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Abstract
In this paper, we consider the Dirichlet boundary control problem of elliptic partial differ-
ential equations, and get a coupling system of the state and adjoint state by cancelling the
control variable in terms of the control rule, and prove that this coupling system is equiv-
alent to the known Karush–Kuhn–Tucker (KKT) system. For corresponding finite element
approximation, we find a measure of the numerical errors by employing harmonic extension,
based on this measure, we develop residual-based a posteriori error analytical technique
for the Dirichlet boundary control problem. The derived estimators for the coupling system
and the KKT system are proved to be reliable and efficient over adaptive mesh. Numerical
examples are presented to validate our theory.

Keywords Dirichlet boundary control problem · A coupling system of the state and adjoint
state · The KKT system · Equivalence · A posteriori error estimates · Reliability and
efficiency
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1 Introduction

Let � ⊂ R
d , d ≥ 2, be a bounded polygonal or polyhedral convex domain with Lipschitz

boundary � = ∂�. Consider the following Dirichlet boundary control problem of elliptic
partial differential equations (PDEs):

This work is supported in part by the Natural Science Foundation of Chongqing (cstc2018jcyjAX490), the
Education Science Foundation of Chongqing (KJZD-K201900701), and the Team Building Projection for
Graduate Tutors in Chongqing (JDDSTD201802).

B Shaohong Du
duzheyan.student@sina.com

Zhiqiang Cai
caiz@purdue.edu

1 School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China

2 Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN
47907-2067, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01644-3&domain=pdf


36 Page 2 of 25 Journal of Scientific Computing (2021) 89 :36

min J (u), J (u) = 1

2
||y − yd ||2L2(�)

+ γ

2
||u||2L2(�)

, (1.1)

where γ > 0 and y is the solution of the Poisson equation with nonhomogeneous Dirichlet
boundary conditions

− �y = f in �, (1.2)

y = u on �. (1.3)

There have been some efforts on the error estimates for finite element approximation to the
distributed control problems governed by PDEs, since Falk and Geveci made the pioneering
works in the literature [1,2]. For semilinear elliptic control problem, the error estimates on
the control were derived by Arada et al. [3,4] in the L∞ and L2 norms; For some important
flow control problems, their error estimates of finite element approximation were studied in
[5,6], and the study of the Neumann boundary control problem was carried out by Casas et
al. [7].

It is well known that the Dirichlet boundary control plays an important role in many
applications such as flow control problems and has been a hot topic for decades. However, the
Dirichlet boundary control problems are extremely difficult to solve from both the theoretical
and the numerical points of view, because the Dirichlet boundary data cannot be directly
involved in a standard variational setting for the PDEs. On the one hand, the traditional finite
element (FE) method such as [8–12] deals with the state variable in a very weak sense; on the
other hand, the attempt of the first order optimality condition involves the normal derivative
of the adjoint state on the boundary of the domain. Therefore, it is crucial to obtain this
normal derivative numerically by using additional information. But in doing so the problem
becomes complicated in both theoretical analysis and numerical practice.

To overcome the difficultymentioned above, two remedies to deal with the control variable
were presented in [13–15]. One of them was to replace the L2 norm in the cost functional
with the H1/2 norm because the H1/2(�)-setting yields smoother solution which is more
favorable in practice. In fact, the L2(�)-setting is more popular because it is easier to derive
the first order optimality condition. Note that both imposed the Dirichlet boundary condition
as essential boundary condition. The other was to approximate the nonhomogeneous Dirich-
let boundary condition with a Robin boundary condition or weak boundary penalization.
However, the former changes the problem and the latter pays expensive cost to deal with
penalization. Note that techniques similar to [13] have been applied in [14–16].

Recently, the mixed FE method for the Dirichlet boundary control problem was presented
byGong et al. [17],where the optimal control and the adjoint statewere involved in variational
form in a natural sense. This approach makes the theoretical analysis straightforward, but the
corresponding fluxes of the two states are involved. It is pointed out that themixed FEmethod
obtained the same rate of convergence as the order of regularity of the control on boundary.
Very recently, a hybridizable discontinuous Galerkin method was analyzed by Hu et al. [18],
where they obtained optimal a priori error estimates for the control by only solving the trace
of the primal variables on the inter-element boundaries which comes from the hybridization
of the scheme.

Based on both the fact that the control u is equal to the restriction of the state y to the
boundary [see the original Eq. (1.3)], and the fact that the restriction of an approximation
of the state to the boundary is naturally an approximation of the control, we realise that the
restriction of the numerical errors for the state to the boundary can be used to measure the
numerical error of the control in L2(�)-norm. In particular, the state y and its adjoint state
z will be coupled with the original Eq. (1.3) and an extra Eq. (2.6) as well as the right-
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hand side term y of the Eq. (2.4), i.e., the control and the normal derivative of the adjoint
state along the boundary can be cancelled. This idea is different from the one in literatures
[8–16], where the original Eq. (1.3) and an extra Eq. (2.6) have been taken into account in
variational formulation. Note that for the constrained case, since the variational inequality
can be equivalently written as a projection of the adjoint state, we can formally eliminate
the control, at this moment, we are not sure if our approach is applicable to the control
constrained case.

Owing to this observation above, Du et al. developed a variational setting in [19], and
established its well-posedness (unique solvability and stability), and analyzed finite element
method based on this variational formulation. The derived estimate is optimal for the control
variable, but it is not for the state and adjoint variables. In this paper, we firstly prove that the
coupling system of the state and adjoint state is equivalent to the known KKT system (the
corresponding discrete forms are the same), and improve the L2 estimate for the state and
adjoint state with the help of the a priori estimates for finite element approximation to the
KKT system ([11]). The numerical experiments in [19] indicated that adaptive mesh based
on a posteriori estimator is in urgent need for the Dirichlet boundary control problems, since
the solution of this type of problems is of strong singularity over the polygonal domain.

When the PDEs for optimal control problem were involved in many problems of prac-
tical interest, such as interface singularities, discontinuities in the form of shock-like front,
and of interior or boundary layers, adaptive finite element method (AFEM), proposed since
the pioneer work of Babuška and Rheinboldt [20], has become a popular approach in the
community of engineering and scientific computing. It is well known that a posteriori error
estimation is an essential ingredient of adaptivity, and that error estimators in literature can
be categorized into three classes: residual based, gradient recovery based, and hierarchical
bases based, and different types of estimators have been developed in the last decades for
different types of problems and for different approximation methods [21–27], we refer to
[28] for an overview.

AFEM has been successfully applied to optimal control problems governed by PDEs,
starting from Becker et al. [29] and Liu et al. [30]. In [29] a dual-weighted goal-oriented
adaptivity has been proposed for optimal control problem; in [30] the authors have derived
residual-based a posteriori error estimators for convex distributed optimal control problem.
About a posteriori estimates for optimal control problems governed by different PDEs, we
refer to literatures [31–33]. Recently, Kohls et al. [34,35] have developed a unifying frame-
work for the a posteriori error analysis for control constrained optimal control problem by
using either variational discretization or full control discretization. Very recently, Schneider
et al. [36] have complimented the framework of [34,35]. But both these approaches exploit
the first-order optimality conditions to derive a posteriori error estimates.

For Dirichlet boundary control problem, reliable and efficient a posteriori error estimates
of residual-type have been derived in energy space in [15,37]. However, the a posteriori error
estimates of the L2(�)-setting have been not proposed, itsmain difficulties lie in the following
facts: One is that the primal control problem is concerned in optimizing the control variable
in L2(�)-norm, this results in that the energy norm to measure the numerical error for the
state variable seems slightly strong when the state equation is regarded as non-homogeneous
Dirichlet boundary value problem. Another is that the numerical error for the control variable
involves L2(�)-norm, owing to the control equation, it may be understood as H1/2-norm
of the numerical error of the state variable. A natural question is what indicator it will be
controlled by. Unfortunately, such a problem has not been studied in literatures. The third
one is that the control (the restriction of the state to the boundary) is taken accounted into
the variational system as a unknown function, this is an essential difference from general
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non-homogeneous Dirichlet boundary value problem (see [38]), since the restriction of the
discrete state to the boundary is not an interpolation or a projection of the control. Owing
to these observations, we employ harmonic extension to give a measure of numerical errors,
and develop corresponding technique of a posteriori analysis based on the standard tools.
The estimators are based on this measure, and are derived for both the coupling system of
the state and adjoint state and the KKT system, and are proved to reliable and efficient.

It is pointed out that here we indeed give a way to develop residual-based a posteriori
error estimation for finite element approximation to the KKT system. Its idea is that the
coupling system of the state and adjoint state variables is used as a bridge, through which the
residual functional for the control variable can be defined, and a measure for the numerical
errors can be found, this is owed to their equivalence. However, these two goals are not
easily achieved directly through the KKT system, since the discrete KKT system was not
obtained by first-optimise-then-discretze (the first approach), but derived by using so-called
first-discretize-then-optimise (the second approach). Note that these two approaches are not
always equivalent, especially when the governing state equation is not self-adjoint, and that
the second approach is more favorable because it preserves the structure of the optimization
problems. Furthermore, the three equations of the discrete KKT system are coupled, this
challenges a posteriori error estimation for the KKT system.

This paper is organized as follows. In Sect. 2,we introduce somenotations and a variational
setting. In Sect. 3, we prove the equivalence between the coupling system of the state and
adjoint state and the KKT system, including their corresponding discrete formulations, and
give an improved estimate for the state and adjoint state variables in L2-norm, and contain
a preliminary result. In Sect. 4, we employ the harmonic extension to obtain a measure of
the numerical errors, and develop a technique for residual-based a posteriori error analysis
based on this measure. Estimators derived for the coupling system and the KKT system are
proved to be reliable. An efficient lower bound is provided under a reasonable assumption in
Sect. 5. Finally numerical tests are provided in Sect. 6 to support the theoretical results.

2 Notations and a Variational Setting

For any subdomain ω of � with a Lipschitz boundary ϑ , denote by (·, ·)ω ((·, ·)ϑ ) the L2

inner-product onω (ϑ), and by< ·, · >ω the L2 inner-product of the duality pairings between
H1(ω) and H1(ω)′. Moreover, denote L2(ϑ) and Hm(ω) the standard Lebesgue and Sobolev
spaces equipped with standard norms ‖ · ‖0,ϑ = ‖ · ‖L2(ϑ) and ‖ · ‖m,ω = ‖ · ‖Hm (ω), m ∈ N.
Note that H0(ω) = L2(ω). We denote | · |m,ω the semi-norm in Hm(ω). We shall omit the
symbol � in the notations above if ω = �. In particular, for 1 ≤ p < ∞ and 0 < s < 1, the
norm of the fractional Sobolev space Ws,p(ω) is defined as

||v||Ws,p(ω) :=
{
||v||pL p(ω) +

∫
ω

∫
ω

|v(x) − v(y)|p
|x − y|d+ps

dxdy

}1/p

for v ∈ Ws,p(ω).

When p = 2, we write Hs(ω) for Ws,2(ω).
We introduce finite element spaces. To this end, let Th be a shape regular partition of �

into triangles (tetrahedra for d = 3) or parallelograms (parallelepiped for d = 3) satisfying
the angle condition [39], i.e., there exists a constant C0 such that

C−1
0 hdK ≤ |K | ≤ C0h

d
K ∀ K ∈ Th, (2.1)
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where hK := diam(K ), and define h as the mesh-size function (piecewise constant func-
tion). Denote Pk(K ) be the space of polynomials of total degree at most k if K is a simplex,
or the space of polynomials with degree at most k for each variable if K is a parallelo-
gram/parallelepiped. Define the finite element spaces Vh and V 0

h by

Vh := {vh ∈ C(�) : vh |K ∈ Pk(K ), ∀K ∈ Th}
and V 0

h := {vh ∈ Vh : vh |� = 0}, respectively.

We introduce some notations that will be used below. Denote E0
h the set of interior sides (if

d = 2) or faces (if d = 3) in Th , E∂
h the set of boundary sides/faces in Th , EK the set of sides or

faces of K ∈ Th . For a side or face E in Eh , which is the set of element sides or faces in Th , let
hE be the diameter of E , and ωE be the union of all elements in Th sharing E . For a function
v in the “broken Sobolev space” H1(

⋃
Th), we define [v]|E := (v|K+)|E − (v|K−)|E as

the jump of v across an interior side or face E , where K+ and K− are the two neighboring
elements such that E = K+ ∩ K−.

Throughout of this paper, we denote by C a constant independent of mesh size with
different context in different occurrence, and also use the notation A � F to represent
A ≤ CF with a generic constant C > 0 independent of mesh size. In addition, A ≈ F
abbreviates A � F � A.

It is well known that the Dirichlet boundary control problem (1.1)–(1.3) is equivalent to
the optimality system

− �y = f in �, (2.2)

y = u on �, (2.3)

−�z = y − yd in �, (2.4)

z = 0 on �, (2.5)

u = 1

γ

∂z

∂n
on �, (2.6)

where n is the unit outer normal to �. Note that these equations must be understood in a very
weak sense. For a 2D convex polygonal domain, we recall a regularity result of May et al.
in [11] below, which gives conditions on the domain and data to guarantee the regularity of
the solution. To this end, let ωmax be the maximum interior angle of the polygonal domain
�, and denote p�∗ by

p�∗ = 2ωmax/(2ωmax − π), (2.7)

including the special case p�∗ = ∞ for ωmax = π/2. For a higher dimensional convex
polygonal domain, we do not attempt to provide condition on the regularity of the solution,
because it is not an emphasis in this paper.Of course, the regularity theory ismore complicated
in three-dimensional case.

Lemma 2.1 ([11] Lemma 2.9). Suppose that f ∈ L2(�) and yd ∈ L pd∗ (�), pd∗ > 2, and that
� ⊂ R

2 is a bounded convex domain with polygonal boundary �. Let p�∗ ≥ 2 be defined by
(2.7) and p∗ := min(pd∗ , p�∗ ). Then, the solution (y, u) of the optimization problem (1.1)–
(1.3) and the associated adjoint state determined by (2.4) have the regularity properties

(y, u, z) ∈ H3/2−1/p(�) × H1−1/p(�) × (H1
0 (�) ∩ W 2

p(�)), 2 ≤ p < p∗.

TheDirichlet boundary condition (2.3) indicates that the control u is equal to the restriction
of the state y to the boundary �. Therefore, we simultaneously obtain the control u if the
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state y is got. The Eq. (2.6) is an additional equation with respect to the adjoint state z. Here,
we don’t regard (2.6) as an additional equation, but understand it as a boundary condition,
through which the state y and its adjoint state z will be coupled on the boundary. So the
control u can be cancelled in form, but it can be reflected by the state y in essence. It is
pointed out that the right hand term of (2.4) includes the state variable y, through which
the adjoint state z is coupled over the whole domain. Based on this observation and the
regularity of the solutions in Lemma 2.1, we present the following variational formulation:
Find (y, z) ∈ H1(�) × H1

0 (�) such that

(∇ y,∇ψ) = ( f , ψ) ∀ ψ ∈ H1
0 (�), (2.8)

(∇z,∇φ) − (γ y, φ)� − (y, φ) = −(yd , φ) ∀ φ ∈ H1(�). (2.9)

In [19], well-posedness (unique solvability and stability) for the coupling system of the
state and adjoint state in (2.8)–(2.9) has been analyzed, and a corresponding finite element
approximation of order k has been developed, and the a priori error estimates have been
proven for the control, state and adjoint state, in L2(�)-norm, L2-norm, and semi-norm,
respectively. The estimate is optimal for the control, however, it is not for the state and
adjoint state.

For any q ∈ H1/2(�) there exists the harmonic extension Bq ∈ H1(�) as the unique
solution of the nonhomogeneous Dirichlet boundary value problem

−�Bq = 0 in �, Bq = q on �.

We recall the following a priori bounds for the harmonic extension Bq as Lemma 2.2.

Lemma 2.2 ([11] Lemma 2.2) Suppose that � ⊂ R
d is a bounded convex polygonal or

polyhedral domain with boundary �. For 0 ≤ s ≤ 1 the harmonic extension is continuously
defined from Hs(�) into Hs+1/2(�) and satisfies

||Bq||Hs+1/2(�) ≤ c‖q‖Hs (�). (2.10)

Note that Lemma 2.2 has been given for d = 2 in [11], but the proof for d = 3 is similar.
To avoid the use of very weak solutions, and to remove the nonhomogeneous boundary

conditions, the regularity of the solution triplet allows for the following KKT system: Find
the triplet {ỹ, u, z} ∈ H1

0 (�) × H1/2(�) × H1
0 (�) such that⎧⎨

⎩
(∇ ỹ,∇φ) = ( f , φ), ∀φ ∈ H1

0 (�)

(γ u, χ)� + (ỹ + Bu, Bχ) = (yd , Bχ), ∀χ ∈ H1/2(�)

(∇z,∇ψ) − (ỹ + Bu, ψ) = −(yd , ψ), ∀ψ ∈ H1
0 (�).

(2.11)

Since the regularity of the solution triplet is essentially determined by that of the adjoint
state, May et al. have analyzed the regularity of the solution triplet in [11], and derived the
above formula (2.11) based on this regularity.

3 An Equivalence and an Improved Estimate

In this section, we prove the equivalence between the coupling system in (2.8)–(2.9) and the
KKT system in (2.11), including their corresponding discrete formulations, and obtain an
improved estimate of the state and adjoint in L2-norm with the help of the a priori estimate
for the KKT system.

Theorem 3.1 The coupling system in (2.8)–(2.9) is equivalent to the KKT system in (2.11).
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Proof We first prove that the solution pair for the coupling system in (2.8)–(2.9) satisfies the
KKT system in (2.11). To this end, let (y, z) ∈ H1(�)×H1

0 (�) solve the coupling system in
(2.8)–(2.9), and denote u = y|� , and let Bu be the harmonic extension of u, i.e., Bu satisfies
Bu ∈ H1(�) and solves the following problem

(∇Bu,∇φ) = 0, ∀φ ∈ H1
0 (�), Bu|� = u. (3.1)

Setting y − Bu = ỹ indicates ỹ ∈ H1
0 (�). Inserting y = ỹ + Bu into (2.8), and owing to

(3.1), we have

(∇ ỹ + ∇Bu,∇φ) = (∇ ỹ,∇φ) = ( f , φ) , ∀φ ∈ H1
0 (�). (3.2)

Arbitrary ψ ∈ H1
0 (�), we obtain from (2.9)

(∇z,∇ψ) − (ỹ + Bu, ψ) = −(yd , ψ). (3.3)

Given χ ∈ H1/2(�), denote Bχ the harmonic extension of χ . Obviously, −Bχ ∈ H1(�).
Inserting ψ = −Bχ into (2.9) leads to

(∇z,−∇Bχ) − (γ (ỹ + Bu),−Bχ)� − (ỹ + Bu,−Bχ) = −(yd ,−Bχ),

which results in

(γ u, χ)� + (ỹ + Bu, Bχ) = (yd , Bχ). (3.4)

In the last step above, we employ (∇z,−∇Bχ) = 0, because of z ∈ H1
0 (�). Therefore,

(ỹ, u, z) ∈ H1
0 (�) × H1/2(�) × H1

0 (�), and (3.2)–(3.4) show that (ỹ, u, z) solves the KKT
system in (2.11).

In what follows, we prove that the solution triplet for the KKT system in (2.11) satisfies
the coupling system in (2.8)–(2.9). To this end, denote {ỹ, u, z} the solution triplet for the
KKT system in (2.11), and set ỹ + Bu = y ∈ H1(�). Owing to ỹ|� = 0 and Bu|� = u,
we obtain u = y on �. Inserting ỹ = y − Bu into the first equation in (2.11), and using the
definition (3.1) of the harmonic extension, yield to

(∇ ỹ,∇φ) = (∇ y − ∇Bu,∇φ) = (∇ y,∇φ) = ( f , φ), ∀φ ∈ H1
0 (�). (3.5)

Arbitrary given ψ ∈ H1(�), denote q the restriction of ψ to the boundary, i.e., q = ψ |� ,
and let Bq be the harmonic extension of q . Obviously, ψ − Bq ∈ H1

0 (�). Inserting ψ − Bq
into the third equation in (2.11), and noticing ỹ + Bu = y, we have

(∇z,∇ψ − ∇Bq) − (y, ψ − Bq) = − (yd , ψ − Bq) ,

which results in

(∇z,∇ψ) − (y, ψ) + (y, Bq) = − (yd , ψ) + (yd , Bq) . (3.6)

In the last step above, we employ (∇z,−∇Bq) = −(∇z,∇Bq) = 0, since z ∈ H1
0 (�).

Noticing q ∈ H1/2(�), we attain from the second equation in (2.11)

(γ u, q)� + (y, Bq) = (yd , Bq) ,

which results in

(y, Bq) = (yd , Bq) − (γ y, ψ)� . (3.7)
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In the last step above, we employ u = y and q = ψ on �. Inserting (3.7) into (3.6), we get

(∇z,∇ψ) − (γ y, ψ)� − (y, ψ) = − (yd , ψ) . (3.8)

(3.5) and (3.8) show that the pair (y = ỹ + Bu, z) solves the coupling system in (2.8)–(2.9).
��

We are now the place where the discrete form of the coupling system in (2.8)–(2.9) should
be rephrased: Find (yh, zh) ∈ Vh × V 0

h such that

(∇ yh,∇ψh) = ( f , ψh) ∀ ψh ∈ V 0
h , (3.9)

(∇zh,∇φh) − (γ yh, φh)� − (yh, φh) = −(yd , φh) ∀ φh ∈ Vh . (3.10)

Denote V ∂
h the trace space corresponding to Vh , and for qh ∈ V ∂

h , Bhqh the “discrete harmonic
extension” defined by

(∇Bhqh,∇ϕh) = 0 ∀ϕh ∈ V 0
h , Bhqh |� = qh .

Note thatMay et al. [11] didn’t directly discretize the continuousKKT systen in (2.11), but
derived the discrete KKT system by using the discrete optimal control problem based on the
Euler-Lagrange principle, because of Bqh �= Bhqh for qh ∈ V ∂

h . Their discrete formulation
(see [11]) reads: Find {ỹh, uh, zh} ∈ V 0

h × V ∂
h × V 0

h such that⎧⎨
⎩

(∇ ỹh,∇φh) = ( f , φh), ∀φh ∈ V 0
h

(γ uh, χh)� + (ỹh + Bhuh, Bhχh) = (yd , Bhχh), ∀χh ∈ V ∂
h

(∇zh,∇ψh) − (ỹh + Bhuh, ψh) = −(yd , ψh), ∀ψh ∈ V 0
h .

(3.11)

Next, we show the equivalence between the corresponding discrete formulations of the
coupling system in (2.8)–(2.9) and the KKT system in (2.11).

Theorem 3.2 The discrete coupling system in (3.9)–(3.10) is equivalent to the discrete KKT
system in (3.11).

Proof Repeating the proof of Theorem 3.1, we obtain the desired result. ��
In [11], May et al. have developed the a priori error estimates for the state and adjoint

state variables in L2-norm.

Lemma 3.3 ([11] Corollaries 5.3-5.4) Let {ỹ, u, z} ∈ H1
0 (�) × H1/2(�) × H1

0 (�) and
{ỹh, uh, zh} ∈ V 0

h × V ∂
h × V 0

h (k = 1) solve the continuous KKT system in (2.11) and
the discrete KKT system in (3.11), respectively. For the numerical errors on the primal
state variable and the adjoint state variable, there holds for the lowest-order finite element
approximation in the case of two dimensions (d = 2)

||y − yh || + ||z − zh || ≤ Ch
(‖u‖H1/2(�) + || f || + ||z||2

)
. (3.12)

Note that Lemma 3.3 is a combination of the results in Corollaries 5.3-5.4, and is also a
special case of p = r = 2 in Corollaries 5.3-5.4 in [11].

Theorem 3.4 Let (y, z) ∈ H1(�) × H1
0 (�) and (yh, zh) ∈ Vh × V 0

h (k = 1) be the solution
pair for the coupling system in (2.8)–(2.9) and the discrete coupling system in (3.9)–(3.10),
respectively. For the numerical errors on the state variable and the adjoint state variable,
there holds for the lowest-order finite element approximation in the case of two dimensions
(d = 2)

||y − yh || + ||z − zh || ≤ Ch
(‖u‖H1/2(�) + || f || + ||z||2

)
. (3.13)
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Proof We obtain the desired estimate (3.13) from a combination of Theorems 3.1–3.2, and
Lemma 3.3. ��
Remark 3.1 Note that the stability of the KKT system in (2.11) was included in Lemma 2.9
of [11], as a special case of the regularity result.

4 A posteriori Error Analysis

In this section, we shall develop a posteriori estimates for numerical errors between the exact
solution pair of (2.8)–(2.9) and an approximation solution pair of (3.9)–(3.10). Owing to
the equivalence between the coupling system and the KKT system, simultaneously, we shall
obtain a posteriori error estimation for the KKT system.

To give a measure of numerical errors, we recall the proof of Theorems 3.1–3.2, and get
a decomposition of the continuous and discrete state variables

y = ỹ + Bu, yh = ỹh + Bhuh,

where ỹ ∈ H1
0 (�) and ỹh ∈ V 0

h are the solutions of the first equation of (2.11) and (3.11),
respectively, and Bu and Bhuh are the continuous and discrete harmonic extension of u and
uh (u = y|�, uh = yh |�), respectively. Let Ph : L2(�) → V ∂

h be the L2 projection operator
defined by

(u − Phu, χh) = 0, ∀χh ∈ V ∂
h . (4.1)

According to the definition of the discrete harmonic extension, Bh Phu is a finite element
approximation to Bu in Vh in the sense that the discrete Dirichlet data is chosen as the
projection of u onto V ∂

h .
Define a measure of the numerical errors as following

E := {||y − yh ||2 + ||γ 1/2(u − uh)||20,� + ||∇(ỹ − ỹh)||2
+‖∇(Bu − Bh Phu)‖2 + ||∇(z − zh)||2 + ||∇(B − Bh)uh ||2}1/2, (4.2)

and denote a series of indicators ηi , i = 1, · · · , 7 by

η21 :=
∑
K∈Th

⎛
⎜⎝h2K || f + �yh ||2K + 1

2

∑
E∈EK∩E0

h

hE

∣∣∣
∣∣∣
[

∂ yh
∂n

] ∣∣∣
∣∣∣2
E

⎞
⎟⎠ , (4.3)

η22 :=
∑
K∈Th

⎛
⎜⎝h2K ||yh − yd + �zh ||2K + 1

2

∑
E∈EK∩E0

h

hE

∣∣∣
∣∣∣
[

∂zh
∂n

] ∣∣∣
∣∣∣2
E

⎞
⎟⎠ , (4.4)

η23 :=
∑
K∈Th

⎛
⎜⎝h2K || f + �ỹh ||2K + 1

2

∑
E∈EK∩E0

h

hE

∣∣∣
∣∣∣
[

∂ ỹh
∂n

] ∣∣∣
∣∣∣2
E

⎞
⎟⎠ , (4.5)

η24 :=
∑
K∈Th

⎛
⎜⎝h2K ||�Bhuh ||2K + 1

2

∑
E∈EK∩E0

h

hE

∣∣∣
∣∣∣
[

∂Bhuh
∂n

] ∣∣∣
∣∣∣2
E

⎞
⎟⎠ , (4.6)

η25 := η22 +
∑
E∈E∂

h

hE‖∇zh · n − γ uh‖2E , (4.7)
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η26 :=
∑
K∈Th

⎛
⎜⎝h2K ||�Bh Phu||2K + 1

2

∑
E∈EK∩E0

h

hE

∣∣∣
∣∣∣
[

∂Bh Phu

∂n

] ∣∣∣
∣∣∣2
E

⎞
⎟⎠ , (4.8)

η27 :=
∣∣∣
∣∣∣γ 1

2 uh − γ − 1
2
∂zh
∂n

∣∣∣
∣∣∣2
0,�

. (4.9)

Lemma 4.1 Let ỹ ∈ H1
0 (�) and ỹh ∈ V 0

h be the solutions to the first equation of (2.11) and
(3.11), respectively. Then it holds

||∇(ỹ − ỹh)|| � η3. (4.10)

Proof The desired estimate (4.10) follows from the standard analysis for the residual-type a
posteriori estimator for the Laplace equation with homogeneous Dirichlet boundary condi-
tion. ��
Lemma 4.2 Denote Buh and Bhuh the continuous and discrete harmonic extensions of uh,
respectively. Then there holds

||∇(B − Bh)uh || � η4. (4.11)

Proof Since Bhuh is just the finite element solution of Buh in Vh , and following the standard
technique for the Laplace equation, we derive the desired estimate (4.11). ��

For an edge or a side E ∈ E∂
h and a function g|E ∈ H2(E) for all E ∈ E∂

h , denote by ∂2Eg
the edgewise second derivative of g along E (with respect to a proper Cartesian coordinate
system along the flat d − 1 dimensional manifold E). Define the “broken Sobolev space”

H2
(⋃

E∂
h

)
:= {χ ∈ L2(�) : χ |E ∈ H2(E),∀E ∈ E∂

h }.

Lemma 4.3 Denote Bu the continuous harmonic extension of u, Phu the L2 projection of u
onto V ∂

h , and Bh Phu the discrete harmonic extensions of Phu. If u ∈ H2(∪E∂
h ), then there

hold the following reliable a posteriori error estimates

||∇(Bu − Bh Phu)|| � η6 + ‖hE‖1/2L∞(�)‖hE∂2Eu‖0,�. (4.12)

Proof According to the definition of the discrete harmonic extension, Bh Phu is just a finite
element approximation to Bu in Vh in the sense that the discrete Dirichlet data is chosen as
the L2 projection of u onto V ∂

h , (4.12) is a direct result of Theorem 6.2 in [38]. ��
Note that the assumption of the regularity of u is a very weak requirement in Lemma 4.3,

and this assumption is usually satisfied in practice. For convenience, denote the high order
term by

h.o.t = ‖hE‖1/2L∞(�)‖hE∂2Eu‖0,�.

Theorem 4.4 Let (y, z) ∈ H1(�) × H1
0 (�) and (yh, zh) ∈ Vh × V 0

h be the solutions to

(2.8)–(2.9) and (3.9)–(3.10), respectively, and denote an indicator by η =
(∑6

i=1 η2i

)1/2
.

Assume that u ∈ H2(∪E∂
h ). For the measure E of numerical errors defined in (4.2), there

exists a positive constant C (independent on h and γ ) satisfying

E ≤ C(η + h.o.t). (4.13)
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Proof Recall u = y|� , and denote B((·, ·), (·, ·)) a bilinear form on H1(�) × H1
0 (�) by

B((y, z), (ψ, φ)) = (∇ y,∇φ) + (γ u, ψ)� + (y, ψ) − (∇z,∇ψ).

We associate with {uh, yh, zh} two residuals R1 and R2 by setting for every φ ∈ H1
0 (�) and

every ψ ∈ H1(�)

< R1, φ > =
∫

�

f φ −
∫

�

∇ yh · ∇φ, ∀φ ∈ H1
0 (�), (4.14)

< R2, ψ > =
∫

�

ydψ +
∫

�

∇zh · ∇ψ −
∫

�

γ uhψ −
∫

�

yhψ, ∀ψ ∈ H1(�), (4.15)

where uh = yh |� . Owing to V 0
h ⊂ H1

0 (�) and Vh ⊂ H1(�), the residuals satisfy the
Galerkin orthogonality

< R1, φh >= 0, ∀φh ∈ V 0
h , < R2, ψh >= 0, ∀ψh ∈ Vh . (4.16)

Notice that the residuals Ri (i = 1, 2) are related to the error by

B((y − yh, z − zh), (ψ, φ)) =< R1, φ > + < R2, ψ > ∀(ψ, φ) ∈ H1(�) × H1
0 (�).

(4.17)

Let Ih(I 0h ) : L2(�) → Vh(V 0
h ) be the Clément interpolation operator (cf. [40], [39, Exercise

3.2.3], [22,41]), we have

‖v − Ihv‖K (||v − I 0h v||K ) � hK ||∇v||ω̃K , ∀K ∈ Th, v ∈ H1(ω̃K ), (4.18)

‖v − Ihv‖E (||v − I 0h v||E ) � h1/2E ||∇v||ωE , ∀E ∈ Eh, v ∈ H1(ωE ). (4.19)

From the Galerkin orthogonality (4.16) and the properties (4.18)–(4.19), of the Clément
interpolation operator, we have

< R1, φ > = < R1, φ − I 0h φ >

=
∑
K∈Th

(∫
K
( f + �yh)(φ − I 0h φ) −

∫
∂K

∂ yh
∂n

(φ − I 0h φ)

)

� η1||∇φ||. (4.20)

For ψ ∈ H1
0 (�), we get from the Galerkin orthogonality (4.16), integration by parts, and

the properties (4.18)–(4.19), of the Clément interpolation operator

< R2, ψ > = < R2, ψ − I 0hψ >

=
∫

�

yd(ψ − I 0hψ) +
∫

�

∇zh · ∇(ψ − I 0hψ)

−
∫

�

γ uh(ψ − I 0hψ) −
∫

�

yh(ψ − I 0hψ)

=
∑
K∈Th

∫
K
(yd − yh − �zh)(ψ − I 0hψ) +

∑
E∈E0

h

∫
E

[
∂zh
∂n

]
(ψ − I 0hψ)

� η2||∇ψ ||. (4.21)

Similarly, for ψ ∈ H1(�), we obtain

< R2, ψ >=< R2, ψ − Ihψ >� η5||∇ψ ||. (4.22)
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Noticing u − uh = (y − yh)|� , we attain from (4.17)

||γ 1/2(u − uh)||20,� + ||y − yh ||2 = ||γ 1/2(y − yh)||20,� + ||y − yh ||2
= B((y − yh, z − zh), (y − yh, z − zh))

= < R1, z − zh > + < R2, y − yh > . (4.23)

In what follows, we separately estimate < R1, z − zh > and < R2, y − yh >. We obtain
from (4.20)

< R1, z − zh >� η1||∇(z − zh)||. (4.24)

Since z − zh ∈ H1
0 (�), we have

||∇(z − zh)|| ≤ sup
0 �=w∈H1

0 (�)

(∇(z − zh),∇w)

||∇w|| . (4.25)

Using integration by parts, we get

(∇(z − zh),∇w)

= (∇(z − zh),∇(w − I 0hw)) + (∇(z − zh),∇(I 0hw))

=
∑
K∈Th

∫
K
(−�z + �zh)(w − I 0hw) +

∫
∂K

∂(z − zh)

∂n
(w − I 0hw)

+(∇(z − zh),∇(I 0hw)). (4.26)

Noticing I 0hw ∈ V 0
h , we attain from (2.9) and (3.10)

(∇(z − zh),∇(I 0hw)) = (
γ (y − yh), I

0
hw

)
�

+ (y − yh, I
0
hw) = (y − yh, I

0
hw). (4.27)

Combining (4.26) with (4.27), and noticing −�z = y − yd in �, we get

(∇(z − zh),∇w) =
∑
K∈Th

∫
K
(yd − yh − �zh)(w − I 0hw)

−
∑
E∈E0

h

∫
E

[
∂zh
∂n

]
(w − I 0hw) + (y − yh, w). (4.28)

A Combination of (4.25) and (4.28), and the use of the properties (4.18)–(4.19), of the
Clément interpolation operator, and the Poincaré inequality, yield

||∇(z − zh)|| � η2 + ||y − yh ||. (4.29)

Combining (4.24) with (4.29), and employing Young’s inequality, we arrive at

< R1, z − zh >≤ C
(
η21 + η22

) + 1

4
||y − yh ||2. (4.30)

We now estimate < R2, y − yh >. Recalling the decomposition of y and yh given at the
beginning of this section, we have

< R2, y − yh >=< R2, ỹ − ỹh > + < R2, Bu − Bhuh > . (4.31)

Since ỹ ∈ H1
0 (�) and ỹh ∈ V 0

h , repeating the proof of (4.21), we obtain

< R2, ỹ − ỹh >� η2||∇(ỹ − ỹh)||. (4.32)
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Employing Young’s inequality and (4.10) to (4.32), we reach

< R2, ỹ − ỹh >� η22 + η23. (4.33)

Recalling Buh the harmonic extension of uh , we obtain by adding and subtracting Buh

< R2, Bu − Bhuh >=< R2, B(u − uh) > + < R2, (B − Bh)uh > . (4.34)

Noticing (B − Bh)uh ∈ H1
0 (�), and employing (4.21) and (4.11), we derive an estimate of

the second term on the right side of (4.34)

< R2, (B − Bh)uh >� η2||∇(B − Bh)uh || � η2η4 � η22 + η24. (4.35)

We now estimate the first term on the right side of (4.34). For convenience, write χ =
u−uh , denote Bχ be the harmonic extension ofχ . Recall the projection operator Ph defined in
(4.1), let Bh Phχ be the discrete harmonic extension of Phχ , setψ = Bχ−Bh Phχ ∈ H1(�).
Noticing the Galerkin orthogonality in (4.16), recalling the Clemént interpolation operator
Ih , and applying the estimate (4.22), we have

< R2, Bχ > = < R2, Bχ − Bh Phχ >=< R2, ψ >=< R2, ψ − Ihψ >

� η5||∇(Bχ − Bh Phχ)

≤ η5(‖∇(Bu − Bh Phu)‖ + ‖∇(Buh − Bhuh)‖). (4.36)

By making the use of (4.11), we obtain from (4.36)

< R2, B(u − uh) >≤ C(η24 + η25) + 1

4
‖∇(Bu − Bh Phu)‖2 (4.37)

Collecting (4.23), (4.30)–(4.31), (4.33)–(4.35), and (4.37), we obtain

||γ 1/2(u − uh)||20,� + ||y − yh ||2 ≤ C
5∑

i=1

η2i + 1

4

(||∇(Bu − Bh Phu)||2 + ||y − yh ||2
)
.

(4.38)

Combining (4.10)–(4.12) with (4.38), we have

3

4

(||γ 1/2(u − uh)||20,� + ||y − yh ||2 + ‖∇(ỹ − ỹh)‖2 + ‖∇(Bu − Bh Phu)‖2)

≤ ||γ 1/2(u − uh)||20,� + 3

4
||y − yh ||2 + ‖∇(ỹ − ỹh)‖2 + 3

4
‖∇(Bu − Bh Phu)‖2

≤ C

(
6∑

i=1

η2i + (h.o.t)2
)

, (4.39)

which results in

||γ 1/2(u − uh)||0,� + ||y − yh || + ‖∇(ỹ − ỹh)‖ + ‖∇(Bu − Bh Phu)‖ ≤ C(η + h.o.t).
(4.40)

A combination of (4.29) and (4.40) yields

||∇(z − zh)|| ≤ C(η + h.o.t). (4.41)

Recalling the measure E of numerical errors defined in (4.2), and collecting (4.40)–(4.41),
we get the desired estimate (4.13). ��
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Theorem 4.5 Let {ỹ, u, z} ∈ H1
0 (�)× H1/2(�)× H1

0 (�) and {ỹh, uh, zh} ∈ V 0
h ×V ∂

h ×V 0
h

be the solution triplet to the continuous KKT sysytem in (2.11) and the discrete KKT system
in (3.11), respectively, and denote Ẽ a measure of numerical errors by

Ẽ = (||∇(ỹ − ỹh)||2 + ||γ 1/2(u − uh)||20,� + ||∇(z − zh)||2
+||∇(B − Bh)uh ||2 + ‖∇(Bu − Bh Phu)‖2)1/2.

If u ∈ H2(∪E∂
h ), then there holds the following reliable estimate

Ẽ ≤ C(η + h.o.t). (4.42)

Proof The equivalence between (2.11) and (2.8)–(2.9) ((3.11) and (3.9)–(3.10)) implies Ẽ ≤
E , the assertion (4.42) follows from (4.13). ��
Remark 4.1 Since the decomposed components ỹh and Bhuh of yh are not derived from the
discrete coupling system in (3.9)–(3.10), the indicators η3 and η4, which are used to control
the numerical errors ||∇(ỹ − ỹh)|| and ||∇(B − Bh)uh ||, respectively, can not be directly
computed in terms of the solution pair (yh, zh). To this end, let B̃huh ∈ Vh denote that
extensionwhich coincides with uh at each nodal point xi ∈ � but vanishes at each nodal point
xi ∈ �. The discrete harmonic extension Bhuh shows that B̃huh is indeed an approximation
to Bhuh , so yh − B̃huh is a corresponding approximation to ỹh . This suggests that one can
substitute Bhuh and ỹh with B̃huh and yh − B̃huh , respectively, in order to compute the
indicators η4 and η3. However, for the discrete KKT system in (3.11), the indicators η3 and
η4 can be directly computed in terms of ỹh and Bhuh after Bhuh is replaced by B̃huh or
Bhuh is solved from the second equation of (3.11). Bh Phu is a finite element solution of Bu,
however, the indicator η6 can not be evaluated, beacause the control variable u is unknown.
Since uh = yh |� is an approximation to u, therefore, we can replace Phu by uh , i.e., Bh Phu
can be replaced by Bhuh in order to compute the indicator η6.

Remark 4.2 It is known that the decomposed components ỹ and Bu of y are not easily
obtained even if the exact solution triplet {y, u, z} is known. Since ỹh and Bhuh are the
standard finite element approximations to ỹ and Buh , respectively, the numerical errors
||∇(ỹ − ỹh)|| and ||∇(B − Bh)uh || are equivalent to the indicators η3 and η4, respectively.
This suggests that the exact numerical errors ||∇(ỹ − ỹh)|| and ||∇(B − Bh)uh || may be
replaced by the corresponding indicators for both the coupling system and the KKT system.
Similarly, the exact error ‖∇(Bu − Bh Phu)‖ may be replaced by the indicator η6.

Theorem 4.6 Denote η7 the edge/side residual indicator defined in (4.9). There holds

E +
∣∣∣
∣∣∣γ −1/2 ∂(z − zh)

∂n

∣∣∣
∣∣∣
0,�

≤ C(η + η7 + h.o.t). (4.43)

Proof Owing to the control rule u = 1
γ

∂z
∂n , yields

∣∣∣
∣∣∣γ −1/2 ∂(z − zh)

∂n

∣∣∣
∣∣∣2
0,�

=
(
u − 1

γ

∂zh
∂n

,
∂(z − zh)

∂n

)
�

=
(
u − uh,

∂(z − zh)

∂n

)
�

+
(
uh − 1

γ

∂zh
∂n

,
∂(z − zh)

∂n

)
�

≤
∣∣∣
∣∣∣γ 1

2 (u − uh)
∣∣∣
∣∣∣
0,�

∣∣∣
∣∣∣γ − 1

2
∂(z − zh)

∂n

∣∣∣
∣∣∣
0,�

+ η7

∣∣∣
∣∣∣γ − 1

2
∂(z − zh)

∂n

∣∣∣
∣∣∣
0,�

,
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which results in ∣∣∣
∣∣∣γ −1/2 ∂(z − zh)

∂n

∣∣∣
∣∣∣
0,�

≤
∣∣∣
∣∣∣γ 1

2 (u − uh)
∣∣∣
∣∣∣
0,�

+ η7. (4.44)

The estimate (4.43) follows from a combination of (4.40) and (4.44). ��

5 Analysis of Efficiency

This section is devoted to the efficiency of the estimators developed in Sect. 5. To avoid the
appearance of high order terms, we assume f and yd are piecewise polynomials. For the
simplicity of analysis, we consider only piecewise linear finite element approximation, i.e.,
k = 1, because the lowest order element is widely used in adaptivity. Since the indicators
ηi (i = 1, · · · , 6) are composed of the element residuals and the side/face residuals, the
efficient estimates (the lower bound) can be derived from the local efficiency of the element
residuals and the side/face residuals.

Lemma 5.1 There holds the following local efficiency for the element residual hK || f +
�yh ||K

hK || f + �yh ||K � ||∇(ỹ − ỹh)||K . (5.1)

Proof For convenience, write v = f + �yh . Let ψK be the bubble function on K . From the
equivalence of norms ||ψ1/2

K · ||K and || · ||K for polynomials, and ψK v ∈ H1
0 (K ) with the

support K , we derive from integration by parts and the decomposition of y and yh .

||v||2K ≈ (ψK v, f + �yh)K = (−�(y − yh), ψK v)K

= (∇(y − yh),∇(ψK v))K

= (∇(ỹ − ỹh),∇(ψK v))K + (∇(Bu − Bhuh),∇(ψK v))K . (5.2)

Applying integration by parts, and noticing Bhuh ∈ Vh (piecewise linear finite element
space), we have
∫
K

∇(Bu − Bhuh) · ∇(ψK v) =
∫
K

(−�Bu + �Bhuh)ψK v +
∫
∂K

∂(Bu − Bhuh)

∂n
ψK v = 0.

(5.3)

We get from inverse estimate and the properties of the bubble function ψK

(∇(ỹ − ỹh),∇(ψK v))K � h−1
K ||v||K ||∇(ỹ − ỹh)||K . (5.4)

Combining (5.2)–(5.3) with (5.4), we obtain the desired estimate (5.1) by multiplying the
mesh-size function hK and dividing by ||v||K . ��
Lemma 5.2 There holds the following local efficiency for the element residuals

hK ||yh − yd + �zh ||K � ||∇(z − zh)||K + hK ||y − yh ||K . (5.5)

Proof Let v = yh − yd + �zh , and ψK be the bubble function introduced in Lemma 5.1. By
repeating the proof of Lemma 5.1, we have

||v||2K ≈ (ψK v, v)K = (yh − yd + �zh, ψK v)K

= (y − yd + �zh, ψK v)K − (y − yh, ψK v)K
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= (−�(z − zh), ψK v)K − (y − yh, ψK v)K

= (∇(z − zh),∇(ψK v))K − (y − yh, ψK v)K

� (h−1
K ||∇(z − zh)||K + ||y − yh ||K )||v||K ,

which results in the desired estimates (5.5) by dividing by ||v||K and by multiplying by hK .
��
Lemma 5.3 There holds the following local efficiency for the element residuals hK || f +
�ỹh ||K

hK || f + �ỹh ||K � ||∇(ỹ − ỹh)||K , (5.6)

Proof The estimate (5.6) follows from the standard analysis for Laplace equation. ��

Lemma 5.4 There holds the following local efficiency for the side/face residual h1/2E||[∂ yh/∂n]||E , E ∈ E0
h

h1/2E ||[∂ yh/∂n]||E � ||∇(ỹ − ỹh)||ωE + ||∇(B − Bh)uh ||ωE . (5.7)

Proof Arbitrary E ∈ E0
h , let σ = [∂ yh/∂n]|E , and ψE be a bubble function of E . It is well

known [42,43] that there exists an extension operator P : C(E) → C(ωE ) such that

Pσ |E = σ |E ; ||ψE Pσ ||ωE � h1/2E ||σ ||E . (5.8)

Notice that

([∂ yh/∂n], ψE Pσ)E = −(∇(y − yh),∇(ψE Pσ))ωE +
∑
K∈ωE

(−�(y − yh), ψE Pσ)K ,

which results in, altogether with the equivalence of norms ||ψ1/2
E · ||E and || · ||E for polyno-

mials,

||σ ||2E � ([∂ yh/∂n], ψE Pσ)E

=
∑
K∈ωE

( f + �yh, ψE Pσ)K − (∇(y − yh),∇(ψE Pσ))ωE . (5.9)

Owing to the decomposition of y and ỹh , we have

(∇(y − yh),∇(ψE Pσ))ωE

= (∇(ỹ − ỹh),∇(ψE Pσ))ωE + (∇(Bu − Bhuh),∇(ψE Pσ))ωE . (5.10)

By adding and subtracting Buh , employing integration by parts, and noticing the definition
of the harmonic extension, we get

(∇(Bu − Bhuh),∇(ψE Pσ))ωE

= (∇B(u − uh),∇(ψE Pσ))ωE + (∇(Buh − Bhuh),∇(ψE Pσ))ωE

=
∫

ωE

−�B(u − uh)(ψE Pσ) +
∫

∂ωE

∂B(u − uh)

∂n
(ψE Pσ)

+(∇(Buh − Bhuh),∇(ψE Pσ))ωE

= (∇(B − Bh)uh,∇(ψE Pσ))ωE . (5.11)
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Combining (5.9)–(5.10) with (5.11), and applying (5.8) and inverse estimate, we arrive at

||σ ||2E �
∑
K∈ωE

|| f + �yh ||K ||ψE Pσ ||K + (||∇(ỹ − ỹh)||ωE

+ ||∇(B − Bh)uh ||ωE )||∇(ψE Pσ)||ωE

�

⎛
⎝ ∑

K∈ωE

hE || f + �yh ||K + ||∇(ỹ − ỹh)||ωE + ||∇(B − Bh)uh ||ωE

⎞
⎠ h

− 1
2

E ||σ ||E .

(5.12)

Multiplying (5.12) by h1/2E , dividing (5.12) by ||σ ||E , and employing (5.1), we obtain the
desired result (5.7). ��
Lemma 5.5 There holds the following local efficiency for internal side/face residuals of the
adjoint state (E ∈ E0

h )

h
1
2
E

∣∣∣∣∣∣[∂zh
∂n

]
∣∣∣∣∣∣
E

� hE
∣∣∣∣y − yh

∣∣∣∣
ωE

+ ∣∣∣∣∇(z − zh)
∣∣∣∣

ωE
. (5.13)

Proof For E ∈ E0
h , let σE = [∂zh/∂n]|E , vE = ψE PσE , where the bubble function ψE and

the extension operator P are the same as that in Lemma 5.4. Following the proof of (5.7),
we have

||σE ||2E ≈ ([∂zh/∂n], vE
)
E

=
∑
K∈ωE

(−�(z − zh), vE )K − (∇(z − zh),∇vE )ωE

=
∑
K∈ωE

(y − yd + �zh, vE )K − (∇(z − zh),∇vE )ωE

= (y − yh, vE )ωE +
∑
K∈ωE

(yh − yd + �zh, vE )K − (∇(z − zh),∇vE )ωE

�
{(||y − yh ||ωE +

∑
K∈ωE

||yh − yd + �zh ||K
)
h1/2E

+||∇(z − zh)||ωE h
−1/2
E

}
||σE ||E . (5.14)

Dividing (5.14) by ||σE ||E , and multiplying (5.14) by h1/2E , and employing (5.5), we obtain
the estimate (5.13). ��
Lemma 5.6 There holds the following local efficiency for internal side/face residuals
h1/2E ||[∂ ỹh/∂n]||E , h1/2E ||[∂Bhuh/∂n]||E , and h1/2E ||[∂Bh Phu/∂n]||E (E ∈ E0

h )

h1/2E ||[∂ ỹh/∂n]||E � ||∇(ỹ − ỹh)||ωE , (5.15)

h1/2E ||[∂Bhuh/∂n]||E � ||∇(B − Bh)uh ||ωE , (5.16)

h1/2E ||[∂Bh Phu/∂n]||E � ||∇(Bu − Bh Phu)||ωE . (5.17)

Proof These three estimates (5.15), (5.16), and (5.17) are the standard results for Poisson
equation. ��
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Lemma 5.7 There holds the following local efficiency for boundary edge/side residuals

h
1
2
E ||σ ||E � hK

∣∣∣∣y − yh
∣∣∣∣
K + γ

1
2 h

1
2
E

∣∣∣∣γ 1
2 (u − uh)

∣∣∣∣
0,E + ∣∣∣∣∇ (z − zh)

∣∣∣∣
K , (5.18)

where σ = γ uh − ∂zh
∂n

, E ⊂ ∂K ∩ �.

Proof Let vE = ψE Pσ , and notice
∫
K

−�(z − zh)vE =
∫
K

∇(z − zh) · ∇vE −
∫

∂K

∂(z − zh)

∂n
vE

=
∫
K

∇(z − zh) · ∇vE −
∫
E

∂(z − zh)

∂n
vE ,

which results in

||σ ||2E ≈ (γ uh − ∂zh/∂n, vE )E

=
∫
E

∂(z − zh)

∂n
vE +

∫
E

(
γ uh − ∂z

∂n

)
vE

=
∫
K

∇(z − zh) · ∇vE −
∫
K

−�(z − zh)vE +
∫
E

(
γ uh − ∂z

∂n

)
vE

= (∇(z − zh),∇vE )K + (yd − y − �zh, vE )K

+(γ uh − γ y + γ y − ∂z

∂n
, vE )E

≤ ||∇(z − zh)||K ||∇vE ||K + (||yd − yh − �zh ||K + ||yh − y||K )||vE ||K
+||γ (uh − u)||E ||vE ||E

�
(
h−1/2
E ||∇(z − zh)||K + h1/2E (||yh − yd + �zh ||K + ||y − yh ||K )

)||σ ||E
+γ 1/2||γ 1/2(u − uh)||0,E ||σ ||E . (5.19)

In the fifth step above, we employ the boundary information u = y|� and the control rule
γ y = ∂z/∂n on �; In the sixth step above, we use ||vE ||E ≈ ||σ ||E . Dividing (5.19) by
||σ ||E , and multiplying (5.19) by h1/2E , and employing (5.5), we obtain the desired estimate
(5.18). ��

Theorem 5.8 Let (y, z) ∈ H1(�) × H1
0 (�) and (yh, zh) ∈ Vh × V 0

h be the solutions to
(2.8)–(2.9) and (3.9)–(3.10), respectively, and denote ηi (i = 1, · · · , 6) the indictors defined
in (4.3)–(4.9). There hold the following global efficiency estimates for the indicators ηi
(i = 1, . . . , 6)

η21 � ||∇(ỹ − ỹh)||2 + ||∇(B − Bh)uh ||2, (5.20)

η22 � ||∇(z − zh)||2 + ||h(y − yh)||2, (5.21)

η23 � ||∇(ỹ − ỹh)||2, (5.22)

η24 � ||∇(B − Bh)uh ||2, (5.23)

η25 � ||∇ (z − zh) ||2 + ||h (y − yh) ||2 + γ ‖h1/2γ 1/2 (u − uh) ‖20,�, (5.24)

η26 � ‖∇(Bu − Bh Phu)‖2, (5.25)

η27 �
∣∣∣∣γ 1/2 (u − uh)

∣∣∣∣2
0,� +

∣∣∣
∣∣∣γ −1/2 ∂(z − zh)

∂n

∣∣∣
∣∣∣2
0,�

. (5.26)
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For the total numerical error E defined in (4.2) and the a posteriori indicator η defined in
Theorem 4.4, there exists a positive constant Cγ dependent on γ , such that

Cγ η ≤ E . (5.27)

Furthermore, for the boundary residual indicator η7, there holds the following global effi-
ciency estimate

Cγ (η + η7) ≤ E +
∣∣∣
∣∣∣γ −1/2 ∂(z − zh)

∂n

∣∣∣
∣∣∣
0,�

. (5.28)

Proof Notice that (5.28) follows from a combination of (5.27) and (5.26), and that (5.27) is
a direct result of (5.20)–(5.25). (5.26) is obtained by adding and subtracting γ 1/2u, and by
using triangle inequality and the control rule u = 1

γ
∂z
∂n .

Collecting Lemmas 5.1-5.7, and summing over all elements K ∈ Th and all edges/sides
E ∈ Eh , we immediately get (5.20)–(5.25). ��
Theorem 5.9 Let {ỹ, u, z} ∈ H1

0 (�)× H1/2(�)× H1
0 (�) and {ỹh, uh, zh} ∈ V 0

h ×V ∂
h ×V 0

h
be the solution triplet to the continuous KKT system in (2.11) and the discrete KKT system in
(3.11), respectively, and Ẽ be the measure of numerical errors defined in Theorem 4.5. There
holds the following global efficiency estimate

Cγ η ≤ Ẽ . (5.29)

Moreover, for the boundary residual indicator η7, there holds the following global efficiency
estimate

Cγ (η + η7) ≤ Ẽ +
∣∣∣
∣∣∣γ −1/2 ∂(z − zh)

∂n

∣∣∣
∣∣∣
0,�

. (5.30)

Proof We have from the decomposition of y and yh , Poincaré inequality, and Lemma 2.2

||y − yh || ≤ ||ỹ − ỹh || + ||Bu − Bhuh ||
≤ ||ỹ − ỹh || + ||B(u − uh)|| + ||(B − Bh)uh ||
� ||∇(ỹ − ỹh)|| + ||B(u − uh)||H1/2(�) + ||∇(B − Bh)uh ||
� ||∇(ỹ − ỹh)|| + ||u − uh ||0,� + ||∇(B − Bh)uh ||,

which results in E � C̃γ Ẽ . This yields (5.29) with the help of (5.27). A combination of (5.29)
and (5.26) gives (5.30). ��

6 Numerical Experiments

In this section, we test the performance of the a posteriori estimates developed in this paper
with twomodel problems.Weare thus able to study the behaviour of the a posteriori estimators
over adaptive mesh. Note that we shall employ piecewise linear element in both examples.

6.1 Example One

We consider the problem (1.1)–(1.2) over a unit square � = (0, 1) × (0, 1) with

f = − 4

γ
, yd =

(
2 + 1

γ

) (
x21 − x1 + x22 − x2

)
.
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Fig. 1 Estimated and exact errors against the number of elements in uniformly/adaptively refined meshes for
γ = 1 (left) and γ = 0.1 (right) for marking parameter θ = 0.7

The exact solutions are given by

u = x21 − x1 + x22 − x2
γ

, y = x21 − x1 + x22 − x2
γ

, z = (
x21 − x1

) (
x22 − x2

)
.

It is easy to verify that the control u, state y, and adjoint state z satisfy

u = y|� = 1

γ

∂z

∂n

∣∣∣
�
.

Here, we consider different settings of regularization parameter γ .
In the adaptive algorithm, we employ the Dörfler marking strategy with different marking

parameter θ and the “longest edge” refinement to obtain an admissible mesh, and start with
an initial mesh consisting of 8 congruent right triangles.

Figure 1 reports the estimated error (η) and the exact error (E) against the number of
elements in uniformly/adaptively refined meshes for γ = 1 (left) and γ = 0.1 (right),
including an optimal convergence line Slope-1/2. Note that the actual errors ||∇(ỹ − ỹh)||,
||∇(B− Bh)uh ||, and ‖∇(Bu− Bh Phu)‖ are substituted with their corresponding indicators
η3 and η4, respectively (see Remark 4.2). Figure 1 shows that the estimated and actual errors
are close over adaptively refined meshes, which suggests the estimator η is rather efficient,
since the solutions for this model problem are the global polynomial functions, which are of
good regularity.

Figure 2 shows the estimated values of the indicator η7 against the number of elements in
adaptively refined meshes for different regularization γ = 1, 0.1 (left) and γ = 0.01, 0.001
(right) in case of the marking parameter θ = 0.5 , including a convergence line Slope-1. It
can be seen that the boundary indicator η7 has convergence rate of order 1 in numbers of
elements for boundary concentrated meshes.

6.2 Example Two

We consider a 2D example on a square domain � = (0, 1/4) × (0, 1/4) ⊂ R
2. The data is

chosen as

f = 0, yd = (x21 + x22 )
s,
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Fig. 2 Estimated value of the indicator η7 against the number of elements in adaptively refined meshes for
different regularization parameter γ = 1, 0.1 (left) and γ = 0.01, 0.001 (right) in case of the marking
parameter θ = 0.5
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Fig. 3 A mesh with 313 triangles, iteration 8 (left) and a mesh with 510 triangles, iteration 9 (right) in case of
γ = 0.1 and the marking parameter θ = 0.5

where s = 10−5. Since we do not have an explicit expression for the exact solution, and
the solution has strong singularity at four corners of the boundary, adaptive finite element
method based on a posteriori estimates is very applicable to this problem. In the adaptive
algorithm, we begin with an initial mesh consisting of 8 congruent right triangles, and first
solve the discrete system (3.9)–(3.10), then mark elements in terms of Dörfler marking, and
finally use the “longest edge” refinement.

Figures 3 and 4 shows the meshes generated by the estimator η by refinement of iterations
from 8 to 11 for γ = 0.1 and the marking parameter θ = 0.5. It can be seen that the
refinement mainly concentrates around the four corners of the boundary, which suggests the
predicted error estimator η captures well the singularity of the solution. Figure 5 reports an
approximation to the state variable y and the adjoint state variable z over mesh with 9830
elements in case of γ = 0.1.

The first picture of Fig. 6 shows an approximation solution to the control variable u over
the mesh with 25812 elements in case of γ = 0.1, θ = 0.5 (left). The second picture of
Fig. 6 reports the global estimated error η over the adaptively refined meshes in case of
γ = 1, 0.1, θ = 0.9 (right), including an optimal convergence line Slope-1/2. In addition, it
can be also seen that the estimated errors are close to the optimal convergence line after several
iterations, since the total error E includes the energy norm errors of ỹ − ỹh, Buh − Bhuh ,
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Fig. 4 A mesh with 790 triangles, iteration 10 (left) and a mesh with 1045 triangles, iteration 11 (right) in
case of γ = 0.1 and the marking parameter θ = 0.5

Fig. 5 An approximation solution to the adjoint state variable (left) and the state variable (right) over the mesh
with 9765 triangles in case of γ = 0.1
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Fig. 6 An approximation solution to the control variable over the mesh with 25812 triangles for γ = 0.1, θ =
0.5 (left) and the estimated errors in case of γ = 1, 0.1, θ = 0.9 (right)

Bu − Bh Phu, and z − zh . (Note that the convergence order 1/2 is optimal for the linear
conforming element for Poisson equation in energy norm.)
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Fig. 7 Ameshwith 212 triangles, iteration 8 (left) and ameshwith 675 triangles, iteration 12 (right), generated
by η7, in case of γ = 0.1, θ = 0.5
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Fig. 8 Ameshwith 170 triangles, iteration 8 (left) and ameshwith 594 triangles, iteration 12 (right), generated
by η7, in case of γ = 10−4, θ = 0.5
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Fig. 9 Amesh with 1061 triangles, iteration 14 (left), generated by η7, in case of γ = 10−4, θ = 0.5; and the
estimated η6 (right) in case of γ = 0.1, 10−4, θ = 0.5

Figures 7, 8, and the first picture in 9 show the meshes generated by the indicator η7 in
case of γ = 0.1 and γ = 10−4, respectively. It can be seen that the indicator η7 is a good
guidance to refine the mesh around the four corners of the boundary.
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The second picture in 9 reports the estimated value of the indicator η7, including a conver-
gence line Slope−1. This suggests that the indicator η7 is of convergence order 1 in numbers
of elements for boundary concentrated meshes, and that the adaptive method based on η7
performs as good as the known a priori technique, since the boundary indicator η7 reflects
the gap between the approximation to the control and the normal derivative of the approxi-
mation to the adjoint state in terms of the control rule, it can be understood as an indicator
the numerical errors for the control variable.
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