Quiz 2 - Solutions

MA 262
Artur's Class
February 13, 2012

Problem 1

Find a nonconstant solution $y=y(x)$ of

$$
\frac{d y}{d x}=\frac{2}{3}(y-1)^{1 / 2}
$$

satisfying $y(1)=1$. This solution is defined over which domain?

Solution

Rearrange and apply integrals to get

$$
\frac{1}{2} \int \frac{d y}{(y-1)^{1 / 2}}=\frac{1}{3} \int d x
$$

Performing the integration gives

$$
\sqrt{y-1}=\frac{1}{3} x^{2}+c
$$

where c is some constant of integration. At this point substituting the initial data, gives $0=1 / 3+c$, i.e., $c=-1 / 3$. Squaring and rearranging gives

$$
y(x)=\frac{1}{9}\left(x^{2}-1\right)^{2}+1
$$

Thinking of the solution $y=y(x)$ as a function $y: \mathbb{R} \rightarrow \mathbb{R}$, we can see that this solution is defined over the entire real line. (Notice also that this solutions satisfies $y(x) \geq 1$ for all real x. So this causes no problem with the radical in the differential equations.)

Problem 2

Use an integrating factor to find a solution $y=y(x)$ of

$$
\left(y-e^{x}\right) d x+d y=0
$$

satisfying $y(1)=1$. Denote clearly which integrating factor you used.

Solution

Put the equation in in standard form:

$$
\frac{d y}{d x}+y=e^{x}
$$

The coefficient of y is the constant function $p(x) \equiv 1$. The integrating factor $\mu(x)=\exp \int p(x) d x=e^{x}$. Multiplying by $\mu=e^{x}$ gives

$$
\frac{d}{d x}\left(e^{x} y\right)=e^{x} \frac{d y}{d x}+e^{x} y=e^{2 x}
$$

Integrating gives

$$
e^{x} y=\int e^{2 x} d x=\frac{1}{2} e^{2 x}+c
$$

for some constant c. Substituting in the intial data gives $e=\frac{1}{2} e^{2}$, i.e., $c=e-\frac{1}{2} e^{2}$. Multiplying both sides by e^{-x} gives

$$
y(x)=\frac{1}{2} e^{x}+c e^{-x}=\frac{1}{2} e^{2 x}+\left(e-\frac{1}{2} e^{2}\right) e^{-x} .
$$

NB: Notice that multiplying a constant c by e^{-x} does not result in a constant. In other words we cannot write $c e^{-x}=c^{\prime}$ for some new constant c^{\prime}.

So don't do that:)

