Homework 8

Due November 2nd in class or by 1:50 pm in MATH 602.
This homework covers sections 11.3, 11.4, 11.5, and 11.6.

1. (a) Given $n>0$, find constants A_{n} and B_{n} such that

$$
y_{n}(t)=A_{n} \cos n t+B_{n} \sin n t
$$

is a solution to

$$
y_{n}^{\prime \prime}(t)+.01 y_{n}^{\prime}(t)+4 y_{n}(t)=\cos n t
$$

(b) With $y_{n}(t)$ as in part (a), find a constant $C_{n}>0$ such that

$$
y_{n}(t)=C_{n} \cos \left(n t-\varphi_{n}\right) .
$$

(You do not need to find φ_{n}).
(c) Use your answer to part (a) to find a periodic solution $y_{p}(t)$ to

$$
y_{p}^{\prime \prime}(t)+.01 y_{p}^{\prime}(t)+4 y_{p}(t)=f(t)
$$

where

$$
f(t)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \cos n t
$$

and find the Fourier series of y_{p}.
(d) Use your answer to part (b) to find constants $D_{n}>0$ such that

$$
y_{p}(t)=\sum_{n=1}^{\infty} D_{n} \cos \left(n t-\varphi_{n}\right)
$$

(You do not need to find φ_{n}). For which value of n is D_{n} largest?
2. Let $f(x)=|x|$. Find constants a_{0}, a_{1}, and b_{1} such that the error

$$
E=\int_{-\pi}^{\pi}(f(x)-g(x))^{2} d x
$$

is minimized, where

$$
g(x)=a_{0}+a_{1} \cos x+b_{1} \sin x .
$$

Also evaluate E and sketch a graph of f and g on the interval $[-\pi, \pi]$.
3. Find the eigenvalues and eigenfunctions of

$$
y^{\prime \prime}+2 y^{\prime}+(\lambda+2) y=0, \quad y(0)=y(1)=0 .
$$

With respect to which inner product on the interval $[0,1]$ are the eigenfunctions orthogonal?

