Homework 11

Due December 7th in class or by 1:50 pm in MATH 602.
This homework covers sections 11.7, 11.8, 11.9, and 12.7.

1. In class we derived the formula

$$
u(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(w) e^{-w^{2} t} e^{i w x} d w
$$

for the solution to

$$
\partial_{t} u(x, t)=\partial_{x}^{2} u(x, t), \quad u(x, 0)=f(x)
$$

Derive the corresponding formula for the solution to

$$
\partial_{t} u(x, t)=\partial_{x}^{3} u(x, t), \quad u(x, 0)=f(x) .
$$

2. (a) Let $a>0$. Find the Fourier transform of

$$
f(x)=e^{-a|x|} .
$$

(b) Let $b>0$. Use your answer to part (a) to find the Fourier transform of

$$
f(x)=\frac{1}{x^{2}+b} .
$$

3. Another version of the formula for the solution to

$$
\partial_{t} u(x, t)=\partial_{x}^{2} u(x, t), \quad u(x, 0)=f(x),
$$

is

$$
u(x, t)=\frac{1}{2 \sqrt{\pi t}} \int_{-\infty}^{\infty} f(y) e^{-\frac{(x-y)^{2}}{4 t}} d y .
$$

Use this version to find constants $A>0$ and $B>0$ such that

$$
u(x, 1 / 4)=A e^{-B x^{2}},
$$

when $f(x)=e^{-x^{2}}$.

Hint: Use completion of squares to Write the integrand as $e^{-a(y+b x)^{2}+c x^{2}}$ for suitable constants a, b, and c, and then use the substitution $v=$ $y+b x, d v=d y$, and then use $\int_{-\infty}^{\infty} e^{-a v^{2}} d v=\sqrt{\pi / a}$.

Aside: The same method will find $u(x, t)$ for more general Gaussian inital conditions and more general times $t>0$, but with a more complicated formula. (You can ignore this issue for this homework).

