# Quiz 6 - Solutions 

MA 262
Artur's Class
February 29, 2012

## Problem 1

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)
$$

Compute nullspace $(A)$.

## Solution

Recall that the nullspace of $A$ is the set of vectors $v \in \mathbb{R}^{2}$ that are mapped to 0 under $A$, i.e., $A v=0$. Suppose $v=\left(x_{1}, x_{2}\right)$ is in the nullspace of $A$. Then $(0,0)=A v=\left(2 x_{1}, 0\right)$. Notice only $x_{1}$ is constrained. The nullspace is then

$$
\text { nullspace }(A)=\{(0, r): r \in \mathbb{R}\} .
$$

## Problem 2

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Compute nullspace $(A)$.

## Solution

This problem is easy since every vector in $\mathbb{R}^{2}$ is "killed by $A$," i.e., $A v=0$ for all $v \in \mathbb{R}^{2}$. Thus

$$
\text { nullspace }(A)=\mathbb{R}^{2} \text {. }
$$

## Problem 3

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)
$$

Compute nullspace $(A)$.

## Solution

This problem is also easy because it is clear that $\operatorname{rank}(A)=2$; so $A$ has full rank and is thus nonsingular. That means that the equation $A v=0$ has no nontrivial solutions. Thus the nullspace is the trivial (zero) subspace:

$$
\operatorname{nullspace}(A)=\{(0,0)\} .
$$

## Problem 4

Consider the differential equation

$$
y^{\prime \prime}+2 y^{\prime}-y=1
$$

(a) Write down the solution space in set notation. (Do not solve the equation.)
(b) Is this solution space a subspace of $C(\mathbb{R})$.

## Solution

(a) The solution space is

$$
S=\left\{y \in C(\mathbb{R}): y^{\prime \prime}+2 y^{\prime}-1=0\right\} .
$$

(b) To see that $S \subset C(\mathbb{R})$ is not a subspace of $C(\mathbb{R})$ we can quickly observe that this subset doesn't contain the zero (the zero function $O(x) \equiv 0)$ of $C(\mathbb{R})$.

