
Symmetric Matrices and the Spectral Theorem

(I) An n× n square matrix is said to be symmetric if its entries are symmetric across the main
diagonal. For n = 2 and n = 3 these are the matrices of the form[

a b
b c

]
,

a b c
b d e
c e f

 .

(II) If A is symmetric, then

v⃗ · (Aw⃗) = (Av⃗) · w⃗ (1)

for all vectors v⃗ and w⃗. Indeed, being symmetric is equivalent to the condition that A = AT ,
which allows us to write

v⃗ · (Aw⃗) = v⃗TAw⃗ = v⃗TAT w⃗ = (Av⃗)T w⃗ = (Av⃗) · w⃗.

(III) The above equation yields something interesting if v⃗ and w⃗ are both eigenvectors. If

Av⃗ = λv⃗, and Aw⃗ = µw⃗,

then substituting into (1) yields

µv⃗ · w⃗ = λv⃗ · w⃗,

or

(µ− λ)v⃗ · w⃗ = 0.

Hence, if µ ̸= λ, then v⃗ is orthogonal to w⃗.

(IV) The most important deeper property of symmetric matrices is that a symmetric matrix with
real entries is always diagonalizable and all the eigenvalues and eigenvectors are real. This is
in contrast to more complicated cases like[

0 1
0 0

]
, and

[
0 −1
1 0

]
,

the first of which is defective, having only the eigenvectors

[
x1
0

]
, and the second of which has

complex eigenvalues and eigenvectors.

(V) One version of the Spectral Theorem says that given any n×n real symmetric matrix A, there
is an orthonormal basis of Rn consisting of eigenvectors of A. We prove this using multivariable
calculus. The first step is maximizing

(Av⃗) · v⃗,

subject to the constraint

∥v⃗∥2 = 1.
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By the method of Lagrange multipliers, 1 this maximum occurs at a point where the gradient
of the function being maximized is a constant multiple of the gradient of the constraint, i.e.

∇(Av⃗) · v⃗ = λ∇(∥v⃗∥2 − 1). (4)

To compute the gradients, we expand:

∥v⃗ + u⃗∥2 = ∥v⃗∥2 + 2v⃗ · u⃗+ ∥u⃗∥2,

and recall the Taylor expansion formula

F (v⃗ + u⃗) = F (v⃗) +∇F (v⃗) · u⃗+ · · · ,

which yields

∇∥v⃗∥2 = 2v⃗. (5)

Similarly,

(A(v⃗ + u⃗)) · (v⃗ + u⃗) = (Av⃗) · v⃗ + 2(Av⃗) · u⃗+ 2(Au⃗) · u⃗,

where we used (1) to simplify, and hence

∇(Av⃗) · v⃗ = 2Av⃗. (6)

Substituting (5) and (6) into (4) yields

Av⃗ = λv⃗.

Thus the solution to the maximization problem is an eigenvector, and the Lagrange multiplier
is an eigenvalue.

1See Paul’s Notes for an introduction to Lagrange multipliers with pictures and examples. A neat derivation of the
general formula can be obtained by linear algebra. Specifically, if v⃗ is a maximizer of F (v⃗) subject to the constraint that
it lies in the surface M given by the equations G1(v⃗) = c1, . . . , Gk(v⃗) = ck, then the Lagrange multipliers formula says
that there are constants λ1, . . . , λk such that

∇F (v⃗) = λ1∇G1(v⃗) + · · ·+ λk∇Gk(v⃗). (2)

To derive this, we start with the more general formula

∇F (v⃗) = λ1∇G1(v⃗) + · · ·+ λk∇Gk(v⃗) + w⃗, (3)

where w⃗ is tangent to the surface M ; this comes from the fact that any vector is a sum of a term perpendicular to
the surface (denoted here by the general linear combination λ1∇G1(v⃗) + · · ·+ λk∇Gk(v⃗)) a term tangent to the surface
(denoted here by w⃗).

Next, let γ⃗(t) be a curve in the surface M such that γ⃗(0) = v⃗ and γ⃗′(0) = w⃗. Since v⃗ is a maximizer of F , it follows
that 0 is a maximizer of h(t) = F (γ⃗(t)). Consequently

0 = h′(0) = ∇F (γ⃗(0)) · γ⃗(0) = ∇F (v⃗) · w⃗ = ∥w⃗∥2,

where for the last equality we substituted (3) and used the fact that ∇Gj(v⃗) · w⃗ = 0 for every j. Hence w⃗ = 0, which
reduces (3) to (2).

A nice way to encapsulate (2) is to say that constrained maxima occur at critical points of the corresponding Lagrangian
function, defined by

F(v⃗, λ1, . . . , λk) = F (v⃗)− λ1G1(v⃗)− · · · − λkGk(v⃗).

https://tutorial.math.lamar.edu/classes/calciii/lagrangemultipliers.aspx
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We will see that what we have found is the largest eigenvalue of A. 2 To find the next
largest, we do the same maximization subject to an additional constraint: we label the above
eigenvector and eigenvalue as v⃗1 and λ1, and we wish to maximize

(Av⃗2) · v⃗2,
subject to the constraints

∥v⃗2∥2 = 1, v⃗2 · v⃗1 = 0.

This time the method of Lagrange multipliers says that at a maximum we have

∇(Av⃗2) · v⃗2 = λ∇(∥v⃗2∥2 − 1) + µ∇(v⃗2 · v⃗1),
(with gradients taken with respect to v⃗2) or

Av⃗2 = λv⃗2 + µv⃗1. (7)

We compute µ by dotting both sides with v⃗1, to get

(Av⃗) · v⃗1 = λv⃗ · v⃗1 + µv⃗1 · v⃗1 = µv⃗1 · v⃗1, (8)

where for the second equals we used the constraint v⃗ · v⃗1 = 0. But, by (1),

(Av⃗) · v⃗1 = v · (Av1) = λ1v⃗ · v⃗1 = 0,

so (8) implies µ = 0. Plugging µ = 0 into (7) yields

Av⃗2 = λv⃗2,

and thus we have a second eigenvector, orthonormal with the first one. Repeating this process
yields an orthonormal basis of eigenvectors.

2We could use the corresponding minimization problem to locate the smallest eigenvalue, and the other solutions to
the Lagrange multiplier problem are the other eigenvalues and eigenvectors. A subtle point arises: how do we know that
these maximizers and minimizers exist within the family of unit vectors? Recall that to solve some optimization problems
it is necessary to leave the family where the problem is posed. For example, if we set out to minimize F (x) = (x2 − 2)2

over the rational numbers, the only way to get a solution is to use irrational numbers. If we set out to minimize the area
of a rectangle subject to the constraint that the perimeter is 1, the only possible solution is to use a kind of degenerate
rectangle or line segment with area 0. This issue does not arise for our eigenvalue problem because the real numbers are
complete and the set of unit vectors is compact ; see for example Section 5.1 of Shifrin’s Multivariable Mathematics.


