Quiz 5

MA 262
Artur's Class

February 21, 2012

Problem 1

Put

$$
A=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 5 & 6 & 7 \\
0 & 0 & 8 & 9 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Compute $\operatorname{det}(A)$

Solution

This matrix is upper triangular (UT). So we can compute along the diagonal:

$$
\operatorname{det}(A)=1 \cdot 5 \cdot 8 \cdot 1=40
$$

(This is an immediate consequence of the cofactor expansion method.)

Problem 2

Recall $C(\mathbb{R})$ is the real vector space of continuous functions on \mathbb{R}. The polynomials of degree ≤ 2 form a subset. Show that this is also a subspace.

Solution

We can use the subspace criteria: (i) nonemptyness, (ii) closed under addition, and (iii) closed under scalar multiplication.

- Nonempty. The zero polynomial $0=0+0 x+0 x^{2}$ is of degree two or less. So at least the zero polynomial is in our set.
- Closed under + . Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}$ and $g(x)=b_{0}+b_{1} x+b_{2} x^{2}$ by polynomials of degree 2 or less. Then their sum

$$
(f+g)(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}
$$

is clearly a polynomial of degree 2 or less.

- Closed under. Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}$ and k be a scalar (i.e., $k \in \mathbb{R}$). Again, it is obvious that

$$
(k \cdot f)(x)=k a_{0}+k a_{1} x+k a_{2} x^{2},
$$

is a polynomial of degree 2 or less.
Remark. In all of the above, even though the polynomials "look" degree 2, it is possible that the coefficient of x^{2} is zero. In this case the degree is strictly less than 2.

Problem 3

What about for polynomials of degree $=2$? Explain.

Solution

There are many ways to see that the set of degree 2 polynomials is not a subspace. Here are a few methods:

- This space has no zero! (The zero polynomial is not a degree two polynomial.)
- It is not closed under scalar multiplication. $0 \cdot p(x)=0$. But again the zero polynomial is not of degree 2 .
- It is not closed under addition. Consider a degree two polynomial $p(x)$ and its negative $-p(x)$. Their sum is zero and hence not of degree 2 .

