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Abstract—In this paper, we propose to use deep
neural networks for numerically solving H(curl)
problems through the Ritz loss functional formula-
tion. A two-dimensional test problem shows that the
resulting RitzNN method is capable of approximating
H(curl) problem with corner singularity accurately.

Index Terms—Neural network, Ritz method,
H(curl) problem

I. INTRODUCTION

Recent success of neural networks (NNs) for
many artificial intelligence tasks has led wide ap-
plications to other fields, including recent studies
of using neural network models to numerically
solve partial differential equations (PDEs) (see,
e.g., [1]–[5]). Neural networks produce a new class
of functions through compositions of linear trans-
formations and activation functions. This class of
functions is extremely rich. For example, it contains
piecewise polynomials, which are the footing of
spectral elements, and continuous and discontinu-
ous finite element methods. It approximates poly-
nomials of any degree with exponential efficiency,
even using simple activation functions like ReLU.
More importantly, a neural network function can
automatically adapt to the target solution of a PDE.

Because neural network functions are nonlinear
functions of the parameters, discretization of a PDE
is set up as an optimization problem through either
the natural minimization or manufactured least-
squares (LS) principles. Hence, existing methods
consist of (1) the deep Ritz method [2], [3] and (2)
the deep LS method [1], [2], [4], [5]. In this paper,
we propose to use neural networks for numerically
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solving the H(curl) problem through the Ritz
method. To this end, let Ω be a bounded domain in
Rd (d = 2 or 3) with boundary ∂Ω = Γ̄D∪Γ̄N and
ΓD ∩ΓN = ∅, and let n be the outward unit vector
normal to the boundary. Denote by u the electric
field, we consider the following H(curl) problem,

∇×(µ−1∇×u) + β u = f, in Ω,

u×n
∣∣
ΓD

= g
D
, and

(µ−1∇×u)×n
∣∣
ΓN

= g
N
,

(1)

where ∇× is the curl operator; the f , g
D

, and g
N

are given vector fields defined on Ω, ΓD, and ΓN ,
respectively. This model problem originates from
a stable marching scheme of the second-order hy-
perbolic partial differential equation on the electric
field intensity u that is resulted from the Maxwell
equations; the µ is the magnetic permeability; and
the β depends on the electrical conductivity and
the dielectric constant. Assume that µ−1 and β are
bounded below by positive constants.

Denote by L2(Ω)d the space of the square in-
tegrable vector fields in Rd equipped with the
standard L2 norm: ‖v‖ =

√
(v, v), where (u, v) =

(u, v)Ω =

∫
Ω

u·v dx denotes the standard L2 inner

product over domain Ω. Let

H(curl; Ω) := {v ∈ L2(Ω)d : ∇×v ∈ L2(Ω)2d−3},

which is a Hilbert space equipped with the norm

‖v‖H(curl) =
(
‖v‖2 + ‖∇×v‖2

)1/2

. The mini-
mization formulation associated to problem (7) is
to find u ∈ H(curl; Ω) such that

J(u) = min
v∈H(curl ;Ω)

J(v), (2)



where the energy functional J(v) is given by

J(v) =
1

2

{∥∥∥µ−1/2∇×v
∥∥∥2

+ ‖v‖2
}

+
γ

D

2
‖v × n− g

D
‖21/2,ΓD

− (f, v)−
∫

ΓN

g
N
· v ds,

(3)

where γD is a positive constant.

II. RITZ NEURAL NETWORK METHOD

A neural network defines a function of the form

y = N(x)

= ωL
(
N (L−1) ◦ · · · ◦N (2) ◦N (1)(x)

)
− bL : x ∈ Rd −→ y = N(x) ∈ Ro,

(4)

where d and o = d are dimensions of input
x and output y, respectively, ω(L) ∈ RnL−1×o,
b(L) ∈ Ro, the symbol ◦ denotes the composition
of functions, and L is the depth of the network. For
l = 1, · · · , L− 1, the N (l) : Rnl−1→ Rnl is called
the lth hidden layer of the network defined by

N (l)(x(l−1)) = σ(ω(l)x(l−1) − b(l))

for x(l−1) ∈ Rnl−1 ,
(5)

where ω(l) ∈ Rnl×nl−1 , b(l) ∈ Rnl , x(0) = x,
and σ(t) = max{0, t}k with positive integer k
is the activation function and its application to a
vector is defined component-wise. This activation
function is referred to as a spline activation ReLUk.
When k = 1, σ(t) is the popular rectified linear unit
(ReLU). A typical L-layer (or, (L-1)-hidden layer)
fully connected neural network structure is depicted
in Fig. 1.

Fig. 1. An L-layer Neural Network.

Denote by Mo
n(σ) the collection of all func-

tions of the form expressed in (4), where the
n =

∑L
l=1 nl × (nl−1 + 1) is the total number of

parameters 0. Let JT (v) be the discrete counterpart
of the energy functional defined in (3), where inte-
grations and differentiation in (3) are approximated
by numerical integration and differentiation, re-
spectively. Then the Ritz neural network (RitzNN)
method for solving (7) is to minimize the discrete
energy functional over the set M1

n(σ), i.e., finding
un ∈Mo

n(σ) ⊂ H(curl; Ω) such that

JT (un) = min
v∈Mo

n(σ)
JT (v). (6)

III. NUMERICAL EXPERIMENTS

This section presents numerical results for a
two-dimensional H(curl) problem with a corner
singularity. The test problem is given by{

∇⊥(∇×u) + u = f, in Ω,

u×n
∣∣
ΓD

= g
D
, and ∇×u

∣∣
ΓN

= g
N
,

(7)

where ∇⊥ = (∂y,−∂x)T is the formal adjoint of
the scalar curl operator ∇×= (−∂y, ∂x), and Ω =
{(r, θ)| r ∈ (0, 1), θ ∈ (0, 3π/2)}. Let

ΓN =
{

(1, θ)
∣∣ θ ∈ (0, 3π/2)

}
and,

ΓD = Γ2 ∪ Γ3

≡
{

(r, 0)
∣∣ r ∈ (0, 1)

}
∪
{

(r, 3π/2)
∣∣ r ∈ (0, 1)

}
.

For f(r, θ) = 4
3r

1
3

(
sin(π+θ

3 ), cos(π+θ
3 )
)T

, g
N

=

0, and g
D
|Γ2 = 2

√
3

3 r
1
3 and g

D
|Γ3

= − 2
√

3
3 r

1
3 , the

exact solution is u = f .
Two network structures were utilized to approx-

imate the result of this problem. The first is a NN
with one hidden layer of 300 neurons, and the
second is a two-hidden-layer NN with 32 neurons
at each hidden layer (represented as 2-300-2 NN
and 2-32-32-2 NN respectively). These two NNs
have the similar number of parameters to learn. For
each network structure, we tested the spline activa-
tion function with two different orders: a standard
ReLU and a ReLU2. The minimization problems in
(1.3) formulated by the RitzNN are solved by the
Adam optimizer [7], where ΓD is picked as 100

0In this paper, the first layer weights are normalized onto
a unit hyper sphere, which leads to a smaller total number of
parameters, n =

∑L
l=1 nl×(nl−1+1)−n1, see [6] for detail.



TABLE I
NUMERICAL RESULTS OF THE TEST PROBLEM (3.1)

NN Structure #Parameters Activation ‖u− un‖H(curl)

‖u−un‖H(curl)

‖u‖H(curl)

2-300-2 1202 ReLU 0.036322 0.020493
ReLU2 0.069180 0.039031

2-32-32-2 1186 ReLU 0.052693 0.029729
ReLU2 0.032767 0.018487

(a) un
x , ReLU activation (b) un

y , ReLU activation (c) Break lines generated by the
RitzNN with ReLU activation

(d) un
x , ReLU2 activation (e) un

y , ReLU2 activation (f) Break curves generated by the
RitzNN with ReLU2 activation

Fig. 2. Numerical results of RitzNN method using a 3-layer NN with two different activation functions, both using a 2-32-32-2
network structure.

empirically. The integrals of the energy functionals
are computed numerically using composite mid-
point quadrature rules with 100 × 270 quadrature
points, which are uniformly distributed along radial
and circumferential directions in a polar coordinate
framework. During the network training, for each
experiment, we conducted two run training with a
learning rate of 0.01 first, and then 0.001 in the
second run. The training stops at each run when
the value of the energy functional decreases within
0.01% in the last 2000 iterations.

Our numerical results of the energy norm
‖u− un‖H(curl) and the relative error measured by
‖u−un‖H(curl)

‖u‖H(curl)
are reported in Table.I. It can be seen

that both two-layer and three-layer NN structures
can approximate the result reasonably accurate.

With the similar number of parameters, both the 2-
300-2 NN and the 2-32-32-2 NN produce similar
numerical results, with the latter performs slightly
better. In Fig. 2, the graphical approximation re-
sults of are plotted for the three-layer 2-32-32-2
NN structure. Comparing the two spline activation
functions, ReLU NN generates a piecewise linear
approximation while ReLU2 generating a piecewise
fourth-order polynomial functions. The ReLU NN
produces good approximation with spurious zig-
zag on the boundaries (see Fig.2(a) and Fig.2(b))
while the ReLU2 3-layer NN approximates the
true solution better with smooth boundary in this
example (see Fig.2(d) and Fig.2(e)); and it reports
the best accuracy in terms of the absolute or relative
energy norm in the four setup, see the last row in



Table. I.
The corresponding physical partition generated

by the hidden layer neurons are depicted in Fig.2(c)
and 2(c), where one can find that the break curves
are denser near the singular point at the origin,
which explains the superior expressiveness of NN
models: the self adaptivity as a free-knot spline
which move their knots according to the corre-
sponding target functions.

IV. CONCLUSION

A learning based RitzNN method for numeri-
cally solving H(curl) problem is proposed and
tested in this paper. RitzNN method uses a fully
connected neural network with a spline activation
function as the discretization model; solving a
general H(curl) problem is then formulated as
a minimization of the corresponding energy func-
tional J(v) in (3.1). A two-dimensional numerical
experiment shows that the RitzNN method is capa-
ble of approximating H(curl) problem with corner
singularity accurately.
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