## Homework 3

Due February 5th at the beginning of class, or by $12: 30 \mathrm{pm}$ in MATH 602. Justify your answers. Please let me know if you have a question or find a mistake.

1. Let $f(x, y)=\sin \left(x+y^{2}\right)$. Find the linear approximation to $f$ at $(0, \sqrt{\pi / 4})$
2. Let $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$. Without using a calculator, find the linear approximation to $f$ at (1320231, $-2640462,3960693)$.
3. A terrain of hills has altitude in meters at a horizontal point $(x, y)$ given by $f(x, y)=$ $x^{2}+y^{2}-x^{4}-y^{6}$. The horizontal position at time $t$ of a train traveling these hills is given by $g(t)=\left(\cos t, \frac{1}{2} \sin t\right)$. In meters per second, what is the instantaneous rate of change of altitude of the train at time $t=0$ ?
4. (a) Let $z=\sin (x-y)$. Use the chain rule to evaluate

$$
\partial_{x} z+\partial_{y} z
$$

(b) Let $z=f(a x+b y)$, where $a$ and $b$ are given constants, and $f$ is a given differentiable function. Use the chain rule to find all constants $c$ and $d$ such that

$$
c \partial_{x} z+d \partial_{y} z=0 .
$$

5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by

$$
\begin{gathered}
f\left(x_{1}, x_{2}\right)=\left(e^{x_{1}+2 x_{2}}, x_{1}^{2}-\cos x_{2}, x_{1}^{2}+x_{2}-2\right) \\
g\left(y_{1}, y_{2}, y_{3}\right)=\left(y_{1}^{2}+y_{2}^{4}+\cos y_{3}, y_{1}+y_{2}^{2}+\sin y_{3}\right)
\end{gathered}
$$

(a) Let $F\left(y_{1}, y_{2}, y_{3}\right)=f\left(g\left(y_{1}, y_{2}, y_{3}\right)\right)$. Find $D F(0,0,0)$.
(b) Let $G\left(x_{1}, x_{2}\right)=g\left(f\left(x_{1}, x_{2}\right)\right)$. Find $D G(0,0)$.

Hint: It is not necessary to write out $F$ or $G$.

