Quiz 3 — Solutions

MA 262 Artur's Class

February 13, 2012

Problem 1

Give all values of n, c such that

$$f(x,y) = x^n + cy^2$$

is homogeneous.

Solution

A function f of two variables x, y is homogeneous when $f(tx, ty) = t^k f(x, y)$, where k is the degree of homogeneity. (It is homogeneous of degree zero when $f(tx, ty) = t^0 f(x, y) = f(x, y)$.)

Try to enforce the identity:

$$f(tx, ty) = t^k f(x, y)$$

$$t^n x^n + ct^2 y^2 = t^k x^n + ct^k y^2$$

This means that $t^n = t^k$ and $ct^2 = ct^k$. Since these must be valid for all t, the first equation implies n = k. The implications of the second equation depend on the value of c; more precisely, it depends on whether c is zero or not.

There are two (families of) possibilities:

- If c is nonzero, then n = k = 2. n = 2 is also a possibility when c = 0. So one family is $c \in \mathbb{R}$, n = 2.
- When c = 0 we have n = k but, k has no restrictions. Thus another family is $c = 0, n \in \mathbb{R}$.

Problem 2

Give all values α such that

$$dy + 3xy(4+y^{\alpha}) \ dx = 0$$

is

- (i) Bernoulli,
- (ii) Linear.

DO NOT SOLVE.

Solution

It is a first order equation. Rearrange slightly:

$$\frac{dy}{dx} + 12xy = -3y^{1+\alpha}$$

This equation is Bernoulli for any value of the exponent on the right hand side, i.e., for all real α This equation is linear when $y^{1+\alpha} = y$ or $y^{1+\alpha}$ is a constant. The first case happens when $\alpha = -1$ and the second when $\alpha = 0$.

Problem 3

Is

$$2xy \, dx + (x^2 + 1) \, dy = 0$$

exact? Why?

Solution

Write M = 2xy and $N = x^2 + 1$. It is easy to see that $\partial M/\partial y = \partial N/\partial x$. But this is precisely the criteria for exactness.¹

Problem 4

Find potential function $\phi = \phi(x, y)$ for the equation in #3.

¹More precisely, this is the criteria for exactness on a simply connected domain.

Solution

The potential function should satisfy $\partial \phi / \partial x = M$. So for a fixed y we should have

$$\phi(x,y) = \int M dx = \int 2xy \ dx = x^2 y + h(y),$$

for some constant h(y). As y varies, so does h(y) so we may view h as a function. If a potential function exists, then h must be differentiable. Since we want $\partial \phi / \partial y =$ N we must have that h'(y) = 1. But h(y) = y is a solution to this. So

$$\phi(x,y) = x^2y + y$$

is a potential function for the exact equation.