Quiz 3 - Solutions

MA 262
Artur's Class
February 13, 2012

Problem 1

Give all values of n, c such that

$$
f(x, y)=x^{n}+c y^{2}
$$

is homogeneous.

Solution

A function f of two variables x, y is homogeneous when $f(t x, t y)=t^{k} f(x, y)$, where k is the degree of homogeneity. (It is homogeneous of degree zero when $\left.f(t x, t y)=t^{0} f(x, y)=f(x, y).\right)$

Try to enforce the identity:

$$
\begin{aligned}
f(t x, t y) & =t^{k} f(x, y) \\
t^{n} x^{n}+c t^{2} y^{2} & =t^{k} x^{n}+c t^{k} y^{2}
\end{aligned}
$$

This means that $t^{n}=t^{k}$ and $c t^{2}=c t^{k}$. Since these must be valid for all t, the first equation implies $n=k$. The implications of the second equation depend on the value of c; more precisely, it depends on whether c is zero or not.

There are two (families of) possibilities:

- If c is nonzero, then $n=k=2 . n=2$ is also a possibility when $c=0$. So one family is $c \in \mathbb{R}, n=2$.
- When $c=0$ we have $n=k$ but, k has no restrictions. Thus another family is $c=0, n \in \mathbb{R}$.

Problem 2

Give all values α such that

$$
d y+3 x y\left(4+y^{\alpha}\right) d x=0
$$

is
(i) Bernoulli,
(ii) Linear.

DO NOT SOLVE.

Solution

It is a first order equation. Rearrange slightly:

$$
\frac{d y}{d x}+12 x y=-3 y^{1+\alpha}
$$

This equation is Bernoulli for any value of the exponent on the right hand side, i.e., for all real α This equation is linear when $y^{1+\alpha}=y$ or $y^{1+\alpha}$ is a constant. The first case happens when $\alpha=-1$ and the second when $\alpha=0$.

Problem 3

Is

$$
2 x y d x+\left(x^{2}+1\right) d y=0
$$

exact? Why?

Solution

Write $M=2 x y$ and $N=x^{2}+1$. It is easy to see that $\partial M / \partial y=\partial N / \partial x$. But this is precisely the criteria for exactness. ${ }^{1}$

Problem 4

Find potential function $\phi=\phi(x, y)$ for the equation in $\# 3$.

[^0]
Solution

The potential function should satisfy $\partial \phi / \partial x=M$. So for a fixed y we should have

$$
\phi(x, y)=\int M d x=\int 2 x y d x=x^{2} y+h(y)
$$

for some constant $h(y)$. As y varies, so does $h(y)$ so we may view h as a function. If a potential function exists, then h must be differentiable. Since we want $\partial \phi / \partial y=$ N we must have that $h^{\prime}(y)=1$. But $h(y)=y$ is a solution to this. So

$$
\phi(x, y)=x^{2} y+y
$$

is a potential function for the exact equation.

[^0]: ${ }^{1}$ More precisely, this is the criteria for exactness on a simply connected domain.

