Homework 7

Due October 26th in class or by 1:50 pm in MATH 602.
This homework covers sections 12.12, 11.1, and 11.2.

1. Use the Laplace transform to find the function $w(x, t)$ such that

$$
\begin{aligned}
\partial_{x} w(x, t) & =-2 \partial_{t} w(x, t)+3 w(x, t), & \text { when } x>0 \text { and } t>0, \\
w(x, 0) & =\partial_{t} w(x, 0)=0, & \text { when } x \geq 0 \\
w(0, t) & =t^{2} e^{-t}, & \text { when } t \geq 0 .
\end{aligned}
$$

2. Let $f(x)=x$ for $0<x<1$.
(a) Let f_{1} be the extension of f with period 1 . Sketch f_{1} and find its Fourier series.
(b) Let f_{2} be the even extension of f with period 2 . Sketch f_{2} and find its Fourier series.
(c) Let f_{3} be the odd extension of f with period 2 . Sketch f_{3} and find its Fourier series.
3. Let $f(x)$ have the Fourier series

$$
2+\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos n \pi x
$$

and let $g(x)=2 f\left(2 x-\frac{1}{2}\right)$. Use the formulas expanding $\cos (\alpha+\beta)$ and $\sin (\alpha+\beta)$ to write out the partial sum of the Fourier series of $g(x)$ up to the terms $\sin (8 \pi x)$ and $\cos (8 \pi x)$.

