Homework 4

Due Feburary 12th at the beginning of class, or by $1: 50 \mathrm{pm}$ in MATH 602. Justify your answers. Please let me know if you have a question or find a mistake.

1. Find the general solution to Legendre's equation:

$$
\left(1-x^{2}\right) y^{\prime \prime}(x)-2 x y^{\prime}(x)+n(n+1) y(x)=0
$$

when $n=1$, for $x \in(-1,1)$. Express your answer using one natural logarithm, one square root, and no absolute values.
Hint: First find a solution of the form x^{m} for a suitable choice of m. Then use the reduction of order substitution $y(x)=u(x) x^{m}$. You may use the following partial fraction decompositions without verifying them:

$$
\frac{4 x^{2}-2}{x\left(x^{2}-1\right)}=\frac{1}{x-1}+\frac{2}{x}+\frac{1}{1+x}, \quad \frac{1}{x^{2}\left(x^{2}-1\right)}=\frac{1}{2(x-1)}-\frac{1}{x^{2}}-\frac{1}{2(x+1)}
$$

2. Exercise 2.2.6 from page 72 of
https://www.jirka.org/diffyqs/diffyqs.pdf
3. Solve

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

4. Let a be a given real number. Find all solutions to

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0, \quad y(0)=0, \quad y^{\prime}(a)=1
$$

How does the number of solutions depend on a ?
5. Let a and b be constants such that the differential equation

$$
y^{\prime \prime}+a y^{\prime}+b y=0
$$

has

$$
y(t)=C_{1} e^{2 t}+C_{2} e^{-5 t}
$$

as its general solution.
(a) Find a and b.
(b) Find c such that the solution to the initial value problem

$$
y^{\prime \prime}+a y^{\prime}+b y=0, \quad y(0)=1, \quad y^{\prime}(0)=c
$$

obeys $\lim _{t \rightarrow \infty} y(t)=0$.

