Homework 7

Due October 26th in class or by 1:50 pm in MATH 602.

This homework covers sections 12.12, 11.1, and 11.2.

1. Use the Laplace transform to find the function w(x,t) such that

$$\begin{aligned} \partial_x w(x,t) &= -2\partial_t w(x,t) + 3w(x,t), & \text{when } x > 0 \text{ and } t > 0, \\ w(x,0) &= \partial_t w(x,0) = 0, & \text{when } x \ge 0, \\ w(0,t) &= t^2 e^{-t}, & \text{when } t \ge 0. \end{aligned}$$

- 2. Let f(x) = x for 0 < x < 1.
 - (a) Let f_1 be the extension of f with period 1. Sketch f_1 and find its Fourier series.
 - (b) Let f_2 be the even extension of f with period 2. Sketch f_2 and find its Fourier series.
 - (c) Let f_3 be the odd extension of f with period 2. Sketch f_3 and find its Fourier series.
- 3. Let f(x) have the Fourier series

$$2 + \sum_{n=1}^{\infty} \frac{1}{n^2} \cos n\pi x,$$

and let $g(x) = 2f(2x - \frac{1}{2})$. Use the formulas expanding $\cos(\alpha + \beta)$ and $\sin(\alpha + \beta)$ to write out the partial sum of the Fourier series of g(x) up to the terms $\sin(8\pi x)$ and $\cos(8\pi x)$.