof of the theorem. O

Theorem 7.11. There exists a positive constant C such that
e < C (K2 nenclloc + IK/2R(f = filos) (7.24)

Proof. (7.24) is a direct consequence of Theorem 7.10 and the following inequality (The-
orem 3.2 in [2])

e, 1¢ < C (K> Faanello,ic + IE20(F = f)loc)

8 Numerical Experiments

In this section, we report some numerical results for an interface problem with intersecting
interfaces used by many authors, e.g., [27, 33, 19], which is considered as a benchmark test
problem. For this test problem, we show numerically that the recovery-based a posteriori
error estimators introduced in [16] for both mixed and nonconforming elements over-
refine regions along the interfaces and, hence, fail to reduce the global error. For the same
test problem, numerical results show that the estimators introduced in this paper are
accurate and generate meshes with optimal decay of the error with respect to the number
of unknowns.
To this end, let Q = (—1,1)? and

u(r,8) = r’p(9)
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in the polar coordinates at the origin with

cos((m/2 —0)B) -cos((0 —m/2+p)3) if 0<60<m/2
(0) = cos(pB) - cos((0 —m+ o)) if 7/2<60<m,
# cos(a3) - cos((0 — 7 — p)B) if 7<6<3m/2,
cos((m/2 — p)B) - cos((0 —3w/2 —0)B) if 3m/2 <60 <2,

where o and p are numbers. The function u(r, #) satisfies the interface equation in (2.1)
with Ty =0, f =0, and

R in (0,1)2U(~1,0)2,

1 in Q\ ([0,1]2U[-1,0]?).

The numbers (3, R, o, and p satisfy some nonlinear relations (e.g., [33, 19]). For example,
when 3 = 0.1, then

R ~ 161.4476387975881, p=7/4, and o~ —14.92256510455152.

Note that when 8 = 0.1, this is a difficult problem for computation.

Remark 8.1. This problem does not satisfy Hypothesis 2.7 in [8] and the distribution of
its coefficients is not quasi-monotone.

Note that the solution u(r, ) is only in H+#=¢(Q) for any € > 0 and, hence, it is very
singular for small 3 at the origin. This suggests that refinement is centered around the
origin. In this example we choose 7, and 7,. with constant ¢ = 0.5 as the implicit and
explicit error estimators for the nonconforming method, respectively.

Starting with a coarse triangulation 7y, a sequence of meshes is generated by using
standard adaptive meshing algorithm that adopts the Dérfler’s bulk marking strategy [24]:
construct a minimal subset 7 of 7 such that

S =0 > 2 (8.1)

Ke’j’ KeT

with 0 = 0.2. The choice of f = 0.2 is not critical but recommended in [19] for
better performance. Marked triangles are refined regularly by dividing each into four
congruent triangles. Additionally, irregularly refined triangles are needed in order to make
the triangulation admissible. For more details on adaptive mesh refinement algorithms,
see, e.g., [10].

The true errors can be computed by the following identities

et = [[FV/2Vu + 20, |2 :/ - (Wt 20, ds + k20|20
o0

for the mixed method and

€ITpe = ||k1/2vh(u - unC)”% Q

= / (kVu-n uds—2Z/ (kVupe -n)uds + Z Hk1/2VuncH0K

KeT KeT
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for the nonconforming method. Since the true solution u is very smooth near the boundary;,
the integrations on the boundary can be computed very accurately. We define the so-called
effectivity index:

n
161720 + k1200

n
|62V 5 (u — upe)

eff-index,, = and efl-index,. :=

)
0,0

and use the following stopping criteria:

CEYAVu+ Y2000

rel-erry, 1= _ ||k1/2vh(“ — Unc) o0
[E=120 |00

<tol and rel-erry := TE2u]
0,9

< tol.

Denote by [ the number of levels of refinement and by N the number of vertices of trian-
gulation.

The error estimators introduced in [16] for both mixed and nonconforming finite ele-
ment approximations to the Poisson equations recover the gradient in the continuous linear
finite element space. A natural extension of these estimators to the interface problems
is to recover either the gradient or the flux again in the continuous linear finite element
space. More specifically, for the mixed method, let o, be the solution of (3.1) and let
Pm.t € U? and Pm.,g € U? satisfy the following problems

(k:_lpmf, ) = (kTlom, ) VT el
and  (kpy, ., T) = —(Om, T) VTE u?,
respectively. Then the corresponding error estimators are defined by

1/2(

Nm,cB.f = Ik~ (0m — pm oo and nmcepg = 1k~ %0, + kl/QPm,g”O,Q-

For the nonconforming method, let up. be the solution of (3.6) and let p,,. ; € U? and
Preg € U? satisfy the following problems

(k" '"Ppes T) = (=Viplne, T) VTE u?
and  (kppcg T) = (kVpupe, T) VT E u?.

Then the corresponding error estimators are defined by

nnC,CB,f - Hkl/thunc + k71/2pnc,f ‘079 and nnC,CBﬂ - Hk1/2(thnc - pnc,g)HQQ'

We start with the coarsest triangulation 7y obtained from halving 16 congruent squares
by connecting the bottom left and upper right corners. We report numerical results with
the stopping criterion tol = 0.1. From Table 1 and Table 2, Figures 1, 2, 7, and 8, it
is clearly that the CB estimators introduce unnecessary refinements along the interfaces.
Meshes generated by 0, fm, Mnc, fine, and 1, are similar. By inspecting the effectivity
index, all the error estimators introduced in this paper are accurate. Moreover, the slope
of the log(dof)-log(relative error) for all estimators is —1/2, which indicates the optimal
decay of the error with respect to the number of unknowns.
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Figure 1: mesh generated by 7, cB, ¢
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l N err rel-err n eff-index
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