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Abstract

Exceptional domains are domains on which there exists a positive
harmonic function, zero on the boundary and such that the normal
derivative on the boundary is constant. Recent results classify excep-
tional domains as belonging to either a certain one-parameter family
of simply periodic domains or one of its scaling limits.

We introduce quasi-exceptional domains by allowing the boundary
values to be different constants on each boundary component. This
relaxed definition retains the interesting property of being an arclength

quadrature domain, and also preserves the connection to the hollow
vortex problem in fluid dynamics. We give a partial classification of
such domains in terms of certain Abelian differentials. We also provide
a new two-parameter family of periodic quasi-exceptional domains.
These examples generalize the hollow vortex array found by Baker,
Saffman, and Sheffield (1976). A degeneration of regions of this family
provide doubly-connected examples.

2010 AMS Subject Class: 35R35, 76B47, 30C20, 31A05
Keywords: quadrature domains, hollow vortices, elliptic functions,

Abelian differentials.

1. Introduction

A domain D ∈ Rn is called exceptional if there is a positive function u
(called a roof function) harmonic in D, zero on the boundary, and

∂

∂n
u(z) = 1, z ∈ ∂D, (1)
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where the differentiation is along the normal pointing inwards into D, and it
is assumed that the boundary is smooth. Evident examples are exteriors of
balls and half-spaces. For n > 2 the only other known examples are cylinders
whose base is an exceptional domain in R2. If the smoothness assumption
on the boundary is dropped, then there are also certain cones in higher
dimensions and pathological “non-Smirnov” examples in the plane [10].

The problem of description of all exceptional domains in the plane was
stated in [9] and settled in [10] under a topological assumption which was
removed in [17] using an unexpected correspondence to minimal surfaces.
The first non-trivial example was given in [9]. This example appeared in an-
other context related to fluid dynamics in [12]. A second non-trivial example
was noticed in [10] and [17]. This example had also appeared previously in
studies of fluid dynamics [2] (see also [5]).

Let us introduce quasi-exceptional domains, by relaxing the definition to
allow the Dirichlet condition to be a different constant on each boundary
component. Thus, a domain D ∈ Rn is called quasi-exceptional if there is a
positive harmonic function u in D, which is constant on each boundary com-
ponent (but not necessarily the same constant) and the Neumann condition
(1) holds (with the same constant on each boundary component). We will
continue to call u a roof function. Again, we assume that each component of
the boundary is smooth.

We summarize several interesting aspects of exceptional domains. These
statements all hold true for quasi-exceptional domains except the last one:

• Fluid dynamics: As noted above, the two non-trivial examples first
appeared in fluid dynamics [12, 2]. In general, one can interpret ex-
ceptional domains in terms of a hollow vortex problem. The level lines
of u can be interpreted as stream lines of a two-dimensional station-
ary flow of ideal fluid, and condition (1) expresses the fact that the
pressure is constant on the boundary. Such conditions may exist if the
components of the complement of D are air bubbles in the surrounding
liquid. Notice that the rotation of the fluid around all bubbles corre-
sponding to exceptional domains is in the same direction. This reflects
our condition that ∂nu > 0.

• Quadrature domains [7]: Exceptional domains provide examples of ar-
clength null-quadrature domains, that is, domains for which integration
over ∂D of every analytic function in the Smirnov class E1(D) vanishes.
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• Differentials on Riemann surfaces: By way of the connection to quadra-
ture domains, the study [7] indicates a connection to half-order differ-
entials. We make use of Abelian differentials in Section 4 below.

• The Schwarz function of a curve: In [10], it was noticed that the func-
tion u(z) satisfies

∂zu(z) =
√

−S ′(z),

where S(z) is the Schwarz function of ∂Ω and ∂z = 1
2
(∂x − i∂y) is the

Cauchy-Riemann operator.

• Minimal surfaces: The recent work [17] established a nontrivial corre-
spondence between exceptional domains and a special type of complete
embedded minimal surfaces called a “minimal bigraphs”. This corre-
spondence does not extend to quasi-exceptional domains.

The classification results for exceptional domains show that they are quite
restricted; all examples can be conformally mapped from a disk by elementary
functions.

Problem 1: Classify quasi-exceptional domains.

We begin to address this problem below, give a partial classification of
periodic and finitely-connected exceptional domains, and provide new peri-
odic and doubly-connected examples described in terms of elliptic functions.
First, we explain the relation to arclength null-quadrature domains.

2. Arclength null-quadrature domains

A bounded domain D ⊂ C is a quadrature domain if it admits a formula
expressing the area integral of every function f analytic and integrable in D as
a finite sum of weighted point evaluations of the function and its derivatives.
i.e.

∫

D

g(z)dA(z) =
N

∑

m=1

nm
∑

k=0

am,kg
(k)(zm), (2)

where zm are distinct points in D and am,k are constants independent of g.
A (necessarily unbounded) domain D ⊂ C is called a null-quadrature

domain (NQD) if the area integral of every function g analytic and integrable
in D vanishes:

∫

D

g(z)dA(z) = 0. (3)
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M. Sakai [16] completely classified NQDs in the plane.
Following [10] we will refer to a domain D ⊂ C as an arclength null-

quadrature domain (ALNQD) if the integral over ∂D of every function g in
the Smirnov class E1(D) vanishes (in the case ∞ is an isolated point on ∂D,
we take the restricted class of functions g(z) ∈ E1(D) vanishing at infinity):

∫

∂D

g(z)ds(z) = 0. (4)

The Smirnov class E1(D) is not the same as the Hardy space H1(D).
Namely, a function g analytic in D is said to belong to E1(D) if there exists
a sequence of cycles γk homologous to zero, rectifiable, and converging to
the boundary ∂D (in the sense that γk eventually surrounds each compact
sub-domain of D), such that:

sup
γk

∫

γk

|g(z)||dz| ≤ ∞.

One may also define quadrature domains in higher dimensions using a
test class of harmonic functions, but we will restrict ourselves to the case of
n = 2 dimensions.

Inspired by the successful classification of NQDs [16], the problem of
classifying ALNQDs was suggested in [10]. We pose this problem again while
stressing that it does not reduce to the classification of exceptional domains
(whereas it might reduce to classification of quasi-exceptional domains).

Problem 2: Classify ALNQDs.

The following proposition shows that quasi-exceptional domains are AL-
NQDs. Thus, the new examples (described in the last section) of quasi-
exceptional domains also provide new ALNQDs. Problem 2 is closely related
to Problem 1, and if the converse of the proposition is true then the two
problems are equivalent.

Proposition 1. Suppose that D is a quasi-exceptional domain. Then D is
an ALNQD.

Proof. Consider the complex analytic function F (z) = ux − iuy, where u is
the roof function. We will need the following Claim which is proved in the
next section (see Lemma 2).

Claim. The roof function u of D satisfies ∇u(z) = O(1) in D. Thus, F (z)
is bounded.
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Suppose that g is in the Smirnov space E1(D), and let φ be a conformal
map to D from a circular Ω. Using the fact that ds = iF (z)dz, we have

∫

∂D

g(z)ds =

∫

∂D

ig(z)F (z)dz = i

∫

∂Ω

g(φ(ζ))F (φ(ζ))φ′(ζ)dζ. (5)

Now g(z) ∈ E1(D) implies [6] that

g(φ(ζ))φ′(ζ) ∈ E1(Ω),

unless ∞ is an isolated boundary point (in which case g(φ(ζ))φ′(ζ) need not
be analytic at φ−1(∞)). In the case ∞ is not an isolated boundary point,
since F (φ(ζ)) is bounded (by the Claim), we have

g(φ(ζ))F (φ(ζ))φ′(ζ) ∈ E1(Ω),

and therefore, by Cauchy’s theorem, (5) vanishes. In the case ∞ is an isolated
boundary point of D, g(φ(ζ))φ′(ζ) need not be analytic at ζ = φ−1(∞). In
fact it can have a pole up to order two. However, F (z) = O(|z|−1) vanishes
to order one at infinity by Bôcher’s Theorem (cf. [10, Thm. 3.1]). Thus,
if g(z) also vanishes at infinity then g(φ(ζ))φ′(ζ)F (φ(ζ)) ∈ E1(Ω) and the
previous argument follows. This shows that if z ∈ D then D is an ALNQD
for the restricted class of functions g(z) ∈ E1(D) which vanish at infinity.

3. A potential theoretic restriction on the roof function

We restrict ourselves to the case n = 2, and assume that the order of
connectivity of D is finite, or that the roof function u is periodic, and the
fundamental region for D has finite connectivity.

Recall that a Martin function is a positive harmonic function M in a do-
main Ω with the property that for any positive harmonic function v in Ω, the
condition v ≤ M implies that v = cM , where c > 0 is a constant. (Often,
Martin functions are called minimal harmonic functions - cf. [8].) Martin
functions on finitely connected domains are simply Poisson kernels evalu-
ated at points of the Martin boundary, the boundary under Caratheodory
compactification (prime ends) of the domain (see [3]).

Any domain D of finite connectivity in C is conformally equivalent to a
circular Ω, whose boundary components are circles and points. For a circular,
a Martin function M can be of two types:

a) There is a component of ∂Ω which is a single point z0, and M is
proportional to the Green function of Ω ∪ {z0} with the singularity at z0.
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b) There is a point z0 ∈ ∂Ω which is not a component of ∂Ω, and M
has zero boundary values at all points of ∂Ω\{z0}. The local behavior in this
case is like −Im (1/z) in the upper half-plane near 0.

Let D be an exceptional domain, and u a harmonic function with the
property (1). The following result was proved for exceptional domains by
the current first author, but communicated in [10, Thm. 4.2]. Here we
repeat the proof with minor adjustments.

Lemma 2. The roof function u of a quasi-exceptional domain satisfies
∇u(z) = O(1) in D. Moreover, u is a sum of a bounded harmonic func-
tion and at most two Martin functions.

Proof. We follow the second part of the proof from [10, Thm. 4.2].
Let R > 0 and consider an auxiliary function

wR =
|∇u|

u + R
,

where R > 0 is a parameter. A direct computation shows that

∆ log wR = w2
R, (6)

and wR(z) = 1/(ck + R) ≤ 1/R for z ∈ ∂D, where ck ≥ 0 are the constants
taken in the Dirichlet condition. We claim that

wR(z) ≤ 2/R, z ∈ D, (7)

from which the result follows by letting R → ∞ which gives |∇u| ≤ 2 in D.
Suppose, contrary to (7), that wR(z0) > 2/R, for some z0 ∈ D. Let

v(z) =
2R

R2 − |z − z0|2
, z ∈ B(z0, R) = {z : |z − z0| < R}.

Obviously, v(z) ≥ 2/R. A computation reveals that ∆ log v = v2. Let

K = {z ∈ D ∩ B(z0, R) : wR(z) > v(z)}.

We have z0 ∈ K, since v(z0) = 2/R. Let K0 be the component of K,
containing z0. Then we have wR(z) = v(z) on ∂K0, since wR(z) < v(z) on
∂D ∩ B(z0, R) while v(z) = +∞ on ∂B(z0, R). On the other hand,

∆(log wR − log v) ≥ w2
R − v2 > 0 in K0.
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So the subharmonic function log wR − log v is positive in K0 and vanishes on
the boundary, a contradiction.

This proves that ∇u = O(1). In order to see the second statement, we
note that ∇u = O(1) implies that u(z) = O(|z|) has order one. The result
then follows by first solving the Dirichlet problem (with a bounded function)
having the same boundary values as u; subtracting this function, one may
then apply [11, Theorem II].

4. Partial classification in terms of Abelian differentials

Let D be a QE domain of one of the following types:
Type I. D is finitely connected, or
Type II. D/Γ is finitely connected, where Γ is the group of transformations

z 7→ z + nω, and u(z + ω) = u(z) for some ω ∈ C\{0}. We call this the
periodic case. (As above, u is the roof function.)

In this section we give a classification of QE domains of these two types
in terms of Abelian differentials of a compact Riemann surface with an anti-
conformal involution.

If D is of type I, and ∞ is an isolated boundary point, then D′ = D∪{∞}
is conformally equivalent to some bounded circular domain Ω, and we suppose
that p ∈ Ω corresponds to ∞. If ∞ is not isolated, we put D′ = D, and Ω
is a bounded circular domain conformally equivalent to D′. In any case, we
have a conformal map φ : Ω → D′.

If D is of type II, let G = D/Γ. The Riemann surface G is a finitely
connected domain on the cylinder C/Γ; this cylinder is conformally equivalent
to the punctured plane; G must have one or two punctures of C/Γ as isolated
boundary points, and we denote by G′ the union of G with these isolated
boundary points. Then G′ is conformally equivalent to a bounded circular
domain of finite connectivity Ω and we have a multi-valued conformal map
φ : Ω → G′. Let a and b denote the one or two points in Ω that correspond
to the added punctures of G′.

In all cases a and b are simple poles of φ.
We pull back u on Ω : set v = u ◦ φ. As u is periodic, v is a single-valued

positive harmonic function on Ω\{a, b}.
Consider the differential on Ω

dv = vzdz = (1/2)(vx − ivy)(dx + idy) = g(z)dz.

This is well defined on Ω: g is a single-valued meromorphic function in Ω
with simple poles exactly at a and b (if any of these points is present in Ω).
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Next, we extend v as a multi-valued function to a compact Riemann
surface S. Let Ω′ be the mirror image of Ω; we glue it to Ω in the standard way
(along each circular boundary component) and obtain a compact Riemann
surface S. We denote by σ : z 7→ z∗ the anti-conformal involution which
fixes the boundary components of Ω. The Riemann surface S is of genus
g, and the involution σ has fixed set corresponding to ∂Ω, which consists of
n = g + 1 ovals. Such involutions are called involutions of maximal type.

Each branch of v is constant on each boundary component, so it extends
through this boundary component by reflection to the double S of Ω. The
extensions of various branches of v through different boundary components
do not match: they differ by additive constants. On the other hand, the
differential dv is well defined on the double. Namely,

(dv)∗ = −dv, (8)

where ∗ is the action of involution on differentials. Thus we have a mero-
morphic differential dv on S.

Choose a basis of 1-homology in S so that the A-loops are simple closed
curves in Ω, each homotopic to one boundary component of Ω, and the B
loops are dual to the A-loops. For Type I, all periods over A-loops are purely
imaginary, because

v = Re

∫

dv

is single-valued. For Types II these periods are imaginary except those which
correspond to simple loops around one pole, a or b.

Now we discuss φ, or better the differential dφ = φ′(z)dz. We have, from
the condition that our domain is quasi-exceptional:

2|dv| = |dφ|.

The ratio of two differentials is a function. So we have a meromorphic func-
tion B on Ω such that

2Bdv = dφ. (9)

This function has absolute value 1 on ∂Ω. Therefore, it extends to S by
symmetry. Its poles belong to Ω and must match the zeros of dv, because
dφ is zero-free (indeed, φ is univalent). In fact, B is a meromorphic function
on S. To justify this claim when dv has a singularity on ∂Ω, we observe that
this singularity is removable for B as follows from the next lemma.
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Lemma 3. Consider the equation

φ′ = Bh,

where h is meromorphic in a neighborhood V of 0, B is holomorphic and
zero-free in V \{0}, |B(z)| = 1 for z ∈ V ∩ R \ {0}, and φ is univalent in
{z ∈ V : Im z > 0}. Then the singularity of B at 0 is removable.

Before proving the lemma, we note that in order to apply it in our setting
we compose B with a linear fractional transformation that sends V to a
neighborhood of the singularity we wish to remove such that the real line is
mapped to the circular boundary component with 0 sent to the singularity.

Proof. Proving this by contradiction, assume that 0 is an essential singularity
of B. By symmetry we have B(z) = 1/B(z). Then by Phragmén–Lindelöf
theorem, there exists a sequence zk → 0 such that

lim inf
k→∞

|zk| log |B(zk)| > 0. (10)

By symmetry, there exists a sequence z′

k → 0 such that

lim inf
k→∞

|z′

k| log |B(z′

k)| < 0. (11)

Without loss of generality, we may assume that one of these sequences zk or
z′

k is in the upper half-plane.
Distortion theorems for univalent functions imply that

c(Im z)3 ≤ |φ′(z)| ≤ C(Im z)−3, (12)

In addition we have

c|z|m ≤ |φ′(z)| ≤ C|z|−m, z ∈ V ∩ R, (13)

for some m > 0. These two inequalities imply via Carleman’s “loglog” prin-
ciple [4, 15] that

c|z|m ≤ |φ′(z)| ≤ C|z|m, z ∈ V, Im z > 0.

This contradicts either (10) or (11), depending on which sequence zk or z′

k

lies in the upper half-plane.
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We can thus restate the problem of finding QE domains (under the re-
strictions we impose) as follows:

Find a triple (S, dω,B), where S is a compact Riemann surface with
an involution of “maximal type” (the complement of the fixed set of the in-
volution consists of two regions homeomorphic to plane regions), dω is a
meromorphic differential that enjoys the symmetry property (8), and B is
the function which has the symmetry property

B∗(z) := B(z∗) = 1/B(z),

and has poles at the zeros of dω on one half of S, that is in Ω. There is an
additional condition that

φ = 2

∫

Bdω

is globally univalent and single-valued in case I, and single-valued except the
residues in case II.

In order to check the condition on the global univalence of φ, it is sufficient
to verify that periods of dω/B are zero on the boundary curves, and that
these boundary curves are mapped by φ injectively.

A general conclusion is the following.

Proposition 4. The boundary of a quasi-exceptional domain of type I or II
is parametrized by an Abelian integral.

Next we provide a partial classification of quasi-exceptional domains in
terms of the data stated in the above formulation.

Theorem 5. The differential dv has either two or four poles in S counting
multiplicity. Moreover, if dv has two poles in S then D is either a disk or a
half-plane.

Remark. If B 6= const, then 1/B an Ahlfors function of Ω.

Proof. The differential dv has simple poles at p, a, and b (when present) and
at their images σp, σa, and σb. In addition it may have double poles on ∂Ω.
The total number of poles in Ω is at most two by Lemma 2. Thus on S, the
differential dv has two or four poles, counting multiplicity.

Notice that v is constant on each boundary component, so the gradient
is perpendicular to the boundary ∂Ω, so the total rotation of this gradient,
as we describe the boundary is the same as the total rotation of the tangent
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vector to the boundary. This is equal to 2π(2 − n) because C1 is traversed
counterclockwise and the rest clockwise, as parts of the boundary of Ω. So
vz which is conjugate to the gradient, rotates n − 2 times.

From this we can conclude how many zeros dv has in Ω. The number N
of zeros of dv in Ω satisfies

n − 2 = N − (the number of poles in Ω), (14)

where a double pole on ∂Ω is counted as a single pole in Ω.
Suppose dv has exactly 2 poles, counting multiplicity. This can occur in

one of three ways:
(1) dv has a simple pole at p in Ω.
(2) dv has one double pole at z0 ∈ ∂Ω.
(3) dv has a simple pole at a in Ω (and b does not exist).
If Case (1) holds, then ∞ is an isolated point on ∂D, and by Proposition

1, D is an arclength quadrature domain with quadrature point at ∞. It now
follows from [7, Remark 6.1] that D is a disk.

In Case (2), we will show that B is constant. First note that dφ has a
double pole at z0, so B does not have a zero or a pole at z0. Since φ is a
conformal map, it follows from (9) that B has no zeros and N poles in Ω
(located at the zeros of dv). Assume for the sake of contradiction that B
is not constant. By Lemma 3, B is meromorphic in S, and by Lemma 2,
1/|B| is bounded by a constant in Ω. Since |B| = 1 on ∂Ω, B thus maps Ω
to the exterior of the unit disk and maps each of the n components of ∂Ω
to the unit circle. This implies that B has at least n poles in Ω. Combined
with (14), this gives the contradiction N = n − 1 ≥ n. We conclude that B
is constant which implies that the gradient of the roof function is constant.
Thus, the roof function is linear, and D is a halfplane.

In Case (3), the behavior of φ at point a is logarithmic, so dφ has a simple
pole at a and B does not have a zero or a pole at a. Arguing as before, we
conclude that B is constant and that D is a halfplane.

Corollary 6. The only quasi-exceptional domain D with compact boundary
is the exterior of a disk, and the only quasi-exceptional domain for which ∞
is a limit point of only one component of ∂D is the halfplane.

If D is a quasi-exceptional domain that is not a disk or halfplane, then
dv has four poles and more precisely, we have one of two possibilities:

D is of type I: dv has two double poles on ∂Ω. This implies that the bound-
ary ∂D consists of two simple curves tending to ∞ in both directions, and
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n − 1 bounded components. The unbounded components are the φ-images
of two arcs of of one boundary circle of Ω which contains both singularities
of φ and v.

D is of type II: dv has two simple poles in Ω. In this case D must be
periodic, all components of ∂D are compact and there are n such components
per period.

Note that the possibility that dv has one simple pole in Ω and one double
pole on ∂Ω is excluded by Lemma 2: it is easy to see that in this case the
number of Martin functions in the decomposition of u would be infinite.

We have thus described possible topologies of the QE domains satisfying
the assumptions stated in the beginning of this section.

In the next section we construct the examples of types I and II with S of
genus 1. We conjecture that there exist QE domains of types I and II based
on S having any genus.

5. New examples

Description of our examples requires elliptic functions (all known excep-
tional domains can be parametrized by elementary functions).

Example of type I.

Let G be the rectangle with vertices (0, 2ω1, 2ω1 +ω3, ω3), where ω1 = 2ω,
ω > 0, and ω3 = ω′, where ω′ ∈ iR, ω′/i > ω. Let G′ be the reflection of G in
the real line. The union of G,G′ and the interval (0, 2ω1) make a fundamental
domain of the lattice Λ generated by 2ω1, 2ω3.

Let us consider the ω1-periodic positive harmonic function h in G which
is zero on the horizontal segments of the boundary ∂G, except for one sin-
gularity per period, at 0, where it behaves in the following way:

h(z) ∼ −Im (1/z), z → 0.

Note that the existence of h is clear as it can be expressed (through conformal
mapping) in terms of the Poisson kernel of a ring domain.

Function h has two critical points in G, at w1 and w2 with Rew1 = ω1/2
and Rew2 = 3ω1/2, while the imaginary parts of w1, w2 are equal. Let us
choose real constants c1 and c2 such that v = 2(h + c1y) + c2 is a positive
harmonic function with critical points ω1/2 + ω3/2 and 3ω1/2 + ω3/2. The
existence of such constants c1 and c2 is evident by continuity.
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The z-derivative ∂zv = (vx − ivy)/2 is an elliptic function with periods
ω1, 2ω3, and thus also elliptic with periods Λ. Asymptotics near 0 show
that ∂zv ∼ −i/z2, and as this function has only one pole per period, (with
respect to the parallelogram ω1, 2ω3), we have ∂zv = −i℘ + ic0, where ℘ is
the Weierstrass function corresponding to the lattice (ω1, 2ω3).

Zeros of ∂zv in G∪G′ are ω1/2+ω3/2, 3ω1/2+ω3/2 and complex conjugates
in G′.

Let B be an elliptic function with periods 2ω1, 2ω3 having simple poles
at ω1/2 + ω3/2, 3ω1/2 + ω3/2, and zeros at complex conjugate points. Such
function exists by Abel’s theorem: the sum of zeros minus the sum of poles
equals −2ω3. This function is unique up to a constant factor. By symmetry,
B(z) = c/B(z), so on the real line |B(x)|2 = c and we can choose the constant
factor in the definition of B so that c = 1. Thus

|B(x)| = 1, x ∈ R. (15)

Then we have B(x + ω3)B(x − ω3) = 1, but by periodicity we also have
B(x + ω3) = B(x − ω3), thus |B(x + ω3)| = 1. So

|B(z)| = 1 on the horizontal segments of ∂G. (16)

Now we consider the function

F =
∂v

∂z
B = (−i℘ + ic0)B.

This function F is holomorphic and zero-free in G (the zeros of ∂v/∂z in G
are exactly canceled by the poles of B). Let us show that

∫ 2ω1

0

F (x + iy)dx = 0, y ∈ (0, ω3). (17)

This property follows from the fact that B(z) and B(z + ω1) have the same
poles but the residues at these poles are of the opposite signs, because B has
only two poles in the period parallelogram. Thus

B(z + ω1) = −B(z). (18)

Property (18) and ω1-periodicity of ℘ imply (17).
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We conclude that the primitive f =
∫

F is locally univalent. Assuming
for the moment that it is univalent, it maps G onto some region in the plane,
and we have

|f ′| = |F | =

∣

∣

∣

∣

∂v

∂z

∣

∣

∣

∣

|B|.

Define u by composing v with f−1, so u(f(z)) = v(z). Then u is positive
and harmonic in f(G). Taking into account (16), we conclude that u satis-
fies (1) f(G) is a quasi-exceptional domain. Note that, in accordance with
the previous results in [17], f(G) is not an exceptional domain since the
piecewise constant Dirichlet data is not the same constant on each boundary
component.

Figure 1: A doubly-connected quasi-exceptional domain of type I mapped
from the rectangle G.

In order to show that f is in fact univalent, it is enough to show that it
is one-to-one on the the horizontal sides of G (since f is locally univalent).
To this end, we make the following claims:

Claim 1: Re f is increasing along the segment [ω′, ω′ + 2ω] and decreasing
along the segment [ω′ + 2ω, ω′ + 4ω].
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Claim 2: Im f < Im f(ω′) on [ω′, ω′ + 2ω] and Im f > Im f(ω′) on [ω′ +
2ω, ω′ + 4ω].

Claim 3: Im f achieves its minimum and maximum values along [ω′, ω′ +4ω]
at ω′ + ω and ω′ + 3ω respectively.

Claim 4: Re f is increasing on the segment [0, 2ω], and Re f is decreasing
along [2ω, 4ω].

Claim 5: Im f attains its maximum along [0, 2ω] at ω and its minimum along
[2ω, 4ω] at 3ω.

Claim 6: Im f(ω) < Im f(ω′ + ω) < Im f(ω′ + 3ω) < Im f(3ω).

Claim 1 implies that Re f is monotone along each of the named segments,
and since Im f differs between the two segments by Claim 2, f must be one-
to-one on the top side of G. Claim 4 implies that f is one-to-one on each of
the two segments on the bottom side of G. Claims 3, 5, and 6 imply that
the images of these three segments do not intersect each other. This shows
that f is one-to-one on the horizontal sides of G.

The claims can be established by the properties of f ′ = F = ∂zvB. First
note that, since v(z) is positive in G and vanishes on the horizontal sides of
G, we have ∂xv(z) = 0 on both sides, and for x ∈ R we have ∂yv(x+ω3) < 0,
and ∂yv(x) > 0. In particular, i∂zv(z) = i(∂xv−i∂yv)/2 = ∂yv/2 is real. The
function B(z) is a Jacobi sn function, whose properties are well-known [1,
Section 47]. B(z) sends the top side of G to the unit circle, such that the four
segments [ω′, ω′+ω], [ω′+ω, ω′+2ω], [ω′+2ω, ω′+3ω], and [ω′+3ω, ω′+4ω]
correspond to the fourth, third, second, and first quadrants of the unit circle,
respectively. Multiplication by ∂zv(z) distorts this circle and rotates it by an
angle of π/2 (since ∂zv(z)/i is positive) but preserves the two-fold symmetry.
This determines the sign of the real and imaginary parts of f ′. Since dz = dx
is purely real on the horizontal sides of G, this gives the monotonicity of Re f
stated in Claim 1. Claims 2 and 3 follow from the sign of Im f ′ and the fact
that Im f ′ is an odd function with respect to reflection in each of the points
ω′ + ω and ω′ + 3ω.

The four segments [0, ω], [ω, 2ω], [2ω, 3ω], and [3ω, 4ω] on the bottom
side of G are sent to the second, first, fourth, and third quadrants of the
unit circle respectively. Since ∂zv(z)/i is negative along the bottom side of
G, under f ′(z) this becomes the first, fourth, third, and second quadrants,
respectively. This establishes Claim 4, and combined with the reflectional
symmetry, also Claim 5. Claim 6 follows from the fact that ∂zv(z)B(z) > 0
along the vertical segment [ω, ω+ω′] and ∂zv(z)B(z) < 0 along [3ω, 3ω+ω′].
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Remark. For the purpose of plotting Figure 1, instead of the above construc-
tion, we expressed F as a ratio of Weierstrass σ functions:

f ′(z) = F (z) =
σ(z − ω + ω′/2)2 · σ(z − 3ω + ω′/2)2

σ(z)2 · σ(z − 2ω) · σ(z − 6ω + 2ω′)
,

where σ is a Weierstrass σ function with fundamental “periods” 4ω, 2ω′ (but
recall that σ is not itself periodic). As usual, the shifts are chosen based on
the the zeros and poles of F , but one of the shifts must be replaced by an
equivalent lattice point in a different rectangle in order to satisfy [1, Eq. (1),
Sec. 14]. This explains why one of the poles is placed at 6ω − 2ω′.

Example of type II.

Only small modifications of the previous example are needed. Using the
same G,G′, ω1, ω3, we define h as the ω1-periodic function, positive and
harmonic in G′ except two logarithmic poles at iǫ and ω1 + iǫ, where ǫ ∈
(0, ω3/2). Then we can find constants c1 and c2 such that v = h + c1y + c2

has critical points at ω1/2 + ω3/2 and 3ω1/2 + ω3/2.
Then vz is an elliptic function with periods ω1, 2ω3 with two simple poles

at iǫ and −iǫ per period parallelogram. This elliptic function has the form

−i℘

1 + c℘
+ ic0

with some small real c. The rest of the construction is the same as in the
previous example.

In a similar manner to the above, in order to plot the figures, we expressed
F as a ratio of Weierstrass σ functions:

f ′(z) = F (z) =
σ(z − ω + ω′/2)2 · σ(z − 3ω + ω′/2)2

σ(z − iǫ) · σ(z + iǫ) · σ(z − 2ω − iǫ) · σ(z − 6ω + iǫ + 2ω′)
.

6. Hollow vortex equilibria

Let Gj be smooth Jordan domains on the plane whose closures are dis-
joint, and

D = C \ ∪jDj.

Let F be a complex potential of a flow of an ideal fluid which is divergence-free
and locally irrotational in D. If the pressure (determined by |F ′| according
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Figure 2: An example of Type II with ω1 = 2, ω3 = 2 and ǫ = 0.5. Note that
we have aligned the array horizontally in order to plot two periods.

Figure 3: An example of Type II with ω1 = 2, ω3 = 1.5, and ǫ = 0.4. Note
that we have aligned the array horizontally in order to plot two periods.

to Bernoulli’s law) is constant on ∂D then Gj can be interpreted as constant-
pressure gas bubbles in the flow.

The first examples of this situation, with two bubbles were constructed by
Pocklington [13]. Periodic exceptional domains give periodic examples with
one bubble per period, with the flow on the surface on the bubbles rotating
in the same direction [2] (see also [5]). Crowdy and Green [5] constructed
periodic examples with two bubbles per period rotating in the opposite di-
rection. Our example of type II can be interpreted as a periodic flow with
two bubbles per period rotating in the same direction.

The velocity at infinity in our examples is directed in the opposite direc-
tions on the two sides of the row of the bubbles.
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