MA 162 FINAL EXAM PRACTICE PROBLEMS

1. Find the angle between the vectors $\mathbf{v}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $\mathbf{w}=2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$.
A. $\cos ^{-1}\left(\frac{8}{9}\right)$
B. $\cos ^{-1}\left(\frac{5}{9}\right)$
C. $\cos ^{-1}\left(\frac{2}{3}\right)$
D. $\cos ^{-1}\left(\frac{7}{9}\right)$
E. $\cos ^{-1}\left(\frac{1}{3}\right)$
2. Find a such that $\mathbf{u}=2 \mathbf{i}-\mathbf{j}+a \mathbf{k}$ and $\mathbf{v}=\mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$ are perpendicular.
A. 3
B. 2
C. 1
D. -1
E. -2
3. If $\mathbf{w}=w_{1} \mathbf{i}+w_{2} \mathbf{j}+w_{3} \mathbf{k}$ is perpendicular to $\mathbf{u}=\mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\mathbf{v}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}$, and if $w_{3}=2$, then $w_{1}=$
A. 4
B. 2
C. -2
D. -4
E. 1
4. If $\mathbf{v}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{w}=2 \mathbf{i}-\mathbf{k}$, find $\left|\operatorname{proj}_{\mathbf{v}}(\mathbf{w})\right|$.
A. $1 / \sqrt{3}$
B. $\sqrt{3}$
C. $\sqrt{3} / 5$
D. $2 \sqrt{3}$
E. $\sqrt{3} / 2$
5. Find the area of the triangle with vertices $P=(0,0,0), Q=(1,2,1)$, and $R=(2,1,-1)$.
A. $\sqrt{27}$
B. $\frac{\sqrt{27}}{2}$
C. $\frac{\sqrt{11}}{2}$
D. $\sqrt{19}$
E. $\frac{\sqrt{3}}{2}$
6. The radius of the sphere $x^{2}+y^{2}+z^{2}+2 x+4 y-6 z=3$ is
A. $3+\sqrt{13}$
B. $\sqrt{13}$
C. $\sqrt{65}$
D. $3+\sqrt{56}$
E. $\sqrt{17}$
7. The area of the region enclosed by the curves $y=x^{2}+1$ and $y=2 x+9$ is given by
A. $\int_{-2}^{4}\left(x^{2}+1-2 x-9\right) d x$
B. $\int_{-2}^{4}\left(2 x+9-x^{2}-1\right) d x$
C. $\int_{-2}^{2}\left(2 x+9-x^{2}-1\right) d x$
D. $\int_{-4}^{2}\left(2 x+9-x^{2}-1\right) d x$
E. $\int_{-4}^{2}\left(x^{2}+1-2 x-9\right) d x$
8. Let R be the region between the graphs of $y=x^{2}$ and $y=x$. Find the volume of the solid generated by revolving R about the x-axis.
A. $\frac{\pi}{6}$
B. $\frac{\pi}{12}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{15}$
E. $\frac{2 \pi}{15}$
9. If the region in problem 8 is revolved about the y-axis, then the volume of the solid is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{12}$
C. $\frac{\pi}{24}$
D. $\frac{2 \pi}{15}$
E. $\frac{\pi}{15}$
10. If R is the region bounded by the curves $x=0$ and $x=y-y^{2}$, and if R is revolved around the y-axis, then the volume of the solid is
A. $\frac{\pi}{15}$
B. $\frac{\pi}{30}$
C. $\frac{\pi}{12}$
D. $\frac{\pi}{3}$
E. $\frac{\pi}{6}$
11. A force of 4 lb . is required to stretch a spring $1 / 2 \mathrm{ft}$. beyond its natural length. How much work is required to stretch the spring from its natural length to 2 ft .
A. $8 \mathrm{ft}-\mathrm{lbs}$.
B. $12 \mathrm{ft}-\mathrm{lbs}$.
C. $16 \mathrm{ft}-\mathrm{lbs}$.
D. $24 \mathrm{ft}-\mathrm{lbs}$.
E. $32 \mathrm{ft}-\mathrm{lbs}$.
12. A cylindrical tank of height 4 feet and radius 1 foot is filled with water. How much work is required to pump all but 1 foot of water out of the tank. (Density $=62.5 \mathrm{lbs} . / \mathrm{ft}^{3}$)
A. $9 \pi(62.5) \mathrm{ft}-\mathrm{lbs}$.
B. $3 \pi(62.5) \mathrm{ft}-\mathrm{lbs}$.
C. $\frac{9 \pi}{2}(62.5) \mathrm{ft}-\mathrm{lbs}$.
D. $18 \pi(62.5) \mathrm{ft}-\mathrm{lbs}$.
E. $6 \pi(62.5) \mathrm{ft}-\mathrm{lbs}$.
13. Let $f(x)=\sqrt{x}$. Find c in $[0,9]$ such that $f(c)=f_{\text {avg }}$, where $f_{\text {avg }}$ is the average value of $f(x)=\sqrt{x}$ on the interval $[0,9]$.
A. $c=4$
B. $c=4.5$
C. $c=5$
D. $c=3.2$
E. $c=6$.
14. $\int x(\ln x)^{3} d x=\frac{x^{2}}{2}(\ln x)^{3}-I$, where $I=$
A. $\frac{1}{4} \int(\ln x)^{4} d x$
B. $\frac{1}{3} \int(\ln x)^{2} d x$
C. $\frac{1}{3} \int(\ln x)^{2} d x$
D. $\frac{3}{2} \int x^{2}(\ln x)^{2} d x$
E. $\frac{3}{2} \int x(\ln x)^{2} d x$
15. Evaluate $\int_{0}^{1} x e^{3 x} d x$.
A. $\frac{2 e^{3}}{9}$
B. $\frac{1}{9}+\frac{2 e^{3}}{9}$
C. 1
D. $\frac{1}{9}$
E. $\frac{e^{3}}{9}-1$
16. $\int_{0}^{\pi / 2} \sin ^{3} x d x=$
A. $2 / 3$
B. $4 / 3$
C. 0
D. $1 / 4$
E. $1 / 3$
17. $\int_{0}^{\pi / 4} \sec ^{4} x \tan x d x=$
A. 1
B. $1 / 3$
C. $4 / 3$
D. $3 / 4$
E. $2 / 9$
18. In order to compute $\int \frac{d x}{\left(1+x^{2}\right)^{3 / 2}}$ we make the substitution $x=\tan \theta$. This gives an integral in θ whose value is
A. $\frac{1}{2} \theta+\frac{1}{2} \sin \theta \cos \theta+C$
B. $\ln \left(\sec ^{2} \theta\right)+C$
C. $\frac{1}{2} \theta+\tan ^{-1} \theta+C$
D. $\frac{1}{2} \sqrt{\cos \theta}+C$
E. $\sin \theta+C$
19. $\int \frac{d x}{\sqrt{9-4 x^{2}}}=$
A. $\sec ^{-1}\left(\frac{3 x}{2}\right)+C$
B. $\frac{1}{2} \sin ^{-1}\left(\frac{2 x}{3}\right)+C$
C. $\tan ^{-1}\left(\frac{2 x}{3}\right)+C$
D. $\frac{1}{3} \sin ^{-1}\left(\frac{3 x}{2}\right)+C$
E. $\sqrt{9-4 x^{2}}+\tan ^{-1}\left(\frac{2 x}{3}\right)+C$
20. $\int \frac{x+1}{x^{3}-2 x^{2}+x} d x=$
A. $\ln |x|+\ln |x-1|+C$
B. $\ln |x|-\ln |x-1|+C$
C. $\ln |x|-\frac{2}{x-1}+C$
D. $\ln |x-1|-\frac{2}{x-1}+C$
E. $\ln |x|-\ln |x-1|-\frac{2}{x-1}+C$
21. A partial fraction decomposition of $\frac{x+2}{x^{4}+2 x^{2}}$ has the form
A. $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+2}$
B. $\frac{A}{x^{2}}+\frac{B x+C}{x^{2}+2}$
C. $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{2}+2}$
D. $\frac{A}{x^{2}}+\frac{B}{x^{2}+2}$
E. $\frac{A}{x}+\frac{B}{x^{2}+2}$
22. $\int_{0}^{1} \frac{x+2}{x^{2}+1} d x=$
A. $\frac{\ln 2}{2}+\frac{\pi}{2}$
B. $\frac{\ln 2}{2}$
C. $\frac{\ln 2}{2}+2 \pi$
D. $2 \ln 2+\frac{\pi}{2}$
E. $\ln 2+\pi$
23. Use the Trapezoidal Rule with $n=3$ to approximate $\int_{0}^{1} \frac{1-x}{1+x} d x$
A. $\frac{12}{5}$
B. $\frac{6}{5}$
C. $\frac{2}{5}$
D. $\frac{17}{60}$
E. $\frac{17}{10}$
24. Indicate convergence or divergence for each of the following improper integrals:
(I) $\int_{2}^{\infty} \frac{1}{(x-1)^{2}} d x$
(II) $\int_{0}^{2} \frac{1}{(x-1)^{2}} d x$
(III) $\int_{0}^{1} \frac{\ln x}{x} d x$
A. I converges, II and III diverge.
B. II converges, I and III diverge.
C. I and III converge, II diverges.
D. I and II converge, III diverges.
E. I, II and III diverge.
25. Find the length of the curve $y=\frac{2}{3} x^{3 / 2}, \quad 0 \leq x \leq 2$.
A. $2 \sqrt{3}-2$
B. $3 \sqrt{3}-1$
C. $\sqrt{3}-1$
D. $\frac{2}{3}(3 \sqrt{3}-1)$
E. $3 \sqrt{3}-2$
26. If the curve $y=e^{2 x}, 0 \leq x \leq 1$, is revolved about the y-axis, then the area of the surface obtained is
A. $\int_{0}^{1} 2 \pi \sqrt{1+4 e^{4 x}} d x$
B. $\int_{0}^{1} 2 \pi e^{2 x} \sqrt{1+e^{2 x}} d x$
C. $\int_{0}^{1} 2 \pi x \sqrt{1+4 e^{4 x}} d x$
D. $\int_{0}^{1} 2 \pi e^{2 x} \sqrt{1+4 e^{4 x}}$
E. $\int_{0}^{1} 2 \pi e^{4 x} \sqrt{1+e^{4 x}} d x$
27. Find the centroid (\bar{x}, \bar{y}) of the region bounded by the x-axis and the semicircle $y=\sqrt{4-x^{2}}$.
A. $\left(0, \frac{8}{3 \pi}\right)$
B. $\left(\frac{8}{3 \pi}, 0\right)$
C. $\left(0, \frac{2}{3 \pi}\right)$
D. $\left(\frac{2}{3 \pi}, 0\right)$
E. $(0,0)$
28. Evaluate $\lim _{n \rightarrow \infty}\left(1+\frac{(-1)^{n}}{n}\right)$.
A. 0
B. 1
C. -1
D. 2
E. The limit does not exist.
29. Evaluate $\lim _{n \rightarrow \infty}\left(n^{1 / n}+\frac{1}{n!}\right)$.
A. 0
B. 1
C. e
D. $1 / e$
E. The limit does not exist.
30. $\sum_{n=0}^{\infty} 5\left(-\frac{4}{5}\right)^{n}=$
A. $1 / 9$
B. $5 / 9$
C. $25 / 9$
D. 5
E. 25
31. If $L=\sum_{n=1}^{\infty} \frac{1}{2^{n}}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}}$, then $L=$
A. $1 / 3$
B. $2 / 3$
C. 1
D. $4 / 3$
E. $5 / 3$
32. Find all values of p for which $\sum_{n=1}^{\infty} \frac{1}{\left(n^{2}+1\right)^{p}}$ converges.
A. $p>1$
B. $p \leq 1$
C. $p \geq 1$
D. $p>1 / 2$
E. $p \leq 1 / 2$
33. $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{p}$ converges for:
A. $p \leq 1$
B. $p>1$
C. $p<0$
D. $p>0$
E. No values of p.
34. Which of the following series converge conditionally?
(I) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$
(II) $\sum_{n=2}^{\infty} \frac{(-1)^{n} n}{\ln n}$
(III) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{e^{n}}$
A. II only.
B. I and III only.
C. I and II only.
D. All three.
E. None of them.
35. Which of the following series converge?
(I) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{1 / 4}}$
(II) $\sum_{n=1}^{\infty} \frac{n!}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}$
(III) $\sum_{n=1}^{\infty} \frac{4}{3}\left(\frac{1}{2}\right)^{n}$
A. II only.
B. I and III only.
C. I and II only.
D. All three.
E. None of them.
36. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{3^{n} x^{n}}{n \ln n}$.
A. $-\frac{1}{3} \leq x<\frac{1}{3}$
B. $-\frac{1}{3}<x \leq \frac{1}{3}$
C. $0 \leq x \leq \frac{1}{3}$
D. $-1 \leq x<1$
E. $-3<x<3$
37. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{n}{5^{n}}(x-2)^{n}$.
A. $-5<x<5$
B. $3<x<7$
C. $-2<x<2$
D. $-3 \leq x<7$
E. $-3<x<7$
38. Find the first three terms of the Maclaurin series of $f(x)=\ln (1+x)$
A. $x+\frac{x^{2}}{2}+\frac{x^{3}}{3}$
B. $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}$
C. $x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}$
D. $x-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}$
E. $x+\frac{2 x^{2}}{3!}+\frac{3 x^{3}}{4!}$
39. If $f(x)=\sum_{n=0}^{\infty} \frac{n^{2}(x-2)^{n}}{n+1}$, then $f^{(3)}(2)=$
A. $\frac{9}{24}$
B. $\frac{27}{2}$
C. 0
D. 27
E. $\frac{9}{4}$
40. $\int_{0}^{x} t e^{t^{3}} d t=$
A. $\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}$
B. $\sum_{n=0}^{\infty} \frac{x^{3 n}}{3 n(n!)}$
C. $\sum_{n=0}^{\infty} \frac{x^{4 n+1}}{(4 n+1)!}$
D. $\sum_{n=0}^{\infty} \frac{x^{4 n+1}}{(4 n+1)(n!)}$
E. $\sum_{n=0}^{\infty} \frac{x^{3 n+2}}{(3 n+2)(n!)}$
41. Use the power series representation of $\sin x$ to find the first three terms of the Maclaurin series of $f(x)=x \sin \left(x^{2}\right)$
A. $x^{3}+\frac{x^{7}}{3!}+\frac{x^{11}}{5!}$
B. $x+\frac{x^{3}}{3}+\frac{x^{5}}{5}$
C. $x^{3}-\frac{x^{7}}{3!}+\frac{x^{11}}{5!}$
D. $x-\frac{x^{3}}{3}+\frac{x^{5}}{5}$
E. $x^{3}-\frac{x^{7}}{3}+\frac{x^{11}}{5}$
42. Find the fourth term of the Maclaurin series of $f(x)=\frac{x^{2}+3}{x-1}$.
A. $-x^{3}$
B. $3 x^{3}$
C. $-3 x^{3}$
D. $-4 x^{3}$
E. $4 x^{3}$
43. The fourth term of the Taylor series of $f(x)=\ln x$, centered at $a=2$, is
A. $\frac{1}{6}(x-2)^{3}$
B. $\frac{1}{12}(x-2)^{3}$
C. $\frac{1}{24}(x-2)^{3}$
D. $-\frac{1}{3}(x-2)^{3}$
E. $-(x-2)^{3}$
44. Using Maclaurin series and the Alternating Series Estimation Theorem, we can obtain the approximation

$$
\int_{0}^{0.1} e^{-x^{2}} d x \approx \frac{1}{10}-\frac{1}{3000},
$$

with error $\leq E$, where the value of E is
A. 10^{-5}
B. 10^{-6}
C. $\frac{1}{2} 10^{-6}$
D. $\frac{1}{7} 10^{-7}$
E. $\frac{1}{2} 10^{-5}$
45. Parametric equations of a curve C are

$$
x=2 \cos t, \quad y=3 \sin t, \quad 0 \leq t \leq \frac{\pi}{2} .
$$

The curve C is:
A. A quarter of a circle.
B. An ellipse.
C. Half of an ellipse.
D. Half of a circle.
E. A quarter of an ellipse.
46. Find the slope of the tangent line at the point $(2 / 3,3)$ for the curve parameterized by $x=2 t^{3} / 3, \quad y=t^{2}+2 t$.
A. $2 / 3$
B. 2
C. $4 / 3$
D. 4
E. 3
47. Find the length of the parametric curve

$$
x=\frac{1}{2} t^{2}, \quad y=2+\frac{1}{3} t^{3}, \quad 0 \leq t \leq \sqrt{3} .
$$

A. $21 / 4$
B. $7 / 2$
C. $7 / 3$
D. $14 / 3$
E. $8 / 3$
48. A point P has polar coordinates $(3, \pi / 4)$. Which of the following are also polar coordinates of P ?
(I) $(-3,-\pi / 4)$
(II) $(-3,5 \pi / 4)$
(III) $(3,-7 \pi / 4)$
(IV) $(3,-5 \pi / 4)$
A. I and II only.
B. I and III only.
C. I and IV only.
D. II and III only.
E. II and IV only.
49. The polar graph of $r=\frac{1}{\sin \theta+\cos \theta}$ is:
A. a parabola.
B. a line.
C. a cardioid.
D. a rose.
E. an ellipse.
50. The graph of $y^{2}=12 x$ is a parabola whose focus is the point $(3,0)$. The point $P=(12,12)$ lies on the parabola. Find the distance from P to the directrix.
A. $\sqrt{481}$
B. $\sqrt{425}$
C. $\sqrt{306}$
D. 15
E. 12
51. The ellipse $(x-2)^{2}+\frac{(y-1)^{2}}{9}=1$ has one vertex at
A. $(1,5)$
B. $(5,1)$
C. $(2,1)$
D. $(2,4)$
E. $(2,10)$
52. Find an equation for the hyperbola with foci $(\pm 3,0)$, and asymptotes $y= \pm \frac{x}{2}$.
A. $20 y^{2}-5 x^{2}=36$
B. $5 x^{2}-20 y^{2}=36$
C. $x^{2}-4 y^{2}=4$
D. $4 y^{2}-x^{2}=4$
E. $5 x^{2}-4 y^{2}=1$
53. Write the complex number $\frac{3-4 i}{1+2 i}$ in the form $a+b i$.
A. $-1-2 i$
B. $1+2 i$
C. $2-i$
D. $3-2 i$
E. $3+i$
54. Write the complex number $\sqrt{3}-i$ in polar form with argument between 0 and 2π.
A. $4\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
B. $2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$
C. $4\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
D. $2\left(\cos \frac{11 \pi}{6}+i \sin \frac{11 \pi}{6}\right)$
E. $2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$

Answers

1. D; 2. C; 3. D; 4. A; 5. B; 6. E; 7. B; 8. E; 9. A; 10. B
2. C; 12. C; 13. A; 14. E; 15. B; 16. A; 17. D; 18. E; 19. B; 20. E
3. A; 22. A; 23. C; 24. A; 25. D; 26. C; 27. A; 28. B; 29. B; 30. C
4. E; 32. D; 33. E; 34. E; 35. D; 36. A; 37. E; 38. B; 39. B; 40. E
5. C; 42. D; 43. C; 44. B; 45. E; 46. B; 47. C; 48. D; 49. B; 50. D
6. D; 52. B; 53. A; 54. D
