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Abstract. In [13], we introduced and analyzed a recovery-based a posteriori error
estimator for conforming linear finite element approximation to interface problems.
It was shown theoretically that the estimator is robust with respect to the size of
jumps provided that the distribution of coefficients is locally monotone. Numerical
examples showed that this condition is unnecessary. This paper extends the idea in
[13] to mixed and nonconforming finite element methods for developing and analyzing
robust estimators. Numerical results on test problems are also presented.

1 Introduction

The recovery-based a posteriori error estimators have been extensively studied for conform-
ing finite elements by many researchers due to their many appealing properties: simplicity,
asymptotic exactness, and universality. The universality is in the sense that there is no
need for the underlying residual or boundary value problem. For the mixed and noncon-
forming finite element methods, Carstensen and Bartels in [16] introduced and analyzed
recovery-based error estimators. Their estimators for both the mixed and the nonconform-
ing elements are based on the recovery of the gradient in H1(Ω)2. These estimators work
well for the Poisson equation even though the gradient of the exact solution only belongs
to H(div) ∩H(curl) for non-convex polygonal domains. For other types of estimators on
the mixed and the nonconforming methods, see [1, 2, 3, 5, 9, 15, 16, 17, 22, 23, 25, 28, 29,
30, 41, 42] and references therein.

As demonstrated numerically in [36, 37, 13] and theoretically in [14], for conforming fi-
nite element approximations to the interface problem with large jumps, existing estimators
of the recovery type over-refine regions where there are no errors and, hence, fail to reduce
the global error. This is also true for the recovery-based estimators in [16] for the mixed
and nonconforming finite element methods (see Figures 1, 2, 7, and 8). The reason for
the over-refinements is that the recovered gradient is continuous but the true gradient is
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discontinuous. In other words, the over-refinements are caused by using continuous func-
tion to approximate discontinuous function in the recovery procedure. To overcome this
difficulty, one often applies the method on each subdomain separately. For reasons why
this local approach is not favorable, see detailed discussions in [37]. More importantly,
the local approach fails when triangulations do not align with interfaces, which occurs
when interfaces are curves/surfaces or have unknown locations. In [13], we introduced
and analyzed a global approach for the conforming linear finite element approximation by
recovering the flux in the H(div) conforming finite element spaces. The resulting estima-
tor is then free of over-refinements and satisfies the efficiency and reliability bounds with
constants independent of the size of jumps.

The purpose of this paper is to extend the idea in [13] to mixed and nonconforming
finite element approximations. To do so, we need to determine what quantities to be
recovered and which finite element spaces to be used. The guideline for such choices
is based on our view that a recovery-based estimator is a measurement of the violation
of finite element approximations on physical continuities. Therefore, the quantities to
be recovered are those whose finite element approximations do not preserve the physical
continuity. The interface problems in (2.1) have two physical continuities: the solution u
and the normal component of the flux σ = −k∇u. Mathematically, this means

u ∈ H1(Ω) and σ ∈ H(div) ⊂ L2(Ω)2. (1.1)

For the mixed method, the continuity of the solution is violated while that of the flux
is preserved. To measure such a violation, we recover the gradient of the solution. To
choose proper finite element spaces, we notice that the first property in (1.1) implies

∇u ∈ H(curl). (1.2)

Physically, the tangential components of vector fields in H(curl) are continuous. There-
fore, the quantity to be recovered is the gradient and the proper finite element space is
the H(curl) conforming finite element space. This choice accommodates discontinuity of
the normal component of the gradient and, hence, eliminates over-refinements. For non-
conforming finite element approximations, since both continuities are violated, we recover
both the flux and the gradient in the H(div) and H(curl) conforming finite element spaces,
respectively, through weighted L2 projections. The estimator is then the average of two
measurements: the weighted L2 norms of differences between the direct and the recovered
approximations of the flux and the gradient.

Estimators introduced in this paper are analyzed by establishing the standard relia-
bility and efficiency bounds and are supported by numerical results. In particular, we
prove theoretically that the estimators are robust, in the sense that the reliability and
efficiency constants are independent of the size of jumps, provided that the distribution
of coefficients is locally monotone. (In this paper, we will use C to denote a generic
positive constant that is independent of the mesh parameter hK and the size of jumps
kmax/kmin introduced in subsequent sections.) We also show numerically that there is
no over-refinements along interfaces for a benchmark test problem whose coefficients are
not locally monotone. Results in this paper may be extended to three-dimensions in a
straightforward manner.
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It is important to point out that research on robust estimators for interface problems
is limited. For the conforming finite element method, robust a posteriori error estimators
have been studied by Bernardi and Verfürth [8] and Petzoldt [38] for the residual-based
estimator, Luce and Wohlmuth [31] for the equilibrated estimator, and us [13] for the
recovery-based estimator. For the nonconforming elements, Ainsworth [2] studied a robust
equilibrated estimator. For the mixed method, see a recent work by Ainsworth [3].

This paper is organized as follows. Section 2 introduces interface problems and vari-
ational formulations. Various finite element spaces and both mixed and nonconforming
finite element approximations are described in section 3. Recovery procedures and a poste-
riori error estimators are defined in sections 4 and 5, respectively. Interpolation operators
needed for analysis are introduced in section 6. We establish the efficiency and reliability
bounds of estimators introduced in this paper in section 7. Finally, we present numerical
results for test problems in section 8.

1.1 Function Spaces and Preliminaries

Let Ω be a bounded polygonal domain in <2 with boundary ∂Ω = Γ̄D∪ Γ̄N and ΓD∩ΓN =
∅. For a subdomain G ⊂ Ω, we use the standard notations and definitions for the Sobolev
spaces Hs(G) and Hs(∂G) for s ≥ 0 . The standard associated inner products are denoted
by (·, ·)s,G and (·, ·)s,∂G, and their respective norms are denoted by ‖ · ‖s,G and ‖ · ‖s,∂G.
We omit the subscript G or ∂G if G = Ω from the inner product and norm designation
when there is no risk of confusion.

In two dimensions, for a vector-valued function τ = (τ1, τ2)t, define the divergence
and curl operators by

∇ · τ :=
∂τ1

∂x1
+

∂τ2

∂x2
and ∇×τ :=

∂τ2

∂x1
− ∂τ1

∂x2
,

respectively. For a scalar-valued function v, define the operator ∇⊥ by

∇⊥v = Q∇v = (− ∂v

∂x2
,

∂v

∂x1
)t with Q =

(
0 −1
1 0

)
.

We shall use the following Hilbert spaces

H(div; Ω) = {τ ∈ L2(Ω)2 : ∇ · τ ∈ L2(Ω)}
and H(curl; Ω) = {τ ∈ L2(Ω)2 : ∇×τ ∈ L2(Ω)}

equipped with the norms

‖τ‖H(div; Ω) =
(‖τ‖2

0,Ω + ‖∇ · τ‖2
0,Ω

) 1
2 and ‖τ‖H(curl; Ω) =

(‖τ‖2
0,Ω + ‖∇×τ‖2

0,Ω

) 1
2 ,

respectively. Denote their subspaces by

HN (div; Ω) = {τ ∈ H(div; Ω) : τ · n∣∣
ΓN

= 0}
and HD(curl; Ω) = {τ ∈ H(curl; Ω) : τ · t∣∣

ΓD
= 0},
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where n = (n1, n2)t and t = (t1, t2)t = Qn = (−n2, n1)t are the unit vectors outward
normal to and clockwise tangent to the boundary ∂Ω, respectively. Finally, we will also
use the following formula of integration by parts

(∇×τ , v) + (τ , ∇⊥v) =
∫

∂Ω
(τ · t) v ds (1.3)

for all τ ∈ H(curl ; Ω) and all v ∈ H1(Ω).

2 Interface Problems and Variational Forms

Consider the following interface problem

−∇ · (k(x)∇u) = f in Ω (2.1)

with boundary conditions

u = 0 on ΓD and n · (k∇u) = 0 on ΓN , (2.2)

where f is a given scalar-valued function in L2(Ω), and k(x) is positive and piecewise con-
stant on polygonal subdomains of Ω with possible large jumps across subdomain bound-
aries (interfaces):

k(x) = ki > 0 in Ωi

for i = 1, ..., n. Here, {Ωi}n
i=1 is a partition of the domain Ω with Ωi being an open

polygonal domain. Define

kmin = min
1≤i≤n

ki and kmax = max
1≤i≤n

ki.

For simplicity, we consider only homogeneous boundary conditions. Also, we assume that
ΓD is not empty (i.e., mes (ΓD) 6= 0).

Let

H1
D(Ω) := {v ∈ H1(Ω) : v = 0 on ΓD} and H1

N (Ω) := {v ∈ H1(Ω) : v = 0 on ΓN}.

The corresponding variational form of system (2.1) and (2.2) is to find u ∈ H1
D(Ω) such

that
a(u, v) = f(v) ∀ v ∈ H1

D(Ω), (2.3)

where the bilinear and linear forms are defined by

a(u, v) = (k(x)∇u, ∇v) and f(v) = (f, v),

respectively.
Introducing the flux defined by

σ = −k(x)∇u in Ω,
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then (2.1) may be rewritten as an equivalent first-order system:
{

k−1σ +∇u = 0 in Ω,

∇ · σ = f in Ω
(2.4)

with boundary conditions

u = 0 on ΓD and σ · n = 0 on ΓN . (2.5)

The corresponding mixed variational formulation is to find (σ, u) ∈ HN (div; Ω) × L2(Ω)
such that {

(k−1σ, τ )− (∇ · τ , u) = 0 ∀ τ ∈ HN (div; Ω),

(∇ · σ, v) = (f, v) ∀ v ∈ L2(Ω).
(2.6)

3 Finite Element Approximations

3.1 Finite Element Spaces

For simplicity of presentation, consider only triangular elements. Let T = {K} be a finite
element partition of the domain Ω. Assume that the triangulation T is regular (see [20]);
i.e., for all K ∈ T , there exists a positive constant κ such that

hK ≤ κ ρK ,

where hK denotes the diameter of the element K and ρK the diameter of the largest circle
that may be inscribed in K. Note that the assumption of the regularity does not exclude
highly, locally refined meshes. Furthermore, assume that interfaces

F = {∂Ωi ∩ ∂Ωj | i, j = 1, ..., n}
do not cut through any element K ∈ T . (This assumption is needed for analysis and for
explicit estimators, but not for implicit estimators introduced in this paper.)

Denote the set of all edges of the triangulation by

E := EΩ ∪ ED ∪ EN ,

where EΩ is the set of all interior element edges and ED and EN are the sets of all boundary
edges belonging to the respective ΓD and ΓN . For each e ∈ E , denote by me and he the
midpoint and the length of the edge e, respectively; denote by ne a unit vector normal to
e. When e ∈ ED ∪EN , assume that ne is the unit outward normal vector. For each interior
edge e ∈ EΩ , let K+

e and K−
e be the two elements sharing the common edge e such that

the unit outward normal vector of K+
e coincides with ne.

Let Pk(K) be the space of polynomials of degree k on element K. Denote the con-
forming continuous piecewise linear finite element space and the Crouzeix-Raviart non-
conforming piecewise linear finite element space [21] associated with the triangulation T
by

U = {v ∈ H1(Ω) : v|K ∈ P1(K) ∀ K ∈ T }
and Unc = {v ∈ L2(Ω) : v|K ∈ P1(K) ∀ K ∈ T , and v is continuous atme ∀ e ∈ EΩ}
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and their subspaces by

UD = {v ∈ U : v = 0 on ΓD} and Unc
D = {v ∈ Unc : v(me) = 0 ∀ e ∈ ED},

respectively.
Denote the local lowest order Raviart-Thomas [39, 12] and Brezzi-Douglas-Marini

spaces [11, 12] on element K ∈ T by

RT0(K) = P0(K)2 + xP0(K) and BDM1(K) = P1(K)2,

respectively, where x = (x1, x2). Then the standard H(div; Ω) conforming Raviart-
Thomas and Brezzi-Douglas-Marini spaces are defined by

RT0 = {τ ∈ HN (div; Ω) : τ |K ∈ RT0(K) ∀ K ∈ T }

and
BDM1 = {τ ∈ HN (div; Ω) : τ |K ∈ BDM1(K) ∀ K ∈ T },

respectively. For convenience, denote RT0 or BDM1 by VN . Also, let

P0 = {v ∈ L2(Ω) : v|K ∈ P0(K) ∀ K ∈ T }.

Denote the first and second types of local lowest order Nedelec spaces [34, 35] on
element K ∈ T by

ND1(K) = P0(K)2 + (x2,−x1)P0(K) and ND2(K) = P1(K)2.

Then the standard H(curl ; Ω) conforming Nedelec spaces are defined by

ND1 = {τ ∈ HD(curl ; Ω) : τ |K ∈ ND1(K) ∀ K ∈ T }

and
ND2 = {τ ∈ HD(curl ; Ω) : τ |K ∈ ND2(K) ∀ K ∈ T },

respectively. For convenience, denote by WD the Nedelec space ND1 or ND2.
Finally, we define the discrete gradient, divergence, and curl operators as follows:

(∇hv)|K := ∇(v|K), (∇h · τ )|K := ∇ · (τ |K), and (∇h × τ )|K := ∇×(τ |K)

for all K ∈ T , respectively.

3.2 Finite element approximations

The mixed finite element method is to find (σm, um) ∈ VN × P0 such that
{

(k−1σm, τ )− (∇ · τ , um) = 0 ∀ τ ∈ VN ,

(∇ · σm, v) = (f, v) ∀ v ∈ P0.
(3.1)
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Let (σ, u) and (σm, um) be the solutions of (2.6) and (3.1), respectively, and denote the
true error of the mixed finite element approximation by

(Em, em) = (σ − σm, u− um). (3.2)

Then the difference between (2.6) and (3.1) gives the following error equations
{

(k−1Em, τ )− (∇ · τ , em) = 0 ∀ τ ∈ VN ,

(∇ · Em, v) = 0 ∀ v ∈ P0.
(3.3)

Let Qh : L2(Ω) 7→ P0 be the L2 projection, then the second equation in (3.1) gives

∇ · σm = Qhf = fh ∈ P0 (3.4)

with
fh|K =

1
|K|

∫

K
f dx ∀ K ∈ T .

Let Πh : H(div; Ω) ∩ Lt(Ω)2 7→ VN for fixed t > 2 be the well-known RT/BDM
interpolation operator which satisfies the commutativity property:

∇ · (Πh τ ) = Qh∇ · τ ∀ τ ∈ H(div; Ω) ∩ Lt(Ω)d

and the approximation property for τ ∈ Hs(Ω)2:

‖τ −Πhτ‖0,Ωi ≤ C


 ∑

K∈T ∩Ωi

h2s
K‖τ‖2

s,K




1/2

for 0 ≤ s ≤ 1 and i = 1, ..., n.

Here and thereafter, we use C with or without subscripts in this paper to denote a generic
positive constant, possibly different at different occurrences, that is independent of the
mesh parameter hK and the ratio kmax/kmin but may depend on the domain Ω.

Theorem 3.1. Assume that the solution, (σ, u), of problem (2.6) belongs to Hs(Ω) ×
H1+s(Ω) with 0 ≤ s ≤ 1. Then we have the following a priori error bound:

‖k−1/2Em‖0,Ω ≤ C ‖hsk1/2∇u‖s,Ω (3.5)

with ‖hsk1/2∇u‖s,Ω =
(∑

K∈T h2s
K ‖k1/2∇u‖2

s,K

)1/2
.

Proof. By the commutativity property and (3.4), we have

∇ · (Πh σ) = Qh∇ · σ = Qhf = ∇ · σm,

which, together with the first equation in (3.3) and the Cauchy-Schwarz inequality, implies

‖k−1/2Em‖2
0,Ω = (k−1Em, σ −Πhσ) + (k−1Em, Πhσ − σm)

= (k−1Em, σ −Πhσ) + (∇ · (Πhσ − σm), em)

= (k−1Em, σ −Πhσ) ≤ ‖k−1/2Em‖0,Ω ‖k−1/2(σ −Πhσ)‖0,Ω.

Now, (3.5) is a direct consequence of the approximation property and σ = −k∇u.
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The nonconforming finite element method is to find unc ∈ Unc
D such that

(k∇hunc, ∇hv) = (f, v) ∀ v ∈ Unc
D . (3.6)

Let u and unc be the solutions of (2.3) and (3.6), respectively, and denote the true error
of the nonconforming finite element approximation by

enc = u− unc. (3.7)

Since UD ⊂ Unc
D , then we have the following error equation:

(k∇henc, ∇v) = (k(∇u−∇hunc), ∇v) = 0 ∀ v ∈ UD. (3.8)

Lemma 3.2. Let vc be the orthogonal projection of v ∈ H1
D(Ω)∩H1+s(Ω) with 0 ≤ s ≤ 1

onto UD with respect to the inner product (k∇·,∇·), then

‖k1/2∇(v − vc)‖0,Ω ≤ C

( ∑

K∈T
h2s

K ‖k1/2∇v‖2
s,K

)1/2

.

Proof. This can be proved similarly as that of Proposition 2.4 in [8].

For and K ∈ T and any v ∈ H1+s(K), 0 < s ≤ 1, denote by

Bs,K(hK , v) =





hs
K‖k1/2∇v‖s,K s ∈ (1/2, 1],

hs
K‖k1/2∇v‖s,K + hKk

−1/2
K ‖f‖0,K s ∈ (0, 1/2].

Lemma 3.3. For any w ∈ Unc
D and any K ∈ T , let w̄K,e be the mean value of w|K

over edge e ∈ ∂K. Assume that the solution u of problem (2.3) belongs to H1+s(Ω) with
s ∈ (0, 1], then

∑

e∈∂K

∣∣∣
∫

e
(n · k∇u) (w − w̄K,e) ds

∣∣∣ ≤ C Bs,K(hK , u) ‖∇w‖0,K . (3.9)

For v ∈ H1+s(K), note that integral
∫
e(n·k∇v) wds is the standard integration in L2(e)

if s > 1/2. When s ∈ (0, 1/2], it should be viewed as the duality pairing 〈(n · k∇v), w〉e,
where (n · k∇v)|e ∈ Hε−1/2(e) and w|e ∈ H1/2−ε(e) for any positive ε < s.

Proof. The definition of w̄K,e implies
∫

e
(n · k∇u) (w − w̄K,e) ds =

∫

e
(n · k∇u− ζe) (w − w̄K,e) ds, (3.10)

for any constant ζe. When s ∈ (1/2, 1], let ζe = h−1
e

∫
e n · k∇u ds. It then follows from

(3.10), the Cauchy-Schwarz inequality, the approximation property, and the trace theorem
that

∣∣∣
∫

e
(n · k∇u) (w − w̄K,e) ds

∣∣∣ ≤ ‖n · k∇u− ζe‖0,e‖w − w̄K,e‖0,e

≤ C hs
e‖n · k∇u‖s−1/2,e‖∇w‖0,K ≤ C hs

K‖k1/2∇v‖s,K‖k1/2∇w‖0,K ,
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which implies (3.9) for s ∈ (1/2, 1].
When s ∈ (0, 1/2], using (3.10), the definition of the dual norm, and the approximation

property, we have
∣∣∣
∫

e
(n · k∇u) (w − w̄K,e) ds

∣∣∣ ≤ ‖n · k∇u− ζe‖−1/2+ε,e‖w − w̄K,e‖1/2−ε,e

≤ C hε‖n · k∇u− ζe‖−1/2+ε,e‖∇w‖0,K .

Let ζ̄ be the mean value of k∇u over K. Choosing ζe = ζ̄ · ne and using (2.1) and the
fact [7] that ‖∇φ · n‖−1/2+ε,e ≤ C

(‖∇φ‖ε,K + h1−ε
K ‖∆φ‖0,K

)
for any φ ∈ H1+ε(K) with

∆φ ∈ L2(K) and for any 0 < ε < 1/2, we have

‖n · k∇u− ζe‖−1/2+ε,e = ‖n · (k∇u− ζ)‖−1/2+ε,e

≤ C
(‖k∇u− ζ̄‖ε,K + h1−ε

K ‖f‖0,K

) ≤ C
(
hs−ε

K ‖k∇u‖s,K + h1−ε
K ‖f‖0,K

)
.

Combining the above two inequalities yields (3.9) for s ∈ (0, 1/2]. This completes the
proof of the lemma.

Theorem 3.4. Assume that the solution u of problem (2.3) belongs to H1+s(Ω) with
0 < s ≤ 1. Then we have the following a priori error bound

‖k1/2∇h(u− unc)‖0,Ω ≤ C

( ∑

K∈T
B2

s,K(hK , u)

)1/2

.

Proof. Since UD ⊂ Unc
D , Lemma 3.2 with v = u gives

inf
v∈Unc

D

‖k1/2∇h(u− v)‖0,Ω ≤ ‖k1/2∇h(u− uc)‖0,Ω ≤ C

( ∑

K∈T
h2s

K‖k1/2∇u‖2
s,K

)1/2

.

For any w ∈ Unc
D and any K ∈ T , let w̄K,e be the mean value of w|K over e ∈ ∂K. Let

K− be the element sharing the common edge e, then the continuity of w at the midpoint
of e implies that w̄K,e = w̄K−,e. For e ∈ ED, w(me) = 0 implies that w̄K,e = 0. Then it
follows from integration by parts, (2.1), and the continuity of n · k∇u across edge e that

(k∇u, ∇hw)− (f, w) =
∑

K∈T

∫

∂K
(n · k∇u) w ds =

∑

K∈T

∑

e∈∂K

∫

e
(n · k∇u) (w − w̄K,e) ds,

which, together with the triangle inequality, Lemma 3.3, and the Cauchy-Schwarz inequal-
ity, give

∣∣∣(k∇u, ∇hw)− (f, w)
∣∣∣ ≤ C

( ∑

K∈T
B2

s,K(hK , u)

)1/2

‖k1/2∇hw‖0,Ω.

Now, Theorem 3.4 is a direct consequence of Strang’s Lemma (e.g., [20]).
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4 Gradient and/or Flux Recovery

4.1 Implicit Approximation

For the mixed finite element approximation (σm, um), the continuity of the solution and,
hence, the continuity of the tangential component of the gradient are violated while that
of the flux is preserved. This suggests to recover the gradient in the H(curl) conforming
finite element space ND2. Since

∇u = −k−1σ, (4.1)

we recover the gradient by solving the following variational problem: find ρm ∈ ND2 such
that

(k ρm, τ ) = −(σm, τ ) ∀ τ ∈ ND2. (4.2)

Theorem 4.1. There exists a positive constant C independent of the ratio kmax

/
kmin such

that the following a priori error bound

‖k1/2(∇u− ρm)‖0,Ω ≤ C

(
inf

τ∈ND2

‖k1/2(∇u− τ )‖0,Ω + ‖k−1/2(σ − σm)‖0,Ω

)
(4.3)

holds.

Proof. (4.1) and (4.2) give the following error equation

(k (∇u− ρm), τ ) = (σm − σ, τ ) ∀ τ ∈ ND2,

which, together with the Cauchy-Schwarz, the triangle, and the arithmetic and geometric
means inequalities, implies

‖k1/2(∇u− ρm)‖2
0,Ω = (k(∇u− ρm), ∇u− τ ) + (k(∇u− ρm), τ − ρm)

= (k(∇u− ρm), ∇u− τ ) + (σ − σm, τ −∇u) + (σ − σm, ∇u− ρm)

≤ ‖k1/2(∇u− ρm)‖0,Ω

(
‖k1/2(∇u− τ )‖0,Ω + ‖k−1/2(σ − σm)‖0,Ω

)

+‖k−1/2(σ − σm)‖0,Ω ‖k1/2(∇u− τ )‖0,Ω

≤ 1
2
‖k1/2(∇u− ρm)‖2

0,Ω + C
(
‖k1/2(∇u− τ )‖2

0,Ω + ‖k−1/2(σ − σm)‖2
0,Ω

)1/2
.

This yields (4.3) and, hence, completes the proof of the theorem.

For the nonconforming finite element approximation unc, both the continuities of the
tangential component of the gradient and the normal component of the flux are violated.
Hence, we recover both the gradient and flux as follows: finding ρnc ∈ WD such that

(kρnc, τ ) = (k∇hunc, τ ) ∀ τ ∈ WD (4.4)

and finding σnc ∈ VN such that

(k−1σnc, τ ) = −(∇hunc, τ ) ∀ τ ∈ VN . (4.5)
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Theorem 4.2. There exists a positive constant C independent of the ratio kmax

/
kmin such

that the following a priori error bounds

‖k1/2(∇u− ρnc)‖0,Ω ≤ C

(
inf

τ∈WD

‖k1/2(∇u− τ )‖0,Ω + ‖k1/2(∇u−∇hunc)‖0,Ω

)
(4.6)

and

‖k−1/2(σ − σnc)‖0,Ω ≤ C

(
inf

τ∈VN

‖k−1/2(σ − τ )‖0,Ω + ‖k1/2(∇u−∇hunc)‖0,Ω

)
(4.7)

hold.

Proof. (4.6) and (4.7) may be proved in a similar fashion as that of Theorem 4.1 with the
error equations:

(k(∇u− ρnc), τ ) = (k(∇u−∇hunc), τ ) ∀ τ ∈ WD

and
(k−1(σ − σnc), τ ) = (∇hunc −∇u, τ ) ∀ τ ∈ VN ,

respectively.

4.2 Explicit Approximations

Let δe e′ denote the Kronecker delta:

δe e′ =

{
1, if e = e′,

0, if e 6= e′.

Nodal basis functions of RT0, BDM1, ND1, and ND2 corresponding to the edge e ∈ E
are characterized as follows:

(1) For RT0, φe is uniquely determined by
∫

e′
φe · ne′ ds = δe e′ ∀ e′ ∈ E ;

Notice that φe|e′ · ne′ is a constant and equals to
δee′

|e| .

(2) For BDM1, φe,i (i = 1, 2) are uniquely determined by
∫

e′
φe,1 · ne′ ds = δe e′ and

∫

e′
sφe,1 · ne′ ds = 0 ∀ e′ ∈ E ,

∫

e′
φe,2 · ne′ ds = 0 and

∫

e′
sφe,2 · ne′ds = δe e′ ∀ e′ ∈ E ,

where s is a local coordinate on e′ ranging from −1 to 1;

Notice that φe,1 of BDM1 and φ of RT0 are the same. Since φe,1|e · ne = 1/|e|, we
have the following orthogonality property:

∫

e
(φe,1 · ne)(φe,2 · ne)ds =

1
|e|

∫

e
(φe,2 · ne)ds = 0.

11



(3) For ND1, ψe is uniquely determined by
∫

e′
ψe · te′ ds = δe e′ ∀ e′ ∈ E ;

Similarly, ψe|e′ · te′ =
δee′

|e| .

(4) For ND2, ψe,i (i = 1, 2) are uniquely determined by
∫

e′
ψe,1 · te′ds = δe e′ and

∫

e′
sψe,1 · te′ds = 0 ∀ e′ ∈ E ,

∫

e′
ψe,2 · te′ds = 0 and

∫

e′
sψe,2 · te′ds = δe e′ ∀ e′ ∈ E .

Similarly, ψe,1 of ND2 and ψ of ND1 are the same. The following orthogonality
property holds: ∫

e
(ψe,1 · te)(ψe,2 · te)ds = 0. (4.8)

Lemma 4.1. For any element K ∈ T , every constant vector τ on K has the following
representations in RT0 and ND1:

τ =
∑

e∈∂K

τeφe with τe =
∫

e
(τ · ne) ds

and
τ =

∑

e∈∂K

τe ψe with τe =
∫

e
(τ · te) ds,

respectively; Every linear vector τ on K has the following representations in BDM1 and
ND2:

τ =
∑

e∈∂K

(τe,1 φe,1 + τe,2 φe,2) with τe,i =
∫

e
si−1(τ · ne) ds

and
τ =

∑

e∈∂K

(τe,1 ψe,1 + τe,2 ψe,2) with τe,i =
∫

e
si−1(τ · te) ds,

respectively.

Proof. The lemma is a direct consequence of the fact, that both RT0(K) and ND1(K)
and both BDM1(K) and ND2(K) contain the respective constant and linear vectors, and
the characteristic equations for nodal basis functions.

Lemma 4.2. For a linear function v on edge e, let {ψe,i}2
i=1 be the ND2 basis functions

on e, then

v = v1 ψe,1 · te + v2 ψe,2 · te with vi =
∫

e
si−1v ds (4.9)

and ∫

e
|v|2 ds = v2

1

∫

e
|ψe,1|2ds + v2

2

∫

e
|ψe,2|2 ds. (4.10)
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Proof. By the fact that ψe,i · te span the linear function space on e and the characteristic
properties of ψe,i, we have (4.9). (4.10) is the result of (4.9) and (4.8).

Now we are ready to introduce explicit approximations to the gradient based on the
mixed finite element solution, and the flux and the gradient based on the nonconforming
finite element solution.

For σm ∈ VN , let τ 1 = −k−1σm which is a linear vector-valued function on each K,
so we first define its approximation ρ̂m ∈ ND2 by

ρ̂m(σm) =
∑

e∈E

(
ρ̂e,1ψe,1 + ρ̂e,2ψe,2

)
, (4.11)

where ρ̂e,1 and ρ̂e,2 are the zero- and one-moments of the tangential component of ρ̂m on
the edge e ∈ EΩ ∪ ED , respectively. For i = 1, 2, ρ̂e,i is defined by

ρ̂e,i :=





γ1,e

∫
e si−1(τ 1|

K+
e
· te) ds + (1− γ1,e)

∫
e si−1(τ 1|

K−e
· te) ds for e ∈ EΩ ,

∫
e si−1(τ 1 · te) ds for e ∈ ED

(4.12)
for some constant γ1,e ∈ [0, 1].

Let τ 2 = −k∇h unc. Since τ 2 is piecewise constant, then it suffices to approximate it
using RT0. Define the explicit approximation σ̂nc(unc) in RT0 = span{φe : e ∈ E} by

σ̂nc(unc) =
∑

e∈E
σ̂e φe, (4.13)

where σ̂e is the normal component of σ̂nc(unc) on the edge e ∈ E defined by

σ̂e :=





γ2,e

∫
e(τ 2|

K+
e
· ne) ds + (1− γ2,e)

∫
e(τ 2|

K−e
· ne) ds for e ∈ EΩ ,

∫
e(τ 2|e · ne) ds for e ∈ ED

(4.14)

for some constant γ2,e ∈ [0, 1]. To ensure the efficiency bound independent of the size of
jumps, we choose

γ2,e =

√
kK−

e√
kK+

e
+

√
kK−

e

. (4.15)

Let τ 3 = ∇h unc. Since τ 3 is piecewise constant, we approximate it in ND1 =
span{ψe : e ∈ E} by

ρ̂nc(unc) =
∑

e∈E
ρ̂e ψe, (4.16)

where ρ̂e is the tangential component of ρ̂nc(unc) on the edge e ∈ E defined by

ρ̂e :=





γ3,e

∫
e(τ 3|

K+
e
· te) ds + (1− γ3,e)

∫
e(τ 3|

K−e
· te) ds for e ∈ EΩ ,

∫
e(τ 3 · te)ds for e ∈ EN

(4.17)
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for some constant γ3,e ∈ [0, 1]. To ensure the efficiency bound independent of the size of
jumps, we choose

γ3,e =

√
kK+

e√
kK+

e
+

√
kK−

e

. (4.18)

5 A Posteriori Error Estimators

5.1 Error estimators for mixed elements

For any element K ∈ T , define the following local a posteriori error estimator based on
the solution of (4.2) by

ηm,K = ‖k1/2(ρm + k−1σm)‖0,K .

Then the corresponding global a posteriori error estimator is

ηm = ‖k1/2(ρm + k−1σm)‖0,Ω = min
τ∈ND2

‖k1/2(τ + k−1σm)‖0,Ω. (5.1)

This estimator essentially measures the violation of the continuity of the tangential deriva-
tives of the true solution on the edges by the mixed elements.

Based on the explicit approximation in (4.11), we define explicit local a posteriori error
estimator by

η̂m,K = ‖k1/2(ρ̂m + k−1σm)‖0,K , (5.2)

for any K ∈ T and explicit global a posteriori error estimator by

η̂m = ‖k1/2(ρ̂m + k−1σm)‖0,Ω. (5.3)

It is obvious that
ηm ≤ η̂m. (5.4)

5.2 Error estimators for nonconforming elements

For any element K ∈ T , define the following local a posteriori error estimator based on
the solutions of (4.5) and (4.4) by

η2
nc,K = c2η2

nc,1,K + (1− c2)η2
nc,2,K for 0 < c < 1 (5.5)

with ηnc,1,K and ηnc,2,K given by

ηnc,1,K = ‖k−1/2σnc + k1/2∇unc‖0,K and ηnc,2,K = ‖k1/2(ρnc −∇unc)‖0,K .

Then the corresponding global a posteriori error estimator is

η2
nc = c2η2

nc,1 + (1− c2)η2
nc,2 for 0 < c < 1. (5.6)
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with

ηnc,1 = ‖k−1/2σnc + k1/2∇hunc‖0,Ω = min
τ∈VN

‖k−1/2τ + k1/2∇hunc‖0,Ω, (5.7)

ηnc,2 = ‖k1/2(ρnc +∇hunc)‖0,Ω = min
τ∈WD

‖k1/2(τ −∇hunc)‖0,Ω (5.8)

The reason we put a c here is to make the error estimator is comparable with the energy
norm of the true error, so the efficiency constant can be close to 1. In the real computa-
tion, we can choose c2 = 1/2. This estimator essentially measures the violations of the
continuity of both the normal components of the flux and the tangential derivatives of the
true solution on the edges by the nonconforming elements.

Next, based on the explicit approximations in (4.13) and (4.16), we define explicit local
a posteriori error estimator by

η̂2
nc,K = c2η̂2

nc,1,K + (1− c2)η̂2
nc,2,K for 0 < c < 1 (5.9)

with

η̂nc,1,K = ‖k−1/2σ̂nc,RT0 + k1/2∇unc‖0,K and η̂nc,2,K = ‖k1/2(ρ̂nc,N −∇unc)‖0,K

for any K ∈ T . The corresponding explicit global a posteriori error estimator is given by

η̂2
nc = c2η̂2

nc,1 + (1− c2)η̂2
nc,2 for 0 < c < 1 (5.10)

with

η̂nc,1 = ‖k−1/2σ̂nc,RT0 + k1/2∇unc‖0,Ω and η̂nc,2 = ‖k1/2(ρ̂nc,N −∇unc)‖0,Ω.

Let unc and ũnc be the solutions of (3.6) with the right-hand sides f and fh, respec-

tively, where fh is piecewise constant with fh|K =
1
|K|

∫

K
f dx for all K ∈ T . It is easy

to see that
‖k1/2∇h(unc − ũnc)‖0,Ω ≤ C ‖k−1/2h(f − fh)‖0,Ω. (5.11)

Let σm ∈ RT0 be the mixed finite element approximation and let xK be the center of

inertia of K. By the well-known fact [32] that (σm + k∇hũnc)|K = −1
2

fh|K(x− xK), we
have

(σm + k∇hunc)|K = −1
2

fh|K(x− xK) + (k∇hunc − k∇hũnc)K .

Hence, to avoid the flux recovery, we may replace ηnc,1,K by

ηnc,f,K =
1
2
‖k−1/2fh(x− xK)‖0,K

to obtain the following estimators

η̃2
nc,K = η2

nc,f,K + η2
nc,2,K ∀K ∈ T , η̃2

nc = c2η2
nc,f + (1− c2)η2

nc,2 (5.12)

15



and

η̄2
nc,K = η2

nc,f,K + η̂2
nc,2,K ∀K ∈ T , η̄2

nc = c2η2
nc,f + (1− c2)η̂2

nc,2, (5.13)

where ηnc,f =
1
2

( ∑

K∈T
‖k−1/2fh(x− xK)‖2

0,K

)1/2

. Now, it follows from (5.7), (5.11), and

the triangle inequality that

ηnc ≤ η̂nc, ηnc ≤ η̃nc + C ‖k−1/2h(f − fh)‖0,Ω, and ηnc ≤ η̄nc + C ‖k−1/2h(f − fh)‖0,Ω.
(5.14)

6 Clément-type Interpolations

Clément-type interpolation operators (see, e.g., [8, 38]) are often used for establishing
the reliability bound of a posteriori error estimators. We define a weighted Clément-type
interpolation operator and to state its approximation and stability properties (see more
details in [13]).

Denote by N and NK the sets of all vertices of the triangulation T and of element
K ∈ T , respectively. For any z ∈ N , denote by φz the nodal basis function, let ωz =
suppt (φz), and denote by ω̂z the union of elements in ωz where the coefficient kK achieves
the maximum for K ⊂ ωz. For a given function v, define its weighted average over ω̂z by

−
∫

ω̂z

v dx =

∫
ω̂z

v φz dx∫
ω̂z

φz dx
. (6.1)

Now, following [8], define the interpolation operator J : L2(Ω) → UD by

J v =
∑

z∈N
(πzv)φz(x), (6.2)

where the nodal value at z is defined by

(J v)(z) = πzv =

{
−
∫
ω̂z

v dx z ∈ N \ ΓD,

0 z ∈ N ∩ ΓD.

In this and next sections, assume that the Hypothesis 2.7 in [8] holds. That is, assume
that any two different subdomains Ω̄i and Ω̄j , which share at least one point, there is a
connected path passing from Ω̄i to Ω̄j through adjacent subdomains such that the diffusion
coefficient k(x) is monotone along this path. This assumption is weakened to the quasi-
monotonicity in [38].

Lemma 6.1. [13] For any K ∈ T and v ∈ H1
D(Ω), the following estimates hold

‖v − J v‖0,K ≤ C hKk
−1/2
K ‖k1/2∇v‖0,∆K

(6.3)

and
‖∇(v − J v)‖0,K ≤ C k

−1/2
K ‖k1/2∇v‖0,∆K

, (6.4)

where ∆K is the union of all elements that share at least one vertex with K.
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Lemma 6.2. [13] For any v ∈ H1
D(Ω), there exists a positive constant C such that

|(f, v − J v)| ≤ C Hf ‖k1/2∇v‖0,Ω. (6.5)

with

Hf =


 ∑

z∈N∩(F∪ΓD)

∑

K⊂ωz

k−1
K h2

K ‖f‖2
0,K +

∑

z∈N\(F∪ΓD)

∑

K⊂ωz

k−1
K h2

K ‖f −−
∫

ωz

f dx‖2
0,K




1/2

.

Remark 6.3. The second term in Hf is a higher order term for f ∈ L2(Ω) and so is the
first term for f ∈ Lp(Ω) with p > 2 (see [18]).

Denote by ω̃z the union of elements in ωz where the coefficient kK achieves the mini-
mum for K ⊂ ωz. Similarly, we can define a robust interpolation J ′ : L2(Ω) → UN , where
UN = {v ∈ U : v = 0 on ΓN}. Similar proofs as those of Lemmas 6.1 and 6.2 (see [13])
yield the following properties.

Lemma 6.4. For any K ∈ T and v ∈ H1(Ω), the following estimates hold

‖v − J ′v‖0,K ≤ C hKk
1/2
K ‖k−1/2∇⊥v‖0,∆K

(6.6)

and
‖∇⊥(v − J ′v)‖0,K ≤ C k

1/2
K ‖k−1/2∇⊥v‖0,∆K

. (6.7)

Lemma 6.5. For any v ∈ H1(Ω), there exists a positive constant C such that

|(f, v − J ′v)| ≤ C Gf ‖k−1/2∇⊥v‖0,Ω (6.8)

where

Gf =


 ∑

z∈N∩(F∪ΓN )

∑

K⊂ωz

kKh2
K ‖f‖2

0,K +
∑

z∈N\(F∪ΓN )

∑

K⊂ωz

kKh2
K ‖f −−

∫

ωz

f dx‖2
0,K




1/2

.

7 Reliability and Efficiency Bounds

This section analyzes the estimators introduced in section 5 by establishing the reliability
and efficiency bounds with constants independent of the size of jumps. It is now a standard
technique (see, e.g., [5]) to analyze estimators for the mixed and nonconforming elements
by using the Helmholtz decomposition (see, e.g., [26]) stated in the following lemma.

Lemma 7.1. For a vector-valued function τ ∈ L2(Ω)2, there exist α ∈ H1
D(Ω) and β ∈

H1
N (Ω) such that

τ = k(x)∇α +∇⊥β. (7.1)

Integrating by parts gives
(∇α, ∇⊥β) = 0 (7.2)

for all α ∈ H1
D(Ω) and all β ∈ H1

N (Ω). Hence, we have

(k−1τ , τ ) = (k∇α,∇α) + (k−1∇⊥β,∇⊥β). (7.3)
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7.1 Reliability on mixed elements

Theorem 7.2. The estimator ηm defined in (5.1) satisfies the following global reliability
bound:

‖k−1/2Em‖0,Ω ≤ C
(
ηm + ‖k−1/2h(f − fh)‖0,Ω + G∇h×(k−1σm)

)
. (7.4)

If ∇h × (k−1σm) = 0, then

‖k−1/2Em‖0,Ω ≤ C
(
ηm + ‖k−1/2h(f − fh)‖0,Ω

)
. (7.5)

Proof. Let Em = σ − σm = −k∇u − σm ∈ HN (div; Ω), by Lemma 7.1 and (7.3), there
exist αm ∈ H1

D(Ω) and βm ∈ H1
N (Ω) such that

Em = k∇αm +∇⊥βm

and that
‖k−1/2Em‖2

0,Ω = ‖k1/2∇αm‖2
0,Ω + ‖k−1/2∇⊥βm‖2

0,Ω. (7.6)

The upper bound of the first term in (7.6) follows easily from (7.2), integration by parts,
Em · n = 0 on ΓN , αm = 0 on ΓD, the first equation in (3.3), and the Cauchy-Schwarz
inequality that

‖k1/2∇αm‖2
0,Ω = (Em, ∇αm) = −(∇ · Em, αm) = (∇ · Em, Qhαm − αm)

= (f − fh, Qhαm − αm) ≤ C ‖k−1/2h(f − fh)‖0,Ω‖k1/2∇αm‖0,Ω,

which implies
‖k1/2∇αm‖2

0,Ω ≤ C ‖k−1/2h(f − fh)‖2
0,Ω. (7.7)

To bound the second term in (7.6), ‖k−1/2∇⊥βm‖2
0,Ω, notice first that ∇⊥UN ⊂ RT0.

Then the first equation in (3.3) gives

(k−1Em, ∇⊥v) = (∇ · ∇⊥v, em) = 0 ∀ v ∈ UN . (7.8)

By (7.2), the fact that J ′βm ∈ UN , (7.8), (1.3), boundary conditions of ρm −∇u on ΓD

and (I − J ′)βm on ΓN , the Cauchy-Schwarz inequality, and (6.7), we have

‖k−1/2∇⊥βm‖2
0,Ω = (k−1Em, ∇⊥βm) = (k−1Em, ∇⊥(βm − J ′βm))

=
(
ρm −∇u, ∇⊥(I − J ′)βm

)
−

(
ρm + k−1σm, ∇⊥(I − J ′)βm

)

= − (∇×ρm, (I − J ′)βm

)−
(
ρm + k−1σm, ∇⊥(I − J ′)βm

)

≤ − (∇×ρm, (I − J ′)βm

)
+ C ηm ‖k−1/2∇⊥βm‖0,Ω

= − (∇h × (ρm + k−1σm), (I − J ′)βm

)
+

(∇h × (k−1σm), (I − J ′)βm

)

+C ηm ‖k−1/2∇⊥βm‖0,Ω.
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Using the Cauchy-Schwartz inequality, the inverse inequality, (6.6), and (6.8), we obtain
that

(∇h × (ρm + k−1σm), (I − J ′)βm

)

≤ C ‖k1/2h∇h × (ρm + k−1σm)‖0,Ω ‖k−1/2h−1(I − J ′)βm‖0,Ω

≤ C ηm ‖k−1/2∇⊥βm‖0,Ω

and that
(∇h × (k−1σm), (I − J ′)βm

) ≤ C G∇h×(k−1σm)‖k−1/2∇⊥βm‖0,Ωz .

Combining the above three inequalities and dividing the quantity ‖k−1/2∇⊥βm‖0,Ω and
squaring on both sides give

‖k−1/2∇⊥βm‖2
0,Ω ≤ C

(
ηm + G∇h×(k−1σm)

)2
,

which, together with (7.6) and (7.7), yields (7.4).
Finally, (7.5) is a direct consequence of (7.4) and the fact that G0 = 0. This completes

the proof of the theorem.

Remark 7.3. In the case that VN = RT0, the condition

∇h × (k−1σm) = 0

holds.

Corollary 7.4. The reliability bounds in Theorem 7.2 hold for the explicit error estimator
η̂m as well.

Proof. The corollary is a direct consequence of Theorem 7.2 and (5.4).

7.2 Reliability on nonconforming elements

Theorem 7.5. The estimator ηnc defined in (5.6) satisfies the following global reliability
bound:

‖k1/2∇henc‖0,Ω ≤ C (ηnc + Hf ) (7.9)

Proof. Let enc = u − unc, by Lemma 7.1 and (7.3), there exist αnc ∈ H1
D(Ω) and βnc ∈

H1
N (Ω) such that

k∇henc = k∇αnc +∇⊥βnc

and that
‖k1/2∇he‖2

0,Ω = ‖k1/2∇αnc‖2
0,Ω + ‖k−1/2∇⊥βnc‖2

0,Ω (7.10)

By using (3.8), integrations by parts, boundary conditions on k∇u + σnc and (I −
J )αnc, the Cauchy-Schwarz inequality, (6.4), the fact that ∇h · (k∇hunc) = 0, the inverse
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inequality, (6.3), and (6.5), we have

‖k1/2∇αnc‖2
0,Ω = (k∇henc, ∇αnc) = (k∇henc, ∇(I − J )αnc))

= (k∇u + σnc, ∇(I − J )αnc))− (σnc + k∇hunc, ∇(I − J )αnc)

≤ (f −∇ · σnc, αnc − Jαnc) + C ηnc,1 ‖k1/2∇αnc‖0,Ω

= (f, αnc − Jαnc)− (∇h · (σnc + k∇hunc), αnc − Jαnc) + C ηnc,1 ‖k1/2∇αnc‖0,Ω

≤ C (ηnc,1 + Hf ) ‖k1/2∇αnc‖0,Ω.

To bound the second term in (7.10), first by integration by parts and the orthogonality
of nonconforming elements, i.e.,

∫
e[unc] ds = 0 for any e ∈ E , we have

(∇hunc, ∇⊥J ′βnc) =
∑

K∈T

∫

e∈∂K
unc (∇⊥J ′βnc) · n ds

=
∑

e∈E
(∇⊥J ′βnc) · n

∫

e
[unc] ds = 0.

It then follows from integration by parts, boundary conditions on ρnc and (I − J ′)βnc,
the fact that ∇h × (k−1∇hunc) = 0, the Cauchy-Schwarz and inverse inequalities, (6.7),
and (6.6) that

‖k−1/2∇⊥βnc‖2
0,Ω = (∇he, ∇⊥βnc) = (−∇hunc, ∇⊥(I − J ′)βnc)

= (ρnc −∇hunc, ∇⊥(I − J ′)βnc)− (ρnc, ∇⊥(I − J ′)βnc)

= (ρnc −∇hunc, ∇⊥(I − J ′)βnc) +
(∇n × (ρnc −∇hunc), (I − J ′)βnc

)

≤ C ηnc,2 ‖k−1/2∇⊥βnc‖0,Ω.

Now, the reliability bound in (7.9) is a direct consequence of the above two inequalities.
This completes the proof of the theorem.

Corollary 7.6. Let η denote the estimators η̃nc, η̂nc, or η̄nc, then we have the following
reliability bound

‖k1/2∇henc‖0,Ω ≤ C
(
η + Hf + ‖k−1/2h(f − fh)‖0,Ω

)
.

Proof. The corollary is a direct consequence of Theorem 7.5 and (5.14).

7.3 Efficiency

To establish the efficiency bounds, we make use of the known result on the edge error
estimators in [16]. To this end, for any e ∈ EΩ and any vector-valued function τ that is
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piecewise linear with respect to the triangulation T , denote the jump of the normal and
tangential components of τ across e = K+

e ∩K−
e by

Jn,e(τ ) = [τ · ne] = (τ |K+
e
− τ |K−

e
) · ne and Jt,e(τ ) = [τ · te] = (τ |K+

e
− τ |K−

e
) · te,

respectively. For any e ∈ E\EΩ, we set

Jn,e(τ ) = 0, and Jt,e(τ ) = 0.

7.3.1 Efficiency on mixed elements

We define an edge error estimator for mixed elements as follows:

ηm,E :=

(∑

e∈E
η2

m,e

)1/2

with ηm,e =
(

kK+
e

+ kK−
e

2
he

∫

e
|Jt,e(k−1σm)|2 ds

)1/2

. (7.11)

Proposition 7.7. There exists a constant C > 0 such that

ηm,e ≤ C ‖k−1/2∇⊥βm‖0,ωe (7.12)

and that
ηm,E ≤ C ‖k−1/2∇⊥βm‖0,Ω ≤ C ‖k−1/2Em‖0,Ω. (7.13)

Proof. A similar proof as those of Lemmas 6.1 and 6.2 in [15] shows that there exists a
constant C > 0 impendent of k such that

he

∫

e
|Jt,e(k−1σm)|2 ds ≤ C ‖k−1∇⊥βm‖2

0,ωe
.

Hence,

η2
m,e ≤ C (kK+

e
+ kK−

e
)‖k−1∇⊥βm‖2

0,ωe

= C (kK+
e

+ kK−
e

)(k−1

K+
e
‖k−1/2∇⊥βm‖2

0,K+
e

+ k−1

K−
e
‖k−1/2∇⊥βm‖2

0,K−
e

)

≤ C ‖k−1/2∇⊥βm‖2
0,ωe

,

which proves (7.12). Summing it over all edges e ∈ E leads to (7.13).

Theorem 7.8. The following local efficiency bound for the explicit error estimator η̂m,K

holds:
η̂2

m,K ≤ C ‖k−1/2∇⊥βm‖0,ωK , (7.14)

where ωK is the union of elements sharing a common edge with K. The following global
efficiency bound holds for all error estimators:

ηm ≤ η̂m ≤ C ‖k−1/2∇⊥βm‖0,Ω ≤ C ‖k1/2Em‖0,Ω. (7.15)
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Proof. (7.15) follows straightforward from (5.4) and (7.14). To show the validity of (7.14),
by Proposition 7.7 it suffices to prove that for any element K ∈ T

η̂2
m,K ≤ C

∑

ε∈∂K

η2
m,e = C

∑

e∈∂K\∂Ω

he

2
(kK+

e
+ kK−

e
)
∫

e
|Jt,e(k−1σm)|2 ds. (7.16)

To do so, for any edge e ∈ ∂K, without loss of generality let K be K+
e and let K−

e be the
adjacent element with the common edge e. Since τ = k−1σm is piecewise linear, we have

τ |K =
∑

e∈∂K

(
τe,1,K ψe,1 + τe,2,K ψe,2

)
,

where τe,i,K =
∫
e si−1(τ · te)K ds is the (i− 1)-th moment of the tangential component of

τ on e and ψe,i is the nodal basis function of ND2. For any x ∈ K,

ρ̂m + τ =
∑

e∈∂K

(ρ̂e,1 − τe,1,K) ψe,1 + (ρ̂e,2 − τe,2,K) ψe,2

=
∑

e∈∂K\∂Ω

(1− γ1,e)
((

τe,1,K−
e
− τe,1,K

)
ψe,1 +

(
τe,2,K−

e
− τe,2,K

)
ψe,2

)

=
∑

e∈∂K\∂Ω

(γ1,e − 1)
(

ψe,1

∫

e
Jt,e(τ )ds + ψe,2

∫

e
sJt,e(τ )ds

)

=
∑

e∈∂K\∂Ω

(γ1,e − 1)
(
je,1 ψe,1 + je,2 ψe,2

)

with je,i =
∫
e si−1Jt,e(τ )ds. Since Jt,e(τ ) is a linear function on e, Lemma 4.2 gives

Jt,e(τ ) = je,1 (ψe,1 · te) + je,2 (ψe,2 · te)

and ∫

e
|Jt,e(τ )|2ds = j2

e,1

∫

e
|ψe,1|2ds + j2

e,2

∫

e
|ψe,2|2ds.

Now, by the triangle inequality and the fact that
∫
K |ψe,i|2dx ≤ Che

∫
e |ψe,i|2ds, we have

η̂m,K = ‖k1/2(ρ̂m + τ )‖0,K

≤ C


kK

∑

e∈∂K\∂Ω

(1− γ1,e)
(

j2
e,1

∫

K
|ψe,1|2 dx + j2

e,2

∫

K
|ψe,2|2 dx

)


1/2

≤ C


kK

∑

e∈∂K\∂Ω

he

∫

e
|Jt,e(τ )|2 ds




1/2

≤ C
∑

ε∈∂K\∂Ω

η2
m,e.

This proves (7.16) and, hence, the theorem.
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7.3.2 Efficiency on nonconforming elements

A weighted edge error estimator for nonconforming elements is defined by

ηnc,E :=

(∑

e∈E
η2

nc,e

)1/2

with

η2
nc,e =

2he

kK+
e

+ kK−
e

∫

e
|Jn,e(k∇hunc)|2 ds +

he kK+
e

kK−
e

kK+
e

+ kK−
e

∫

e
|Jt,e(∇hunc)|2 ds. (7.17)

Theorem 7.9. There exists a constant C > 0 such that

η2
nc,e ≤ C

(
‖k1/2∇henc‖2

0,ωe
+

∑

K∈T ∩ωe

h2
K

kK
‖f − fh‖2

0,K

)
(7.18)

and

ηnc,E ≤ C ‖k1/2∇henc‖0,Ω + C

( ∑

K∈T

h2
K

kK
‖f − fh‖2

0,K

)1/2

. (7.19)

Proof. A similar proof as that for the conforming linear elements in [38] shows that the
first term of η2

nc,e defined in (7.17) satisfies (7.18). It then suffices to show that (7.18)
holds for the second term of η2

nc,e. To do so, we recall the following inequality (estimate
(3.3) in [17]):

he

∫

e
|Jt,e(∇hunc)|2 ds ≤ C ‖∇henc‖2

0,ωe
, (7.20)

which holds with a constant C > 0 independent of the jump of k. Hence,

he kK+
e

kK−
e

kK+
e

+ kK−
e

∫

e
|Jt,e(∇hunc)|2 ds ≤ C

kK+
e

kK−
e

kK+
e

+ kK−
e

‖∇henc‖2
0,ωe

≤ C

(
kK−

e

kK+
e

+ kK−
e

‖k1/2∇he‖2
0,K+

e
+

kK+
e

kK+
e

+ kK−
e

‖k1/2∇henc‖2
0,K−

e

)

≤ C ‖k1/2∇henc‖2
0,ωe

.

This proves (7.18). The global bound (7.19) is a direct result of (7.18).

Theorem 7.10. The following local efficiency bound for the explicit error estimator η̂nc,K

defined in (5.9) holds:

η̂2
nc,K ≤ C


‖k1/2∇henc‖2

0,ωK
+

∑

T∈ωK

h2
T

kT
‖f − fh‖2

0,T


 , (7.21)
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where ωK is the union of elements sharing a common edge with K. The following global
efficiency bound for both error estimators ηnc and η̂nc holds:

ηnc ≤ η̂nc ≤ C ‖k1/2∇henc‖0,Ω + C

( ∑

K∈T

h2
K

kK
‖f − fh‖2

0,K

)1/2

. (7.22)

Proof. (7.22) is a direct consequence of (5.14) and (7.21). To show the validity of (7.21),
by Theorem 7.9 it suffices to prove that for any element K ∈ T

η̂2
nc,K ≤ C

∑

ε∈∂K

η2
nc,e. (7.23)

To this end, for any edge e ∈ ∂K, without loss of generality let ne be the outward unit
vector normal to ∂K and denote by Ke the adjacent element with the common edge e.
Let τ 2 = −k∇hunc that is piecewise constant, then τ 2|K may be represented in terms of,
{φe}e∈∂K , the nodal basis function of RT0:

τ 2|K =
∑

e∈∂K

τ2,e,K φe.

For any x ∈ K, (4.13) and (4.14) give

σ̂nc − τ 2 =
∑

e∈∂K

(σ̂e − τ2,e,K) φe =
∑

e∈∂K\∂Ω

(γ2,e − 1) (τ2,e,K − τ2,e,Ke) φe

=
∑

e∈∂K\∂Ω

(γ2,e − 1)Jn,e(τ 2) φe.

Similarly, for τ 3 = −∇hunc and any x ∈ K, we have

ρ̂nc − τ 3 =
∑

e∈∂K

(ρ̂e − τ3,e,K) ψe(x) =
∑

e∈∂K\∂Ω

(γ3,e − 1) (τ3,e,K − τ3,e,Ke) ψe

=
∑

e∈∂K\∂Ω

(γ3,e − 1)Jt,e(τ 3) ψe.

Now, it follows from the triangle inequality, the facts that
∫

K
|φe|2 dx ≤ C h2

e and
∫

K
|ψe|2 dx ≤ C h2

e,
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(4.15), and (4.18) that

η̂2
nc,K = c2‖k−1/2 (σ̂nc − τ 2) ‖2

0,K + (1− c2)‖k1/2 (ρ̂nc − τ 3) ‖2
0,K

≤ C
(
k−1

K ‖σ̂nc − τ 2‖2
0,K + kK‖σ̂nc − τ 3‖2

0,K

)

≤ C


 ∑

e∈∂K\∂Ω

2k−1
K (1− γ2,e)2h2

e|Jn,e(τ 2)|2 +
∑

e∈∂K\∂Ω

kK(1− γ3,e)2h2
e|Jt,e(τ 3)|2




= C




∑

e∈∂K\∂Ω

he(
k

1/2
K + k

1/2
Ke

)2

(
2

∫

e
|Jn,e(τ 2)|2 ds + kK kKe

∫

e
|Jt,e(τ 3)|2 ds

)



≤ C


 ∑

e∈∂K\∂Ω

he

kK + kKe

(
2

∫

e
|Jn,e(τ 2)|2 ds + kK kKe

∫

e
|Jt,e(τ 3)|2 ds

)


= C


 ∑

e∈∂K\∂Ω

η2
nc,e


 ,

which proves (7.23) and, hence, (7.21). This completes the proof of the theorem.

Theorem 7.11. There exists a positive constant C such that

η̄nc ≤ C
(
‖k1/2∇henc‖0,Ω + ‖k1/2h(f − fh)‖0,Ω

)
. (7.24)

Proof. (7.24) is a direct consequence of Theorem 7.10 and the following inequality (The-
orem 3.2 in [2])

η̂nc,f,K ≤ C
(
‖k1/2∇αnc‖0,K + ‖k−1/2h(f − fh)‖0,K

)
.

8 Numerical Experiments

In this section, we report some numerical results for an interface problem with intersecting
interfaces used by many authors, e.g., [27, 33, 19], which is considered as a benchmark test
problem. For this test problem, we show numerically that the recovery-based a posteriori
error estimators introduced in [16] for both mixed and nonconforming elements over-
refine regions along the interfaces and, hence, fail to reduce the global error. For the same
test problem, numerical results show that the estimators introduced in this paper are
accurate and generate meshes with optimal decay of the error with respect to the number
of unknowns.

To this end, let Ω = (−1, 1)2 and

u(r, θ) = rβµ(θ)
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in the polar coordinates at the origin with

µ(θ) =





cos((π/2− σ)β) · cos((θ − π/2 + ρ)β) if 0 ≤ θ ≤ π/2,
cos(ρβ) · cos((θ − π + σ)β) if π/2 ≤ θ ≤ π,
cos(σβ) · cos((θ − π − ρ)β) if π ≤ θ ≤ 3π/2,
cos((π/2− ρ)β) · cos((θ − 3π/2− σ)β) if 3π/2 ≤ θ ≤ 2π,

where σ and ρ are numbers. The function u(r, θ) satisfies the interface equation in (2.1)
with ΓN = ∅, f = 0, and

k(x) =

{
R in (0, 1)2 ∪ (−1, 0)2,

1 in Ω \ ([0, 1]2 ∪ [−1, 0]2).

The numbers β, R, σ, and ρ satisfy some nonlinear relations (e.g., [33, 19]). For example,
when β = 0.1, then

R ≈ 161.4476387975881, ρ = π/4, and σ ≈ −14.92256510455152.

Note that when β = 0.1, this is a difficult problem for computation.

Remark 8.1. This problem does not satisfy Hypothesis 2.7 in [8] and the distribution of
its coefficients is not quasi-monotone.

Note that the solution u(r, θ) is only in H1+β−ε(Ω) for any ε > 0 and, hence, it is very
singular for small β at the origin. This suggests that refinement is centered around the
origin. In this example we choose η̃nc and η̄nc with constant c2 = 0.5 as the implicit and
explicit error estimators for the nonconforming method, respectively.

Starting with a coarse triangulation T0, a sequence of meshes is generated by using
standard adaptive meshing algorithm that adopts the Dörfler’s bulk marking strategy [24]:
construct a minimal subset T̂ of T such that

∑

K∈T̂
η2

K
≥ θ2

E

∑

K∈T
η2

K
(8.1)

with θE = 0.2. The choice of θE = 0.2 is not critical but recommended in [19] for
better performance. Marked triangles are refined regularly by dividing each into four
congruent triangles. Additionally, irregularly refined triangles are needed in order to make
the triangulation admissible. For more details on adaptive mesh refinement algorithms,
see, e.g., [10].

The true errors can be computed by the following identities

errm = ‖k1/2∇u + k−1/2σm‖2
0,Ω =

∫

∂Ω
u [n · (k∇u + 2σm)] ds + ‖k−1/2σm‖2

0,Ω

for the mixed method and

errnc = ‖k1/2∇h(u− unc)‖2
0,Ω

=
∫

∂Ω
(k∇u · n) u ds− 2

∑

K∈T

∫

∂K
(k∇unc · n) u ds +

∑

K∈T
‖k1/2∇unc‖2

0,K

26



for the nonconforming method. Since the true solution u is very smooth near the boundary,
the integrations on the boundary can be computed very accurately. We define the so-called
effectivity index:

eff-indexm :=
η

‖k1/2∇u + k−1/2σm‖0,Ω
and eff-indexnc :=

η

‖k1/2∇h(u− unc)‖0,Ω
,

and use the following stopping criteria:

rel-errm :=
‖k1/2∇u + k−1/2σm‖0,Ω

‖k−1/2σ‖0,Ω
≤ tol and rel-errnc :=

‖k1/2∇h(u− unc)‖0,Ω

‖k1/2∇u‖0,Ω
≤ tol.

Denote by l the number of levels of refinement and by N the number of vertices of trian-
gulation.

The error estimators introduced in [16] for both mixed and nonconforming finite ele-
ment approximations to the Poisson equations recover the gradient in the continuous linear
finite element space. A natural extension of these estimators to the interface problems
is to recover either the gradient or the flux again in the continuous linear finite element
space. More specifically, for the mixed method, let σm be the solution of (3.1) and let
ρm,f ∈ U2 and ρm,g ∈ U2 satisfy the following problems

(k−1ρm,f , τ ) = (k−1σm, τ ) ∀ τ ∈ U2

and (kρm,g, τ ) = −(σm, τ ) ∀ τ ∈ U2,

respectively. Then the corresponding error estimators are defined by

ηm,CB,f = ‖k−1/2(σm − ρm,f )‖0,Ω and ηm,CB,g = ‖k−1/2σm + k1/2ρm,g‖0,Ω.

For the nonconforming method, let unc be the solution of (3.6) and let ρnc,f ∈ U2 and
ρnc,g ∈ U2 satisfy the following problems

(k−1ρnc,f , τ ) = (−∇hunc, τ ) ∀ τ ∈ U2

and (kρnc,g, τ ) = (k∇hunc, τ ) ∀ τ ∈ U2.

Then the corresponding error estimators are defined by

ηnc,CB,f = ‖k1/2∇hunc + k−1/2ρnc,f‖0,Ω and ηnc,CB,g = ‖k1/2(∇hunc − ρnc,g)‖0,Ω.

We start with the coarsest triangulation T0 obtained from halving 16 congruent squares
by connecting the bottom left and upper right corners. We report numerical results with
the stopping criterion tol = 0.1. From Table 1 and Table 2, Figures 1, 2, 7, and 8, it
is clearly that the CB estimators introduce unnecessary refinements along the interfaces.
Meshes generated by ηm, η̂m, ηnc, η̂nc, and η̄nc are similar. By inspecting the effectivity
index, all the error estimators introduced in this paper are accurate. Moreover, the slope
of the log(dof)-log(relative error) for all estimators is −1/2, which indicates the optimal
decay of the error with respect to the number of unknowns.
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Figure 1: mesh generated by ηm,CB,f Figure 2: mesh generated by ηm,CB,g

Figure 3: mesh generated by ηm
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Figure 4: error and estimator ηm

Figure 5: mesh generated by η̂m
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Figure 6: error and estimator η̂m
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l N err rel-err η eff-index

ηm 66 3329 0.0558 0.0988 0.0623 1.1170
η̂m 69 2693 0.0560 0.0992 0.0815 1.4537

ηm,CB,f 96 7169 0.0557 0.0986 0.0731 1.3110
ηm,CB,g 83 4021 0.0556 0.0984 0.1845 3.3208

Table 1: Comparison of estimators for relative error less than 0.1 for mixed methods

Figure 7: mesh generated by ηnc,CB,f Figure 8: mesh generated by ηnc,CB,g

Figure 9: mesh generated by ηnc
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Figure 11: mesh generated by η̂nc
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Figure 12: error and estimator η̂nc

Figure 13: mesh generated by η̄nc
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Figure 14: error and estimator η̄nc

l N err rel-err η eff-index

ηnc 70 3343 0.0479 0.0982 0.0479 0.8636
η̄nc 72 2780 0.0557 0.0985 0.0566 1.0170
η̂nc 71 2960 0.0563 0.0997 0.0683 1.2133

ηnc,CB,f 97 7090 0.0562 0.0995 0.0736 1.3083
ηnc,CB,g 102 6369 0.0562 0.0995 0.0780 1.3879

Table 2: Comparison of estimators for relative error less than 0.1 for nonconforming
methods
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