ONE-PARAMETER CONTINUOUS FIELDS OF KIRCHBERG
ALGEBRAS. II

MARIUS DADARLAT, GEORGE A. ELLIOTT, AND ZHUANG NIU

ABSTRACT. Parallel to the first two authors’ earlier classification of separable unital one-
parameter continuous fields of Kirchberg algebras with torsion free K-groups supported
in one dimension, one-parameter separable unital continuous fields of AF-algebras are
classified by their ordered Ko-sheaves. We prove Effros-Handelman-Shen type theorems for
separable unital one-parameter continuous fields of AF-algebras and Kirchberg algebras.
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1. INTRODUCTION

One-parameter separable unital continuous fields of Kirchberg algebras with torsion free
K;-groups and trivial K;1-groups (i € {0, 1} fixed) were classified in [2] by their K;-sheaves.
Using the semi-projectivity of the Kirchberg algebras with finitely generated torsion free
Ky-groups and trivial Ki-groups, these continuous fields were shown by the authors to
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be inductive limits of fields with finitely many singular points (the so-called elementary
fields). Using the classification results of Kirchberg and Phillips for Kirchberg algebras, a
uniqueness theorem and an existence theorem for elementary fields were proved, and hence
a classification theorem for inductive limit continuous fields was obtained.

In this note, we shall show that we can use a similar procedure to get a classification
of separable unital one-parameter continuous fields of AF-algebras. More precisely, noting
that finite dimensional C*-algebras are semi-projective, we apply the methods of [2] to
represent any separable unital continuous field of AF-algebras as an inductive limit of
continuous fields of finite dimensional C*-algebras with finitely many singularities. Very
much parallel to [2], we obtain a classification of one-parameter separable unital continuous
fields of AF-algebras by their ordered Kg-sheaves pointed by the class of the unit.

The Ko-presheaves of continuous fields of C*-algebras over [0, 1] are always continuous
in the sense that, if S is a such presheaf, then for any closed subinterval [a,b] and any
decreasing sequence of closed intervals ([a;, b;])Z5° with ﬂzz‘fo [a;, bi] = [a,b], the canonical
map from the inductive limit lim Sla;, b;] to Sla, b] is an isomorphism. Moreover, the stalk
S, is isomorphic to the Ko-group of the fibre algebra at z. If A is a unital continuous field
of stably finite C*-algebras over [0, 1], then the projection map from A onto any fibre is
strictly positive at the level of the ordered Kg-groups.

The continuity condition is a key ingredient for Effros-Handelman-Shen type theorems
for both one-parameter continuous fields of AF-algebras and one-parameter continuous
fields of Kirchberg algebras with trivial K;-groups (see Theorem 5.7 and Theorem 5.8). In
the AF case, the strict positivity condition is equally important. More precisely, if a sheaf
S of pointed ordered groups on [0, 1] satisfies the continuity condition and if it is strictly
positive and any stalk is a dimension group, then there is a separable unital continuous field
of AF-algebras the Ky-sheaf of which is isomorphic to §. The statement of the theorem
for continuous fields of Kirchberg algebras is similar, except that positivity plays no role.
In the proof of these theorems, we use the continuity condition (and the strict positivity
condition in the AF case) to decompose the given sheaf into an inductive limit of sheaves
with finitely many singular points. Any morphism of such (elementary) sheaves lifts to a
morphism of elementary continuous fields. Thus, the inductive limit of these elementary
fields of C*-algebras has the given sheaf as its Kg-sheaf.

In the last part of the paper, we study the Kg-sheaves of separable one-parameter con-
tinuous fields whose fibres are unital hereditary sub-C*-algebras of Q.. These sheaves can
be viewed as sheaves of integer valued functions satisfying certain properties (see Corollary
6.4). The set of their zero points is studied in detail.
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2. CONTINUOUS FIELDS OF C*-ALGEBRAS AND THE INVARIANT

Definition 2.1 ([3]). Let C be a class of C*-algebras and let T be a locally compact
topological space. A continuous field A of C*-algebras over T' with fibres in C is a family
(A(t))ier of C*-algebras in C, together with a set I' C [ [, A(t) of vector fields such that:
(1) I'is a *-subalgebra of [[,.p A(t):
(2) For any t € T, the set {x(t) : « € '} is dense in A(t);
(3) For any x € I, the function t — ||z(t)|| is continuous;
(4) Let z € [[,er A(t) be a vector field; if, for any ¢ € T and every € > 0, there exists
x’ € T such that ||z(s) —2/(s)|| < € for all s in some neighbourhood of ¢, then 2 € T.

The subset I'g(A) of z € T such that ¢ — ||x(¢)|| vanishes at infinity on T', with norm
||z[] = sup ||z (t)]]
teT

is a C*-algebra, called the C*-algebra of the continuous field A. Tz(A) is a continuous
C(X)-algebra in the sense of Kasparov as well as a continuous C*-bundle in the sense of

[1].

In this paper we will be concerned mainly with continuous fields over the unit interval, i.e.
one-parameter continuous fields. Abusing the terminology, we will use the same notation
for a continuous field and for its C*-algebra.

2.1. Sheaves of groups. Let U be a category of closed subintervals of [0,1] where the
morphisms are the inclusions maps. We assume that {V° : V € U} is a basis for the
topology of [0,1] and if V1,Va € U and V) NV, # & then both V3 U Vo and Vi NV, are in
U. For example we take U to be the category of all dyadic intervals. Some of the intervals
of U can have zero length.

Let V be the full subcategory of U consisting of intervals of positive length (nondegenerate
intervals). A presheaf of groups on [0, 1] is a contravariant functor S from V to the category
of groups. A morphism V C V"’ is taken by S to the restriction map my, : S(V') — S(V).
Let V, V' € V be such that V NV’ € V. The restriction maps induce a natural map

(2.1) SV UV) = {(f,9) € SV) & S(V) : iy (f) = mlav(9)}-
A presheaf S is a sheaf if the above map is bijective for all V, V.

Definition 2.2. A presheaf S is continuous if for any decreasing sequence of closed subin-
tervals (V;)72; whose intersection (2, V; = V is in V, the inductive limit lim S(V;) is
canonically isomorphic to S(V). If in addition S satisfies the pullback condition (2.1), then
we say that S is a continuous sheaf.

The stalk of S at a point x € [0, 1], denoted by S,, is defined as the inductive limit of
the groups S(V) with x in the interior of V. The restriction map S(V) — S, is denoted
by m;. A continuous presheaf S extends naturally to a contravariant functor &’ on U if we
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set 8’'({x}) = S;. This extension is unique if we require that &’ be continuous in the sense
that lim §'(U;) is canonically isomorphic to &'(U) for any decreasing sequence (U;)§<; of
elements of I whose intersection (1,2, U; = U is nonempty. The functor &' will be also
called a presheaf, or an extended presheaf if we want to emphasize that it is also defined on
degenerate intervals. In the sequel we shall identify any continuous presheaf S on V with
its continuous extension &’ to U.

Remark 2.3. Let us note that if S is a continuous presheaf, then we have evaluation maps
7y : Sla,b] — S, for every = € [a,b] and not only for the points z in (a,b). Indeed, by
continuity, any element f € Sla,b] lifts to an element f' € S(V') for some neighbourhood
V €V of [a,b] and the element 7, (f’) is independent of f’. If S is a continuous presheaf,
it is easy to verify that the pullback condition (2.1) is equivalent to requiring that for each
a < ¢ < bwith [a, ], [c,b] € V the restriction maps induce an isomorphism

(2.2) Sla,b] = {(f,9) € Sla. © S[e,b] : m(f) = 7 (g)}.

We are going to give an equivalent description of continuous sheaves on [0,1]. Let
(Gz)zepp,1) be a family of abelian groups. Suppose that for each U € V a subgroup
F(U) C Il ey Ge is given. The elements of F(U) are functions and hence there is a
natural restriction map F(U) — [[,cy Ge, f +— flv, whenever V' C U. Consider the
following conditions:

(i) IfV CU and f € F(U), then f|y € F(V);

(ii) For any x € [0, 1] and any a € G, there is a neighbourhood U € V of x and there is
f € F(U) such that f(x) = q;

(iii) For any U € V and f € F(U), the null set of f, null(f) = {x € U : f(x) = 0} is
open in U,

(iv) Fla,b) = {(f,9) € Fla,c] & Fle,b] : f(c) = g(c)} (canonically), for a < ¢ < b.

We shall view the family of groups U — F(U) together with the corresponding restriction
maps as a presheaf on V.

Proposition 2.4. If the conditions (i) through (iv) are satisfied, then F is a continuous
sheaf whose stalk at x is G,. Conversely, any continuous sheaf of abelian groups on [0, 1]
1s obtained in this manner, up to an isomorphism.

Proof. For the sake of simplicity we assume that V consists of all nondegenerate closed
subintervals of [0,1]. (=) F is clearly a presheaf. To compute its stalks, we observe
that the canonical map F, — G, is surjective by the condition (ii) and injective by the
condition (iii). Let 0 < @ < b < 1. We are going to show that the canonical map
0 :lim Fla—1/n,b] — Fla,b] is bijective. The general continuity of F is verified by similar
arguments. Let f € Fla,b]. By the condition (ii) there is g € Fla — 1/n,a + 1/n] for some
n such that g(a) = f(a). By the condition (iv) the restriction g to [a — 1/n, a] glues with f
to give rise to an element h € Fla — 1/n, b] whose restriction to [a, b] is equal to f. Thus 6
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is surjective. Let h € Fla — 1/n,b] be such that its restriction to [a, b] is the zero function.
By the condition (iii), null(h) is open in [a —1/n, b] and hence h must vanish on [a —1/m, b]
for some m > n. Therefore 0 is injective.

(<) Given a continuous sheaf S on [0, 1] we set G, = S,. For U € V and s € S(U) we
define 3 € [[,cpy Gz by 5(x) = m,(s) and set F(U) = {5 : s € S(U)}. We leave it for the
reader to verify that the family {F(U)} satisfies the conditions (i) through (iv) and that
the correspondence S(U) — F(U) is bijective. O

Let A be a continuous field over X. For any closed subset X’ of X, the restriction of A
to X' is a continuous field of C*-algebras over X’. Denote by A(X’) the C*-algebra of this
continuous field. Then there is a canonical *-homomorphism 7%, : A(X) — A(X’). Let U
be a basis for the topology of X consisting of closed subsets. If we set S(U) = Ko(A(U)),
with restriction maps Ko(7¥) : Ko(A(U)) — Ko(A(V)), V C U, then S is a presheaf on
U. Sometimes we will write S(U) = K4(U). If A is a one-parameter continuous field of
C*-algebras with trivial Ki-group, and U consists of non-degenerate closed subintervals,
then S is in fact a sheaf on U by Proposition 4.1 of [2]. In this case, we shall refer to it as
the Ko-sheaf of A. This is the invariant to be studied in this paper. See Section 4 of [2] for
a background discussion.

3. A CLASSIFICATION OF CONTINUOUS FIELDS OF AF-ALGEBRAS

Let A be a separable unital continuous field of AF-algebras over [0,1]. Since finite
dimensional C*-algebras are semiprojective, we can use the same arguments as in [2] to
show that A is an inductive limit of continuous fields of finite dimensional C*-algebras,
with finitely many singularities.

3.1. Basic building blocks. We study certain elementary unital continuous fields of finite
dimensional C*-algebras which serve as basic building blocks in the study of continuous
fields of AF-algebras.

Let 0 = ap < a1 < -+ < agm < aam+1 = 1 be a partition of [0,1]. Let us set Y; =
[agi, a2i+1] , L= [CL21+1, CL2¢+2], Y = [ao, al] U [CLQ, ag] U...u [agm, a2m+1], and Z = [al, CLQ] U
[ag, a4] U .... U [agm—1, agm]; thus Y N Z = {ay,aq,...,a2,}. For the sake of brevity let us
refer to the above cover as {Y, Z}.

Let {E;}1", {Fi}?if)l be finite dimensional C*-algebras, and let {v;; : F; — E; Z-”if)l and
{Viit1 : Fi — Ez'+1}?i61 be two sets of unital *-monomorphisms. One can form two simple
continuous fields by setting

m m—1

E=@PC(i E) and F=PC(Z,F).
=0 =0
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Let G denote the restriction of £ to Y N Z and let # : £ — G be the corresponding
restriction map. There is a unital *~homomorphism 7 : F' — G defined by

(fo, -+ fm=1) = (v0,0(fo(a1)), 70,1 (fo(az)), -+, Ym—1,m—1(fm—1(a2m-1)); Ym—1,m(fm—-1(azm)))-
We then can define a unital continuous field Pp with finitely many singularities, as the
pull-back of the diagram D:
E—">~G<"F.
More precisely, Pp is defined by
{(e.f) e E® F;m(e) =n(f)}-

Since the maps +; ; are unital and injective, Pp is a unital continuous field of finite dimen-
sional C*-algebras over [0, 1] which has F; as fibres on Z;, and has E; as fibres on Y; \ Z.
Moreover, it is locally simple except possibly at the singular points {a1,- - , agm}.

As in [2], a diagram D as above is called admissible. If A is a continuous field of C*-
algebras over [0, 1], we denote by DA the diagram

AY) "= AYNZ)<"— A(Z)

whose pull-back is isomorphic to A. Note that in order to simplify notation we denote by the
same symbol 7 the various restriction maps such as 7T§};m 5 Or lefm 5. Ais called elementary
if there is an admissible diagram D and a unital morphism of diagrams ¢ : DA — D

AY) "= A(Y NZ)<"— A(Z)

lw ly l

E—" >G-—" F

which induces a *-isomorphism A — Pp. We call « : DA — D a fibred presentation of A.
Let A and B be two unital continuous fields of C*-algebras with A elementary. A fibred
morphism ® from A to B consists of a fibred presentation of A, ¢ : DA — D, together

with unital morphisms of continuous fields ¢y, ¢ynz, ¢z such that the following diagram
commutes

AY) —AY NZ)<— AZ) .

iby J/Lymz lbz
s n
E G F
id) J{dﬁmz l(ﬁz
B(Y

) —>B(YNZ)<— B(Z)

A fibred homomorphism induces a morphism of continuous fields ® : A — B. Denote by
Homp(A, B) the set of all fibred homomorphism from A to B corresponding to a given
fibred presentation of A, t: Dy — D.
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3.2. Inductive limit decomposition. Finite dimensional C*-algebras are semiprojective,
[4]. Using this fact, one can get inductive limit decompositions for continuous fields of AF-
algebras, by arguments similar to those of Theorem 6.1 and Theorem 6.2 of [2].

Let A be a C*-algebra. Let a € A and F,G C A. For € > 0, we write a €. F if there is
b € F such that ||a — b|| < e, and write F C. G if a €. G for any a € F.

Theorem 3.1. Let A be a unital continuous field of AF-algebras over [0,1]. For any fi-
nite subset F C A and any € > 0, there is an elementary unital continuous field A1 of

finite dimensional C*-algebras with a fibred presentation « : DA1 — D, and a unital fibred
morphism ® € Homp (A1, A) such that F C. @(Al).

Proof. We shall find points 0 = ag < a1 < -+ < a2m+1 = 1 and finite dimensional C*-
algebras E;, F; (0 < i < m,0 < j < m — 1) such that if we set ¥; = [a2;,a241],Z; =
[a2j+1,a2j+2] and F = @lC(YE,El), F = ®j C(Zj,Fj), Y =UY, Z= UZjv then there
are unital fibrewise injective *-homomorphisms ¢ : E — A(Y), ¢ : F' — A(Z) of continuous
fields such that

nz(W(F)) C myaz(6(E))
and
Ty (F) Ce ¢(E), mz(F) Ce (F).
If Ay is the pull-back of the map ¢ and ¢, and D is defined by

E-T-G<1"F

where G = E(Y N Z) and 7 is obtained as the composition

7-(Z
F(2) 22 FYnZ) —~EYNZ) =G

where v(f) = (¢~ '9)|ynz(f), then as in [2], there is a fibred homomorphism ® € Homp (A7, A)
induced by the pair ¢, ), which satisfies the theorem.

We are going to construct E, F, ¢ and . For any x € [0, 1], since A(z) is a unital AF-
algebra, there is a finite dimensional unital sub-C*-algebra F;, C A(z) such that m,(F) C./4
F,. Let 'H be a finite subset of F, such that for any a € F there is h, € H such that
||he — mz(a)|| < /4. Since F, is semiprojective and since A is a continuous field, there
is a closed neighbourhood U, of x and a fibrewise injective unital *-homomorphism 7, :
F, — A(U.) such that ||mzn.(h) — h|| < /4 for any h € H. Therefore, we have that
|72 (nz(ha)) — mx(a)|| < /2 for all a € F. Since A is a continuous field of C*-algebras,
after passing to a smaller neighbourhood, we have that ||n;(he) — 7y, (a)|| < €/2 for any
a € F. In particular, 7y, (F) Cc/2 ne(Fr).

By compactness of [0, 1], there are points 0 = yo < y1 < - -+ < Y, = 1, finite dimensional
C*-algebras F; (0 < j < m — 1), fibrewise injective unital *~homomorphisms n; : F; —
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Alyj,yj+1], and finite sets F; of F}j such that
W[yj’yj+1}(f) Ce/2 nj(F;) forall 0 <j<m—1.

Since each Fj is a finite dimensional C*-algebra, there exist finite subsets G; C F; and
d; > 0 such that for any fibrewise injective unital *-homomorphism ¢ from Fj to a unital
C*-algebra B with ¢(G;) Cs; B’ where B’ is a unital sub-C*-algebra of B, there is a
fibrewise injective unital *-homomorphism ¢ from F; to B’ with ||¢(a) — ¢ (a)|| < &/2 for
any a € Fj.

Repeating the argument from above for each fibre A(y;), there are mutually disjoint
closed intervals Y; = [agi,a2i+1] (0 < i < m), such that Y; is a neighbourhood of y;,
and such that there are finite dimensional C*-algebras F; and fibrewise injective unital
*-homomorphisms ¢; : E; — A(Y;) such that my,(F) Ce ¢i(E;) and 7y, . 1nv; (15(G5)) Cs;
¢i(E;) for any ¢ and j € {i — 1,7}. Consider the continuous field

B={a€ A:my(a) € myx(¢i(E;)), for x € ¥;,0 < i < m}.

By construction, 7;(G;) Cs, Bly;j,y;+1] for all j. Therefore, there are fibrewise injective
unital *-homomorphisms v; : F; — Bly;, y;+1] such that

l|¥j(a) —nj(a)|| <e/2 for any a € Fj.

Set Zj = [agjy1, azj+2] C [yj,yj+1]. The sets (Z;) are mutually disjoint and 77,ny;;(Fj) C
7z;ny; ¢i(Ei) whenever Z;NY; # &. Extend the maps ¢; : E; — A(Y;) and v : Fy — A(Z))
to (necessarily injective) morphisms of continuous fields of C*-algebras, and define ¢, as
above. Then ¢, v, Y and Z satisfy the requirements at the beginning of the proof, as
desired. O

The theorem above gives us a local approximation of continuous fields of AF-algebras
by elementary fields of finite dimensional C*-algebras. Using the same arguments as in
the proof of Theorem 6.2 of [2], one can prove the following semiprojectivity property for
elementary continuous fields of finite dimensional C*-algebras: Let D be an admissible
diagram with components E; and Fj finite dimensional C*-algebras and based on a closed
cover Y, Z and X. Let

m n

E G F
l(ﬁy l(ﬁymz l(ﬁz

AY) —5 AYNnZ)<— AZ)

be a commutative diagram with vertical maps unital morphisms of continuous fields of
C*-algebras. Then, for any finite sets g C E, Fr C F and any ¢ > 0 there are finite sets
Grg C E, Grp C F and 0 > 0 such that for any sub-continuous-field C*-algebra B C A with
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#(Gg) Cs B(Y) and ¥(Gr) Cs B(Z), there is a commutative diagram

E—" ~g-" F

PP

B(Y) —>B(YNnZ)<— B(2)

such that ||¢(e) — ¢/(e)|| < e for all e € Fg and ||[¢(f) —¢'(f)|| < e for all f € Fp.

The proof of the above property is a repetition of the proof of Theorem 6.2 of [2], and
we omit it here. With this semiprojective property together with Theorem 3.1, we have
the following inductive limit decomposition theorem.

Theorem 3.2. Let A be a unital separable continuous field of AF-algebras over [0,1].
There are an inductive system (Ag) of unital elementary continuous fields of finite di-
mensional C*-algebras and unital ﬁbred morphisms ¥, € HOka (A, Apy1) and @p o €
Homp, (Ag, A) such that q)k+1 o0 O @k = <I>k oo and the maps (<I>k o) induce an isomorphism
lim (A, ®p,) = A.

3.3. A classification theorem.

Lemma 3.3. Let A be a unital separable continuous field of AF-algebras over [0,1]. The
C*-algebra Ala,b] has stable rank one for any [a,b]. In particular, Ala,b] is stably finite
and has cancellation of projections.

Proof. By Theorem 3.1, A can be approximated locally by elementary continuous fields of
AF-algebras. These approximating fields have stable rank one as seen by applying [5] to
various extensions of stable rank one C*-algebras. It follows that A[a,b] also has stable
rank one. O

The following lemma plays role similar to that of Corollary 3.3 of [2].

Lemma 3.4. Let A be a finite dimensional C*-algebra. Let B be a unital continuous field
of AF-algebras over Z = [z1, z9]. Suppose that there are unital continuous field morphisms
o, O(Z, A) — B, and unitaries u; € U(B(z;)) and v € U(B) satisfying

uithy (a)u; = ¢ (a) forallae C(Z,A),i=1,2 and vipv* = ¢.

Then, for any finite subset F C C(Z,A) any € > 0, there is u € U(B) such that u,, = u;
and

llup(a)u™ — ¢(a)|| < e foralla e F.

Proof. Since v and ¢ are continuous field morphisms, we may assume that F is in the unit
ball of A. From the given assumptions we deduce immediately that

[V} ui, 2, (a)] =0 forall a € A.



10 MARIUS DADARLAT, GEORGE A. ELLIOTT, AND ZHUANG NIU

Consider the end-point z; and let z € (21, 22). The relative commutant R of the finite
dimensional algebra 1),, (A) in the AF-algebras B(z1) is AF. Therefore there is a continuous
path of unitaries w : [0,1] — U(R) such that w(0) = v} u1 and w(1) = 1. By the homotopy
lifting property of the fibration 7, : U(B]z1,2]) — U(B(z1)), there is a continuous path of
unitaries €2 : [0,1] — U(B]|z1, 2]) such that (1) = 1 and 7,,Q(t) = w(t) for all t € [0,1].
After decreasing z if necessary we may arrange that

1[2(), 7z, ¥ (a)]l| < e, forallt € [0,1]anda € F.

Let h: [z1, 2] — [0, 1] be an affine increasing homeomorphism. Then the formula

y _{ Q(h(z)) if z € [z, 2]

1 otherwise
defines a unitary ' in B such that and v/, = v} u; and
[|[v,(a)]|]| <& for any a € F.

Repeating the same argument at the end-point z3, we obtain a unitary «” with similar
properties. Then w = v'u” is a unitary in B such that w., = v} u;, i = 1,2, and

|[[w,¥(a)]|| <& forany a € F.

Consider the unitary v = vw € U(B). We have that u,, = v;, ¢ = 1,2, and

lup(a)u”™ — ¢(a)l| < [[v(wip(a)w® —P(a))v™]] + [[vi(a)v” — d(a)|| < e
for any a € F, as desired. O

Lemma 3.5. Let A be a finite dimensional C*-algebra and let D be a AF-algebra. Let B
be a unital C*-algebra with cancellation of projections and let w : B — D be a surjective
*_homomorphism. Let o : A — D be a unital *~homomorphism. Suppose that there is a
positive morphism « : Ko(A) — Ko(B) such that a[l4] = [1g] and m.a = o,. Then there
is a unital *~homomorphism ¢ : A — B such that p, = « and 7o = 0.

Proof. Since A is finite dimensional and since B has cancellation of projections there is a
unital *-homomorphism ¢ : A — B such that ¢, = a. Therefore (7)), = o,.. Since D is
AF, we must have m) = uo u* for some unitary v € U(D). Since u is homotopic to 1p in
U(D), u lifts to a unitary v € U(B). We conclude that ¢ = v* ¢ v is the desired lifting of
o. ]

By a fibred Ko-morphism from A to B, corresponding to a given fibred presentation
t: DA — D of A, we mean a triple of positive maps a = (ay,aynz,az), where ay
has components «; : Ko(E(Y;)) — Ko(B(Y;)), az has components o : Ko(F(Z;)) —
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Ko(B(Zj)), and aynz has components o ; : Ko(E(Y; N Z;)) — Ko(B(Y; N Z;)), such that
these maps preserve the class of the units and the following diagram is commutative:

s

Ko(A(Y)) —= Ko(A(Y N 2)) <—— Ko(A

A

KO(E) KO(G) Ko F

i“y iy i

Ko(B(Y)) —> Ko(B(Y N Z)) <= Ko

Let us summarize the above diagram by the notation

Ko(DA) ol Ko(D) —= K((DB).

The set of fibred Ko-morphisms from A to B corresponding to a given fibred presentation
t: DA — D of A is denoted by Hom(Ky(D), Ko(DB)).
Parallel to Theorem 8.1 of [2], we have the following existence and uniqueness theorem.

Theorem 3.6. Let A and B be unital continuous fields of C*-algebras over [0,1] with
fibres AF-algebras. Assume that A is elementary with fibred presentation ¢ : DA — D.
For any Ko-fibred positive morphism a € Hom(Ko(D), Ko(DB)) which preserves the class
of the unit, there is a fibred morphism ¥ € Homp(A, B) such that Ko(V) = a. If & €
Homp(A, B) is another fibred morphism satisfying Ko(®) = «, then ® is approzimately
unitarily equivalent to W.

Proof. By assumption, the components of a are such that
aynz(Ko(E(Yi N Z;))) C Ko(B(Y: N Zj)),

ay (Ko(E(Y) € Ko(B(Y), and  az(Ko(F(Z)))) C Ko(B(Z;)).

Let af and af denote the corresponding components of ay and az. Also let «;; :
Ko(E;) — Ko(B(Y; N Z;)) denote the component of aynyz corresponding to Y; N Z; # @.
Since the fibres of B are AF-algebras, there are unital *-homomorphisms ;; : E; —
B(Y; N Z;) such that Ko(¢; ;) = ;. By Lemma 3.3, B(Y;) has cancellation of projec-
tions. Therefore by Lemma 3.5 there is a unital *-homomorphism ¥¥ : E; — B(Y;), which
then can be extended to a morphism of continuous fields ¢F : C(Y;, E;) — B(Y;), with
Ko(l/JiE ) = af and szE extending simultaneously the maps v; ;_107y;nz,_, and ¥; ;o my,nz,.
Arguing in a similar way, for each Z; there is a unital morphism wf : C(Z;, Fj) — B(Z;)
which extends simultaneously the maps 1;; o n;; and ;41 o nj 41, and Ko(ij) = af.
Then vy = (¥F) and 1z = (1/)]F) and Yynz = (1 ;) is the desired lifting of a.

We now show the uniqueness part of the theorem. Let ¥ and ® be as in the statement,
and use the same notation for each component of ¥ and ®. Since E; is a finite dimensional
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C*-algebra and the range C*-algebras have cancellation of projections, ¢F and gbf are
unitarily equivalent to ¢F and wf respectively. Denote by u; € B(Y;) and v; € B(Z;) the
intertwining unitaries. Their restrictions to ;N Z; may not equal. But this can be handled
in the same way as the argument of Theorem 8.1 of [2] with Lemma 3.4 playing the role of
Corollary 3.3 of [2]. This gives the uniqueness part of the theorem. O

With the decomposition theorem 3.2, and the existence and uniqueness theorem 3.6, we
have the following classification theorem.

Theorem 3.7. Let A, B be separable unital continuous fields of AF-algebras over [0,1].
Any isomorphism of Koy-sheaves o : Ka — Kp such that ajg11([1a]) = [15] lifts to an
isomorphism A = B of continuous fields of C*-algebras. The lifting is unique up to approx-
1mate unitary equivalence.

Proof. The proof is entirely similar to the proof of Theorem 8.2 of [2]; hence we omit it. [

4. ON K(-PRESHEAVES OF ONE-PARAMETER CONTINUOUS FIELDS OF C*-ALGEBRAS

4.1. Continuity properties of presheaves. Let A be a unital separable continuous field
C*-algebra over [0,1]. For any closed subinterval [a, b], if we define S[a,b] = Ko(A[a,d]),
then S (also denoted by K4 ) is a presheaf with restriction homomorphisms induced by
the restriction homomorphisms of A. For any decreasing sequence of closed subintervals
([ai, bi])s2, with (2, [ai, bi] = [a, b], there is a canonical homomorphism

¢+ lim(S[a;, bi], ¢iiv1) — Sla, b]

where ¢; ;11 is the restriction homomorphism from the abelian group Sla;, b;] to the abelian
group S[ai_H, bi+l]7 and h_r)n(S[aZ, bl], Qbi,i-l—l) is the inductive limit of (S[CLZ‘, bl], d)i,i—i-l) in the
category of countable abelian groups.

Lemma 4.1. The homomorphism ¢ above is an isomorphism. Moreover, if we denote by
V' the limit of the positive cones of S[a;, b;], the map ¢ induces an isomorphism from V to
the positive cone of S[a,b]. The statement also holds if [a,b] reduces to a point; that is, if
ai, b; converge to x, then the canonical map ¢ : lim S{a;, b;] — Ko(A(x)) is an isomorphism.
Thus the stalk S, is canonically isomorphic to Ko(A(z)).

Proof. This follows from the usual stability properties of projections since the C*-algebra
Ala, 0] is isomorphic to the inductive limit C*-algebra lim Ala;, b;]. O

Let A be a continuous field of C*-algebras over [0, 1], and denote by S = K4 the Kg-
presheaf of A. There is a representation ® of S induced by (7z)zep,1): For any [a,b],
define

(4.1) ®: Ko(Aa,8]) 3 f = (] (Naeap) € [ Ko(Alx)).

z€la,b]
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Lemma 4.2. Let A be a unital continuous field of C*-algebras over [0, 1] such that K1 (A(x)) =
0 for all x € [0,1]. Then the representation ® is faithful. In other words, for any
f € Ko(Ala,b]), if ®(f) =0, then f =0 in Ko(Ala,b]).

Proof. Since Ki(A(z)) = 0 for all z, the Ko-presheaf of A is in fact a sheaf by Proposition 4.1
of [2]. If ®(f) = 0 for an element f € Ko(A[a,b]), by Lemma 4.1, there is a neighbourhood
Uz of x such that [y, ](f) = 0. By the compactness of [0, 1] and the fact that the Ko-
presheaf is a sheaf, we conclude that f = 0 in Ko(Ala, b]). O

4.2. Ordered Kj-sheaves of one-parameter continuous fields of AF-algebras.

Lemma 4.3. Let A be a unital continuous field of AF-algebras over [0,1]. Let 0 < a <b <
¢ <1, and let p € Ala,b] and q € A[b, c| be projections with [my(p)] = [mp(q)]. Then there is
a projection e in Ala,c] such that [m,)(e)] = [p] and |7 q(e)] = [q]-

Proof. Since [m,(p)] = [m(¢q)] and A(b) is a unital AF-algebra, there is a unitary u € A(b)
such that umy(q)u* = m(p). Since U(A(b)) is path connected, u lifts to a unitary v € A[b, ¢].
Since the projections p and vqv* assume the same value in A(b), they glue together to a
projection e € Ala, c] with the desired properties. O

This lemma together with the fact that any continuous field of AF-algebras has stable
rank one (therefore, any positive element in Kg-group comes from a projection) shows that
the ordered Ko-presheaf is a sheaf of ordered groups (see also Lemma 3.3). Moreover, we
have that

Proposition 4.4. An element f € Ky(Ala,b]) is positive if and only if ®(f) is pointwise
positive.

Proof. 1t is simple to verify that if f is positive then ®(f) is pointwise positive. Thus it
suffices to prove the converse.

Write f = [p1] — [pe] for projections p; and py in M,,(Ala,b]). For any x € [a,b], we
assert that there is a neighbourhood U, of z, and a projection p € My(A(U,)) (for some
N) such that [p] = [my,](f). Since [r,](f) € K¢ (A(z)), there is a partial isometry v, in
M., (A(z)) such that

UaUy = Te(p2) and  vzveme(p1) = vy ve.

Since A is a continuous field, there exist a neighbourhood U, of x and a partial isometry v
in M,,(Ay,), such that

[lov* — 7y, (p2)|| <1 and |jv*vmy,(p1) — v || < 1/4,
from which it follows that 7y, (p2) is unitarily equivalent to vv* and

|7, (p1) 0™ mo, (p1) =™ < [[mw, (p1) 0™ 7, (p1) =70, (pr)o" o[ [+ 70, (pr) v o—vol| < 1/2.
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Therefore, there is a projection in the hereditary sub-C*-algebra of M,,(A(U,)) generated
by the projection 7y, (p1) which is unitarily equivalent to v*v. Thus, 7y, (p2) is Murray-von
Neumann equivalent to a subprojection of 7, (p1). This proves the assertion.

By the compactness of [0, 1], there is a partition 0 = ag < a1 < -+ < a,, = 1 and m such
that there is a projection p; in each M, (Ala;, ai11]) such that [p;] = [7(q, 4,,,1](f)- Applying
Lemma 4.3 repeatedly, we obtain a projection p such that [7(4, o..1(P)] = [7a;,a:4,](f) Which
implies [p]| = f (since the Ko-presheaf is a sheaf), as desired. O

Recall ([6]) that an ordered group (G,GT) (we assume that 0 € GT) has the Riesz
decomposition property if for any positive elements a, b, and ¢ with a < b + ¢, there exist
positive elements 0 < b < band 0 < ¢ <csuch that a =0 + . We writea >bifa—0b €
G*\ {0}. An ordered group (G,G™") is called unperforated if for any element a, na € G*
for some natural number n implies a € G*. Note that any unperforated ordered group is
torsion free (na = 0 = a > 0; however na = 0 = n(—a) = 0 = —a > 0). A unperforated
ordered group with the Riesz decomposition property is referred as a dimension group. We
say a morphism f : G — G’ of ordered groups is strictly positive if f(a) > 0 whenever
a > 0.

Any totally ordered group has the Riesz decomposition property. Ordered Ky-groups of
AF-algebras are dimension groups. However, the ordered Ky-group of a unital continuous
field of AF-algebras may fail to have the Riesz decomposition property. For example, the
splitting interval algebra

S:={f e Ma(C[0,1]); f(0) e Ca C, f(1) e Co C}

is a continuous field over [0, 1] with fibre Ma(C) between 0 and 1, and C& C at 0 or 1. The
Ko-group of S does not have the Riesz decomposition property ([8]).

Nevertheless, if the Kg-group of each fibre C*-algebra is totally ordered, then the K-
group of the global C*-algebra is also totally ordered. In particular, it has the Riesz
decomposition property.

Proposition 4.5. Let A be a unital separable continuous fields of AF-algebras over [0, 1].
If Ko(A(x)) is totally ordered, then the ordered group Ko(A[a,b)) is totally ordered for any
subinterval [a,b]. Moreover, the map [ry] : Ko(A) — Ko(A(z)) is injective for any z € [0, 1].

Proof. We may assume that [a,b] = [0, 1]. For any projections p and ¢ in A0, 1], define the
sets

U:={z €[0,1);[m(p)] > [m(q)]}, V :=A{z €[0,1];[m(p)] < [m2(a)]},
and
W= {x € [07 1]? [Ww(p)] = [Wx(Q)]}
Since Ko(A(z)) is totally ordered for any x, one has that U, V, W are mutually disjoint and

UUVUW =[0,1].
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Note that if e is a projection in A such that [e;] # 0 for some z, then [e,] # 0 for all y in
some neighbourhood of z. Therefore, arguing as in Proposition 4.4, we see that the subsets
U,V,W are open subsets of [0,1]. Since [0,1] is connected, only one of them is nonempty,
and hence it is equal to [0,1]. If U or V is nonempty then [p] > [q] or [p] < [¢] by
Proposition 4.4. If W is nonempty and hence W = [0, 1], one has that [p] = [¢] by Lemma
4.2. Therefore, we always have that [p] > [¢] or [p] < [q]. Moreover, if [m,(p)] = [rz(g)] for
some z € [0, 1], then one has that W = [0, 1] and hence [p] = [q]. Therefore the map [m,]
is injective, as desired. ([l

In general, the map [r,] is not injective as illustrated by the case of the splitting interval
algebra mentioned. On the other hand, if A is a unital continuous field of stably finite
C*-algebras, then the map [m,] is always strictly positive.

Recall that a C*-algebra A is stably finite if for any projections e and f in a matrix
algebra over A such that e < f and e is Murray-von Neumann equivalent to f, one has

e=f.

Proposition 4.6. Let A be a unital continuous field of stably finite C*-algebras over [0, 1].
Then A is stably finite and the map [r;] : Ko(A) — Ko(A(x)) is strictly positive for any
x €[0,1], i.e. if g > 0 then [mz](g) > 0.

Proof. Let v be a partial isometry in some matrix algebra over A such that vv* < v*v.
Then 7, (v)m,(v*) < 7 (v*)7,(v) holds at each fibre. Since A(x) is stably finite, we have
that 7, (v)7,(v*) = mp(v*)m(v) for all z € [0,1]. Therefore m,(vv* — v*v) = 0 for all
x € [0, 1], and hence vv* = v*v. Thus A is stably finite.

Let p be a projection in M,,(A). If [74,(p)] = 0 in Ko(A(zg)) for some xg € [0, 1], since
A(zg) is stably finite, one has that m,,(p) = 0. Since p is a projection, we also have that
||mx(p)|| = 0 or 1 for any = € [0,1]. By the continuity of the field, ||7;(p)|| is continuous
with respect to . Since [0, 1] is connected, this implies that 7, (p) = 0 for all x € [0, 1] and
hence p = 0, as desired. O

5. THE RANGE OF THE INVARIANT

5.1. Elementary covers. An elementary cover C of an interval [0, 1] is a full subcategory
of U satisfying the following conditions. C has finitely many objects grouped into three
coloured families {Y;}ier, {Z;}jes.{yij} where the intervals in each family are mutually
disjoint, Y; and Z; have positive length and y;; = Y; N Z;. It is convenient to regard Y;
and y;; as being coloured with the colour Y and Z; coloured with the colour Z. The typical
example of an elementary cover C arises from a set of points 0 = g < 1 < ... < z, = 1
by setting Yy = [xo.z1], Z1 = [x1, 22, yo1 = 21, etc. An elementary diagram D of ordered
groups is a contravariant functor from an elementary cover C to the category of countable
ordered groups with the property that the image D(:) of any morphism ¢ between any
two objects of the same colour is the identity map. We regard the group D(X) as having



16 MARIUS DADARLAT, GEORGE A. ELLIOTT, AND ZHUANG NIU

the some colour as X. Equivalently, if for each pair of adjacent intervals Y; and Z;, we set
E; =D(Y;), Fj = D(Z;), then we must have D({y,;}) = E; and D simplifies to the diagram

Yji
(5.1) E; == E; < F;

We say that an elementary cover C’ refines C if the intervals of C’ are obtained by dividing
some of the intervals of C into three subintervals of positive length and changing the colour
of the interval in the middle of each trisection. If D is an elementary diagram defined on
C, we can extend D canonically to a diagram D¢ on C’ by setting D (X’) = D(X) for
all new intervals X’ in C’ (including those of length zero) contained in an interval X of C.
The new morphisms added to D are all equalities. If C has just one element [0,1] and
D[0,1] = G we will let G or even G stand for D

Let D1, D5 be elementary diagrams defined on covers Cy, Co such that C; refines Co. A
morphism of diagrams Dy — Dy is by definition a morphism of functors D? — Dy. Note
that both functors DfQ and Dy are defined on the same category Cs.

One can replace [0, 1] by any interval U = [a, b] in the above setting. If U = [a, b] C [0, 1],
the restriction of D to U, denoted by Dy, is defined as follows. If X is an object of C, then
X NU is an object of Cy, the category on which Dy is defined and Dy (X NU) = D(X) as
coloured groups.

If D is a diagram of ordered groups on [a, b], we denote by P(D) its pullback. With the
above notation, P(D) consists of elements ((e;)icr, (fj);jcs) such that e; € E;, f; € Fj, and
;i (fj) = e; for all pairs of adjacent intervals Y; and Z;.

Via the operations of restrictions and pullbacks, each diagram D defines a continuous
sheaf D of countable ordered groups on [0,1]. Indeed, for each U = [a,b] C [0,1] we set
D(U) = P(Dy). Then one verifies immediately that the restriction maps P(Dy) — P(Dy),
defined for V' C U by dropping from the collection ((e;)ier, (fj);jes) those elements e; and
fj for which Y; and respectively Z; does not intersect V', satisfy the required properties.

If S is a sheaf of ordered groups on [0, 1], we denote by S|¢ its restriction to C. Let
a: D — S|¢ be a morphism of functors. In other words we have a commutative diagram

Yji
E; E; C— F
-k
S(Y) > Seiy =~ S(Z))
ij (%]

Then a induces a morphism of sheaves @ : D — S. Indeed for each U C [0,1] as above o
induces a morphism ay : Dy — S|¢,. Recall that the objects of Cyy are of the form X NU
where X is an object of C. The component of ay; corresponding to the object X NU is
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alx TXNU

Dy(X NU) == D(X) S(X)

S(XNU)
By passing to pullbacks ay; gives a morphism of groups ay : ﬁ(U ) — S(U).

5.2. Inductive limit representations of sheaves. A morphism of ordered groups « :
G — H is called strictly positive if a(g) > 0 whenever g > 0.

Definition 5.1. A sheaf S of ordered groups is called strictly positive if for any closed
interval Z and any point z € Z, the morphism 7, : S(Z) — S, is strictly positive. An
elementary diagram of finitely generated dimension groups is called strictly positive if all
its morphisms are strictly positive. With notation as in (5.1), this means precisely that all
the morphisms vj; : I; — E; are strictly positive.

Throughout the remainder of this section we shall assume that S is a continuous and
strictly positive sheaf of countable ordered groups on [0,1] and that its stalks are dimension
groups. Moreover we shall assume that S is pointed in the sense that a positive nonzero
element v € S[0, 1] has been chosen.

Let us recall that any finitely generated dimension group is isomorphic to Z* for some
k> 0.

Definition 5.2. Let G be a finitely generated dimension group and let Z = [a,b] C [0, 1].
Let ¢ : G — S(Z) be a strictly positive homomorphism. A simple interpolant of ¢ consists of
a point z € Z, a finitely generated dimension group F', and strictly positive homomorphisms
n:F —8(Z)and §: G — F, such that the diagram

L

G

S(2)

N

F

commutes and Ker(m,t) = Ker(#). A simple interpolant for ¢ : G — S(Z) as above is
denoted by (G, Z, z,0,n, F'). We shall say that a simple interpolant is open provided that
a<zifa#0and z < bif b# 1.

An interpolant for a strictly positive morphism ¢ : G — S|a, b] consists of a strictly
positive elementary diagram D of finitely generated dimension groups, with cover C of
[a, ], together with morphisms 6 : G¢ — D and 7 : D — S|¢ such that the diagram
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commutes, and for each X € C which does not reduce to a point,

G i S(X)
& %
D(X)

is a simple interpolant of wx¢ for some point z € X.

We say that an interpolant is open if the simple interpolants that correspond to the
initial component [a, c] and the final component [d, b] of C are both open.

The property of an interpolant of being open will be used in the process of gluing
interpolants described in Lemma 5.5.

Lemma 5.3. Let G be a finitely generated dimension group. For any strictly positive
homomorphism v : G — S[a,b], any x € [a,b], there exist a closed interval Z C [a,b] with
x € Z and a simple interpolant

of mzt such that Ker(mzt) = Ker(6).

Proof. Since G is finitely generated, we may assume that G = Z", for some n, with the
usual order. Since § and ¢ are strictly positive, the homomorphism 7, : G — S, is also
strictly positive. Since S, is a dimension group, by Theorem 3.1 of [7], there are a finitely
generated dimension group F' and strictly positive homomorphisms 6 : G — F, ' : F — S,
such that the diagram

commutes and Ker(m,t) = Ker(0).

Using the definition of S,, we find a closed neighbourhood V' of x in [a,b] such that
the map 7’ lifts to a positive homomorphism 7 : F' — S(V'). Moreover, since G is finitely
generated, there is closed interval Z C V with = € Z such that the restriction of nl — wyiL
to Z vanishes. We conclude the proof by replacing n by wzn and observing that this map
must be strictly positive since it is a lifting of a strictly positive map 1’ and since S is
strictly positive. O

Remark 5.4. Let (G, Z,z,0,n,F) be a simple interpolant for ¢ : G — S(Z) as in Defini-
tion 5.2. Arguing as in the proof of Lemma 5.3 and using the continuity of S one verifies
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immediately that there is a closed neighbourhood Z¢ of Z and strictly positive liftings
£:G — S(Z°) and n° ¢ F — S(Z°) of v and 7 such that (G, Z¢%,z,6,n°, F) is a simple
interpolant of «*. This is called a local extension of the given interpolant.

Lemma 5.5. Let C’ be an elementary cover of [x*,x] and let C" be an elementary cover of
[x,2"]. Let

(5.2) Slee
\ /

and

(5.3) Sler

G :
N
DT’

be two open interpolants, and let G be a finitely generated dimensz’on group with strictly
positive homomorphisms o : G — G* and o : G — G" such that miat = mua”
There exists an open interpolant

[% n
(5.4) GC —>= D —=S|c

¢ ,t"a” such that the restric-

for the morphism o : G — S[z*,2"] induced by the pair ‘o
tions of C to [x%,z] and [z,2"] refine C* and C" respectively, and if C,
CT

new

new = Clipt z and

:= C|[z,2r], then there are morphisms DE‘Cﬁe, — Dlee , D"ler. — Dlcr. . such that

new’

the diagrams
D | CTL(’/IU

0
¢ £

el i> De‘Cﬁe . S|Ce

new

and
D‘CTLGM
(ﬂczy7 T %j
[ — n"
G —=D'ley,, — Sley,,
commute.

Moreover, suppose that Dy is a strictly positive elementary diagram on the interval [x°, z"]
with cover Cy: [xf,x] U {z} U [z,2"] and objects and maps

KZLKT7

KZ
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and suppose that there are morphisms ' : K¢ — G¢, p" : K™ — G such that mwpluly =
Tl 1, so that the pair Lul, "y induces a morphism of functors n, D1 — Sle,. Then
the interpolant (5.4) can be chosen such that there is a morphism By D1 — D satisfying
n, =noup, and the diagram

(5.5) D§(X) ——— Sx

A

D(X)

Lt

is an interpolant for all nondegenerate intervals X of C.

Proof. We are going to describe a procedure for gluing the two given open interpolants.
Since this procedure is local, we may assume without loss of generality that the interpolants
(5.2) and (5.3) are simple. Denote by V¢ = [2f,2] and V" = [z,2"]. Using our earlier
notation, the two simple interpolants for ¢ and " are

(Ge, VZ, zz, 05, nz, Fe) and (G", V" 2" 0" 0" F"),

where zf < 2 < 2" by the openness assumption. These interpolants admit local exten-
sions across x corresponding to a common £ > 0, as noted in Remark 5.4. Let us set
V = (VHE N (V")E. Consider the map ¢ : F* @ F" — S(V), *(a,b) = 7y (n°)(a) +
my(n")¢(b). By Lemma 5.3, after shrinking e if necessary, there is a simple interpolant
(FC@ Fr,V,x,v,ng, H) for i, where V = [s',s"] and 2 < 2 < s* <2 < s" < 2" < 2.
Denoting by ~ and 4" the restrictions of v to F* and F7 respectively, we have the following
commutative diagram:

H

I

t —— S(V)<=—F"
F v (nf)e ( )7Fv(77r)E

We define a cover C of [zf,2"] by setting Y =V = [s¢, s"] and Z¢ = [2¢, s¢], Z" = [s", 2"].
Then we define a strictly positive elementary diagram D on C as follows. Its objects are
DY)=DYNZ)=D(YNZ)=H, D(Z" = F* and D(Z") = F". Its morphisms are
vt F* — H,~" : F" — H and the identity maps; see the diagram following (5.11).

Next we define a morphism of functors  : D — S|¢ by

ﬂzé = 7TZ”7€7 er = 7TZ”7Ta ﬂy =NH, ﬁyﬂzé = TgtTH, Qszr = TsrTH-

We need to check that 7 is a morphism of functors. That reduces to the following equalities:
wsenH’yg(f) = Wseﬂzene(f), for all f € FZ7

Tornuy (f) = msrmzrn’(f), forall f € F".
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Let us only verify the first equality, since the second equality can be verified in a similar
way. For any f € F', we have

mnmy () = memv (1) (f) = maenf’ (f) = wgem zen* ()
Define a morphism of functors 6 : G — D by
696 4

0,0 = 0% Oy =0"a", By =~0%",  Oynge =00 Byrg =0

Let us verify that 6 is a morphism of functors. It suffices to check
fyeﬂgo/(g) =~"0"a"(g) for any g € G.

Indeed, since mtfal(g) = mo1"a"(g), one has that m,n‘0%a(g) = m,n"0"a"(g), and hence
T8 (0%at(g), —0"a" (g)) = 0. Since (F*@F",V, x,~,nu, H) is a simple interpolant, ker (%) =
ker(y). Thus from v(6°a‘(g), —6"a"(g)) = 0 we obtain that v*6‘a’(g) = v"0"a"(g).

Let us verify that

0 n
(5.6) G —D ——S|c
is an interpolant of G. First we verify
ny'0%a’ (9) = mvalg)

where o : G — S[zf,2"] is the homomorphism induced by t‘a’ and ("a”. Let us verify it
pointwise. If z € [s%, z], then

mrvalg) = mifal(g) = mn'0'al(g) = mmv (n)°0'al (g) = mn" 4 0% (g).

Using v/0%a’(g) = v"6"a" (g), a similar argument also shows that
m.ryalg) = "'y (g)

for any z € [z,s"]. Next we verify the kernel conditions corresponding to Z¢ = [z¢, 5],
7" =[s", 2" and Y = [s*, s]:

(5.7) ker(0°at) = ker(m e zeifal) = ker(meifal)
(5.8) ker(0"a") = ker(myrmzri"a”) = ker(myri ")
(5.9) ker(7/0°at) = ker(mpifat) = ker(mp" o) = ker(y"0"a")

The kernel condition for the interpolant (5.2) amounts to ker(f#’) = ker(m,..*) and this
clearly implies (5.7). Similarly, (5.8) follows from (5.3). Next we observe that the first half
of (5.9) is equivalent to ker(y/0‘a’) = ker(m,n'0%at), since «* = n’0*. The desired equality
follows since ker(y*) = ker(m,n’) from the construction of the simple interpolant for :°.
One argues in a similar way to justify the second half of (5.9).
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In the same way, one verifies that the restrictions of  to Clo :=CnNJ[zf, x] and CT,, =

C N [x,z"] give two interpolants

LS’CZ

o0
(510) (Gz) new ———> D‘C@

new new ’

9 n
(5.11) (G")Chew —— Dler.  — Sler

new new °

These two interpolants are assembled together in the following diagram:

G G G G

o o o o
G* G* G" G"

ot 46t ror or
o — - —

ﬂ'Zg’I]l T H lnH TsTNH Tgzrn”

S[xf,se]?Se%S[s §"] ——= S =— S[s", 2]
s s :

This proves the first part of the lemma. For the second part, because of the locality of our
construction, we may also assume that the interpolants (5.2) and (5.3) are simple.

Suppose now that D is a diagram as in the statement. The morphism of functors
n,:D1—S8 e, is illustrated by the commutative diagram

T

S[l‘g, .’E] ? S&E ﬁ S[l‘,xr]

Since Tt pufep(g") = mp" " (g") for any g € KT, we obtain that w00 uf(g") = w.n"0" 1" (g")
for any ¢" € K", and hence 7.((n°)° @ (n"))(0°u“y(g"), —0"u"(g")) = 0. Since (F* @
F",V,x,v,ng, H) is a simple interpolant, we have that (6’ (g"), —0"u"(g")) = 0, and
hence 76 ufp = 470" 1. Therefore, we have the following commutative diagram:
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KZ _— Ke il KN —— K"
J/ QZHZ l ,yéeeué l ~TOT l o
'VZ ,yr
F? H H H Fr
\Lﬂzgng lﬂ'serlH lnH lﬂsrnH lﬂ—zrnr
Slat, 8] > Sat <= Sls* "] > Sor < S8 2]
In fact, the diagram expands to the larger diagram
¥
Kﬁ KZ Kﬁ K ~ KT KT KT
J/QZNZ J{,\/Zeiuf l 492 14 \L Zee 4 \L raru'r l,yrgrur lerur
Pt o
F?! H H H F
\Lﬂzéné lﬂ—senH \L [s z]nH lwx"]}[ \Lﬂ-[z sTM lﬂ's”'nH iﬂ'zr’qr

S[xe,sf]?SZ%Ss t] = S < Sla, 8" *>ST<TS[5 z"]
Thus we have a morphism p; : D1 — D such that n, =nopu,. Arguing as in the first
part of the proof one checks that the columns of the previous diagram corresponding to
nondegenerate intervals are interpolants. Here one works with the elementary cover C that

consists of [z¢, 5], [s, 2], [z, s"] and [s",z"]. This proves the second part of the lemma. [

Lemma 5.6. Let G be a finitely generated dimension group with a strictly positive mor-
phism v : G — Sla,b]. Then there is an open interpolant

L

N

D

G¢ Sle

Proof. By applying Lemma 5.3 and using the compactness of [a, b] we find points a = yo <
- < ym = b and open simple interpolants

I(k) = (G, Z*, 2% 0% nF, FF)

for 11, where Z¥ = [yr_1,yx], k = 1, ..., m. Then we glue together the simple interpolants
I(k), k =1,...,m by applying the first part of Lemma 5.5. O

Theorem 5.7. Let S be a continuous and strictly positive sheaf of countable ordered groups
on [0,1]. If the stalks of S are dimension groups, then S is the Ky-sheaf of a continuous
field of AF-algebras over [0, 1] with [14] = v for a given nonzero element v € S[0,1]"
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Proof. We shall construct inductively a sequence of elementary diagrams (D,,) with covers
(Cpn) of [0, 1] and morphisms ¥y, 11 : Dy, — Dpgq and ¥y, o : Dy, — Sle, Ynt1,000 Vi1 =
¥, o such that the induced map

~

A h_r)n (ﬁna \Iln,n—l-l) — S

is an isomorphism of sheaves. Then one lifts each D,, to a diagram D), of finite dimensional
C*-algebras and each morphism W, ;41 to ¥, ., € Homp, (D;, Dy, 1), as in Subsec-
tion 3.1. In other words, Ko(D),) = D,, and KO(\I/;WL_H) = W, nt+1. The unital morphisms
7vi,; (of Dj,) are liftings of strictly positive maps and hence they are injective. Therefore
the pullbacks A,, of D), are unital continuous fields. By continuity of K-theory it follows
that the Ko-sheaf of lim(A,, \T/;l’nﬂ) is isomorphic to S.

Let us now turn to the construction of D, ¥, ,41 and V¥, .. By an elementary set
theoretic argument, there is a sequence of rational intervals [ay,by] in [0,1] and for each
n > 1 a positive element s, € S[an,b,] such that for each interval [a,b] with rational
endpoints and each positive element s € S[a,b], there is n > 1 such that [a,b] = [an, by,
and s = s,.

The diagrams D,, and the various morphisms are constructed inductively such that
[an,by] is a union of components of C,, all the components of C, have length < 1/n,
and for each n and each nondegenerate interval X € C,,41, the commutative diagram

‘ljn,oo

(5.12) DEH(X) Slx
Dn+1(X)

is an interpolant. Moreover we arrange that s,11 is in the image of \/I}n+1,oo'

To construct D; we apply Lemma 5.6 to ¢; : G = Z s; < S[a1, b1] and find an interpolant
of t1 on [a1,b1]. Then we extend the morphism 7 that appears in this interpolant to a
morphism ¥y o : D1 — S on [0,1] by gluing of simple interpolants. It is then clear that
51 € Image(ﬁll,oo) by the first part of Lemma 5.5.

Suppose now that Di,...,D,, and the morphisms ¥, 1 <j<mnand ¥;;11,1<j<n
were constructed. We must construct D,, 1 and the morphisms ¥,, ,,+1 and W, 41 .

Let C}, be a refinement of C,, such that [a,+1,bp+1] is a union of components of C/,. Let us
denote by X* the components of C/, which are not points and set F* = D,CL; (X*). For each
X* denote by n* : F* — S(X*) the corresponding component of ¥,, . For each k, define
elements t* € S(X*) by t* = s, 41| xr if [ant1,bnr1] N XF = X* and t* = 0 otherwise. For
each k consider the map (¥ : G¥ := ZtF @ F¥ — S(XF*), F(mt*, %) = mt* + ok (fF).
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Applying Lemma 5.6, we obtain an interpolant

k

(Gk)Cn-H,k ¢ S‘Cn+1,lc
%j TIV
Dn+1,k

By Lemma 5.5, the above interpolants based on the diagrams {D,41 %} can be glued
together to get an elementary diagram D, 1 on [0, 1] and a morphism

(5.13) \Ijn—l—Loo : Dpy1 — S‘Cn+l'

Moreover, by the second part of Lemma 5.5, there is a morphism W, ;11 : Dg"“ — Dni1
such that WUy 41 00 0 Uy g1 = ¥y oo and such that (5.12) is an interpolant.

We must show that the map A is bijective. The surjectivity is verified as follows. It
suffices to show that for any n, one has that s, € Im(A). But this is clear since s, €
Im(:I\)n’oo) by construction.

Let us now verify that A is injective. Let s € D, [a, b] be such that A(s) = 0. We are going
to show that for each x € [a, ] there is a neighbourhood W of = and there is m > n such
that \Tlnvm(s) vanishes on W in D, (W). From the compactness of [a, b] this will eventually
imply that \i'mm(s) = 0 in Dynla, b] for some m > n. If s is as above, by continuity of S
we may assume that there is § > 0 such that s extends to V = [a — d,b+ ] N [0,1] and
that A(s) vanishes on V. Let z € [a,b]. Since the intervals of C,, have length < 1/n, after
increasing n and replacing s by \Tlnm(s) if necessary, we may arrange that [x — e, 4 €| C
Xk U XFL [z — 8,2+ 8], for some 0 < ¢ < §, where X* and X**! are consecutive
intervals in the elementary diagram C,, of D,,.

The restriction of s to X* U X**1 is of the form (f*, f**1) | where f* € F' = D,,(X?),
i =kk+1. Letn : F' — S(X%, i = k,k+ 1, denote the corresponding compo-
nents of ¥, . Then Cl\fmoo(s) is equal to the element of S(X* U X**1) given by the pair
(n*(fF), n* L (fFH) € S(XF) @ S(XFH1), and hence 7°(f') = 0, i = k, k + 1. Since (5.12)

is an interpolant, so also is

Dn+1 |Cn+1mXi

i = k,k + 1, since Cp1 is finer than C,. Therefore ¥, ,,+1(f%) = 0 for i = k,k + 1 and
hence U, ,,+1(s) is zero on the interval X* U X*+1 which contains [z — &,z + ¢].
Therefore, the map

A lim (Dy, Uy pi1) — S

i
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is an isomorphism. For a given nonzero element v € S[0,1]", we can assume that there
are nonzero elements v, € ﬁn[(), 1] such that the sequence (1) is sent to v. Then, one
lifts each diagram D,, to an elementary diagram D), of finite dimensional C*-algebras with
[14,] = vn where A, is the pullback of D;,, and lifts each morphism ¥y, 41 to W5, . €

Homp; (Dy,, Dy,41). Then, lim(4,, \Tlim +1) is a continuous field of AF-algebras, and satisfies

the requirements of the theorem. ]

5.3. Kg-sheaves of one-parameter continuous fields of certain Kirchberg alge-
bras. Let C denote the class of Kirchberg algebras satisfying the UCT with torsion free
Ko-group and trivial Ki-group. The separable unital continuous fields of C*-algebras on
[0, 1] with fibres in C are shown to be classified by their Ko-sheaves pointed by the class of
the unit; see [2].

In analogy with Theorem 5.7, we have the following Effros-Handelman-Shen type theo-
rem for this class of continuous fields:

Theorem 5.8. A pointed sheaf S of countable abelian groups over [0,1] is isomorphic to
the Ky-sheaf of a continuous field over [0,1] of Kirchberg algebras with trivial Ki-group if
and only if S is continuous. If, moreover, the stalks of S are torsion free abelian groups,
then the fibres of A can be chosen to be in the class C.

Proof. The proof of the first part of the theorem is contained implicitly in the proof of
Theorem 5.7. The finite dimensional algebras are replaced by Kirchberg algebras and the
ordered abelian groups are replaced by abelian groups. The second part of the theorem
follows from the classification theorem of Kirchberg and Phillips. O

6. EXAMPLES

6.1. Fields whose fibres are matrix algebras. Here, we use Theorem 5.7 to give a
concise classification of the one-parameter unital separable continuous fields of matrix al-
gebras.

Let us call a function f : [0,1] — N* = {1,2,3,...} d-continuous if for each x € [0, 1]
the set {y € [0,1] : f(y)is divisible by f(x)} is open. In other words f is d-continuous
if and only if it is continuous with respect to the (non-Hausdorff) topology of N* with
basis {nN* : n € N*}. For a continuous field A of matrix algebras let us denote by fa
the dimension function f(z) = dim(A(x)), where dim(A(x)) denotes the size of the matrix
algebra A(x), i.e., dim(M,,(C)) = n for any natural number. We shall use the same notation
in the rest of the paper.

Theorem 6.1. The map A — fa is a bijection from the isomorphism classes of one-
parameter unital separable continuous fields of matrix algebras to the set of all d-continuous
functions [0, 1] — N*.
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Proof. Let V be the family of non-degenerate subintervals of [0,1] and let (fy)yey be a
family of functions fy : U — N* satisfying the following conditions:

(i) If V C U, then fyly = nfy for some integer n > 0.

(ii) Each z € [0, 1] has a neighbourhood U such that fy(x) = 1.

(iii) If U = [a,b], V = [b,¢] and pfy(b) = qfy(b) for some positive integers p,q and the
function ¢ on [a, ¢| is defined by

o) pfu(x) if z € [a,b]
o )‘{ afvla) it b

then g = nfyuy for some integer n > 0. Using Proposition 2.4 one verifies immediately
that the ordered groups S(U) = Zfy, and the maps ¢%, : S(U) — S(V), V c U, ¢¥(kfy) =
kfu|v, form a strictly positive continuous sheaf. Using Proposition 4.5 one shows that if A
is a continuous field as in the statement of the theorem, then its Ky-sheaf is isomorphic to
a sheaf S as above with [14] corresponding to nf ;) for some n € N*. This isomorphism is
obtained by considering the images of Ko(A(U)) in [[,cy Ko(A(2)) = [[,cp Z. Conversely,
if S is as above and n > 1 then by Theorem 5.7, § is isomorphic to the Kg-sheaf associated
to a unital separable one-parameter continuous field A of matrix algebras with [14] = nf|g 1]

In the second part of the proof we show that a sheaf S defined by a family (fy)yey sat-
isfying the conditions (i), (ii) and (iii) is uniquely determined by the d-continuous function
a = flo1)- For x € [0,1] let U be a neighbourhood of x given by (ii) such that fy(z) = 1.
By (i) we have that a|y = nfy for some integer n and hence that «|y = a(x) fiy. It follows
that a(z) divides all numbers «a(y) for y € U and so « is d-continuous. For U € V let dy
denote the greatest common divisor of the elements of the set a(U), dy = ged(a(U)). We
assert that

(6.1) fr=-Y

First we show that djp ;) = 1. Set djg ;) = d. Arguing as above we find 0 = a1 < a3 <... <
am = 1 and points z; € U; = [a;—1, a;] such that a|y, = a(x;) fu, = dk; fu, for some k; € N*.
Since k; fu,(a;) = kit1fv,.,(a;) = La(a;), it follows by the condition (iii) that the sections
ki fu, glue together to a global section g which satisfies &« = dg. Since « is the generator of
S[0,1] = Za we must have d = 1. Arguing in a similar way one shows that ged(fy(U)) =1
for all U € V. By the condition (i) for each U there is n such that a|y = nfy. Therefore
dy = ged(a(U)) = ged(nfy(U)) = n which proves (6.1).

In the last part of the proof we show that each d-continuous function f : [0,1] — N*
defines a sheaf S as above given by a family of functions (fi7)yey satisfying the conditions
(i), (i) and (iii). To that purpose we set o = m and let the functions fyy be defined

by (6.1). Equivalently, fy = m. If V C U then dy divides dy and hence (i) holds

with n = %' To verify (ii) let us note that for x € [0, 1], by the d-continuity of « there is a
neighbourhood U of z such that a(z) divides all the elements in «(U) and hence a(z) = dy.
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Therefore fy(z) = 1. To verify (iii), suppose that pfy(b) = ¢ fy (b) for some p,q € N*. By
(6.1) this implies that pdy = qdy and hence pr = ¢s where dy = rdyyuy and dy = sdyyy,
since dyuy = ged{dy,dy}. It follows that s divides p, since r and s are relatively prime
and hence n = £ € N*. Therefore if g is given by the same formula as in (iii), then for

rzeU
g(z) = pOé’U(.%') _ EO"UUV(J;)
du s dyuy
and similarly g(z) = nfyuv(x) for z € V.

= nfouv ()

Given fy4 as in the statement we set fig 1] = gc%;[ol} and then construct the correspond-
ing sheaf. Let us note that [14] corresponds to the function fa in Ko(A) = Z fjo 1j- O

Ezample 6.2. Here we construct explicitly a continuous field A corresponding to a given
d-continuous function f : [0,1] — N*. The values assumed by f form a sequence ni,ng, ...
such that ny divides ngy;. Each set By = {z € X : f(z) < ng} is closed in [0,1]
and Ej C Ejy1. Fix unital embeddings My, C My, , and define an increasing sequence
(Ag) of unital continuous fields on [0, 1] as follows. Set A; = C([0,1], My,), A2 = {f €
C([0,1], My,) : f(z) € My,,Vz € Ey},...,
A = {f S C([O, 1]7Mnk) : f(.%‘) € Mnl,Vl‘ e FE; \ E,_1,1=1,2, ...,k},

with the convention that Ey = &. Then the completion of Uzozl Aj is a unital contin-
uous field of matrix algebras with dimension function f4 = f. It is also clear that the

isomorphism classes of unital separable continuous field of matrix algebras over [0, 1] are in
bijection with pairs of sequences (Ef)x, (ng)r of the same length (finite or infinite) where

E, C Ey C ... are closed sets whose union is equal to [0,1] and each number n;, € N*
divides its successor ng1.
A dimension function f4 is not necessarily bounded. Indeed if we set Iy = [%, 1] and

I, = [zn%, 2%) for n > 1, then the function f4 defined by

2" if x € I,
f“‘(x)_{ 1 ifz=0

is d-continuous and unbounded. With the notation from above, E = Ig U ... U I,_1. Nev-
ertheless, f4 must be constant on some open set as is shown by the following proposition.

Proposition 6.3. For any unital separable continuous field of matriz algebras over a com-
pact metrizable space X, there is a closed subspace U of X with nonempty interior such
that the restriction of the field to U is the trivial field.

Proof. Let A be a field as in the statement with unit e. Define f : X — N* by f(z) =
rank(e(z)) = dim(A(z)). We assert that this map is d-continuous. Indeed, fix = and set
n = rank(e(x)). If ¢, is a minimal projection of A(z), then g, lifts to a projection ¢ € A(U)
for some closed neighbourhood U of = such that 77 (e) is equivalent to n - ¢ in matrices over
A(U) and so f(y) is divisible by n = f(x) for all x € U.
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For any natural number n, define E,, := {x € X : f(x) < n}. The set E, is closed by
the d-continuity of f and X = (J;2 | E,. It follows by the Baire category theorem that
there is n such that (F,)° # &. Consequently, after restricting A to a closed subspace of X
with nonempty interior, we may assume that the function f is bounded. If n = max f(X),
then the set F,, := {z € X : f(z) = n} is nonempty and open since we also have
F,={re X : f(x) >n—1}. Let Y be a closed subspace of F;, with nonempty interior.
Then A(Y) is a separable unital continuous field with all fibres isomorphic to M, and
therefore it is locally trivial by [9]. O

6.2. Fields whose fibres are unital hereditary sub-C*-algebras of O,,. As a coun-
terpart to continuous fields of matrix algebras in the stably finite case, we consider a special
class of unital continuous fields of unital hereditary sub-C*-algebras of Oy, where O is the
Cuntz algebra with K¢(Ox ) = Z. For any integer n, let p, be a nonzero projection in O
such that [p,] = n, and denote by M,, the unital hereditary sub-C*-algebra p,, Osopy,. Note
that the (Ko(M,y,), [1]o) is then isomorphic to (Z,n). Up to isomorphism, these C*-algebras
are the only nonzero unital hereditary sub-C*-algebras of O,. Since Ko(O) = Z, we can
again represent the Kgp-sheaf of a continuous field C*-algebra as integer valued functions,
and have the following result of Effros-Handelman-Shen type. For each U, let S(U) be a
set of maps from U to Z satisfying the following conditions:
(1) £V CcU and f e F(U), then fly € F(V);
(2) For any x € [0, 1] there is a neighbourhood U € U of = and there is f € F(U) such
that f(z) = 1;
(3) For any U € U and f € F(U), the null set of f, null(f) = {x € U : f(z) = 0} is
open in U,
(4) Fla,bl =A{(f,g) € Fla,c] ® Flc,b] : f(c) =g(c)}, for a < c < b.

Corollary 6.4. A sheaf F on [0,1] of countable abelian groups consisting of integer valued
functions is isomorphic to the Ky-sheaf of a unital continuous field of hereditary sub-C*-
algebras of O if and only if it satisfies the conditions (1) through (4) from above.

Proof. We have seen earlier that F is a continuous sheaf and that all continuous sheaves
with stalk Z are of this form, up to isomorphism; see Proposition 2.4. Thus the result
follows from Theorem 5.8. O

Comparing the corollary above with Theorem 5.8, we see that the nonzero integer valued
functions associated with a continuous field of unital hereditary sub-C*-algebras of O, may
vanish at certain points. For example, denote by ¢ the unital *-homomorphism M; — M
which induces the Kg-map (Z,1) — (Z,0),n +— 0. Then, the continuous field C*-algebra

A ={f e C([0,1], Mo); f(z) € Image(¢) if = € [0,1/2]}

is simple on [0, 1/2] with fibre M and simple on (1/2,1] with fibre My, and the function
®([1]) of A[0,1] is 1 on [0,1/2] and 0 on (1/2,1].
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7. THE NULL SET OF SHEAVES WITH INTEGER FIBRES

Let S be a continuous sheaf of abelian groups on X = [0, 1] with all stalks isomorphic
to Z. In the following, we shall study the set of null sets of S in detail.

For any p € S0, 1], by Theorem 6.4, null(p) = {x € [0,1] : p(z) = 0} is an open subset
of [0,1]. Denote by null(S) the set of the points where all the elements of S[0, 1] vanish:

null(S) := ﬂ null(p).
p€eS[0,1]

Lemma 7.1. Let p # 0 be an element of S[0,1] and let U = (a,b) be a mazimal open
subinterval of null(p). Then, for any q in S[0, 1], there are ¢, d € (a,b) such that q vanishes
on (a,c) U (d,b). A similar statement holds if U = (a,1] of U =[0,1). Thus d(null(p)) C
null(q).

Proof. For the first part we shall prove the existence of c. The existence of d is proved in
a similar way. Set m = p(a) € Z and n = ¢(a) € Z and note that m # 0 by maximality of
(a,b). Then (np—mq)(a) = 0 and hence np —mgq vanishes on a neighbourhood V of a since
null(np — mq) is open. If ¢ € (a,b) NV and z € (a,c), then —mg(xz) = (np — mq)(z) =0
and hence g(x) = 0 since m # 0. The second part of the statement follows from the first
part, since any point in d(null(p)) is either equal to a boundary point of some maximal
open subinterval of null(p) or it is a limit point of the set of all such boundary points. O

Since §[0,1] is at most countable, we can write S[0,1] = {0,p1,p2, -+ ,Pn, -+ }. For
p € S[0,1], let us set supp(p) = {z € [0,1] : p(x) # 0}. It is a closed subset of [0, 1]. Note
that

[0,1] = null(p) U (null(p)) U supp(p)° = null(p) U supp(p)°®
are partitions of [0, 1].
Suppose that there is a nonzero p € S0, 1] such that null(p) # @. Then J(null(p)) # @
since [0, 1] is connected. The set

E = ﬂ null(p,) = [0,1] \ U supp(pn)°

is closed and nonempty since d(null(p)) C null(p,) for all n by Lemma 7.1 and therefore
Jd(null(p)) C E.

Lemma 7.2. For any p,, the (relatively) open set null(p,) (| E is dense in E.

Proof. Fix n. For any x € F and V an open interval containing = we shall show that
null(p,) VENV # @. If z € E°, then there is an open interval (a,b) containing x such
that (a,b) C VN E. On the other hand, € null(p,) by the definition of E and hence
null(py,) N (a,b) # @. Thus null(p,) (VE NV # @ since (a,b) C ENV.

If z ¢ E°, then V intersects nontrivially the complement of E and hence VNsupp(py,)° #
@ for some m. Since x € E, x € null(p,,) and hence VNnull(p,,) # @. Since V is connected,
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we cannot have V' C null(p,,) Usupp(p,,)° and so V N A(null(p,,)) # &. Therefore, in order
to show that z is in the closure of null(p,) () E, it is enough to show that any point y in any
boundary set d(null(p,,)) can be approximated by points in null(p,) () E. We distinguish
two cases in this situation.

Case 1. pp(y) = 0. Then y € null(p,)Nd(null(p,,)) C null(p,) () E since d(null(p,,)) C E
by Lemma 7.1.

Case 2. pn(y) # 0. Since y € E C null(p,) and hence z € d(null(p,)), there is a
sequence (cg,dy) of maximal open subintervals of null(p,) such that either the sequence ¢
is nonincreasing and converges to y or the sequence dj is nondecreasing and converges to
y. Let us assume that we are in the first situation with c; \, y. The other situation when
dy /" yis treated similarly. Set e, = cx+(dr—ck)/k. Suppose that (cg, ex) in contained in E
for infinitely many indices k. Then the midpoints y; of the corresponding intervals (cx, ex)
form a sequence of points in null(p,) N E which converges to y. Therefore we may assume
that each (cg,er) intersects nontrivially the complement of E. Thus there is a sequence
n(k) such that (cg,ex)(Ysupp(ppk))® # 9. We also have (cg,ex) (null(p,)) # @ by
Lemma 7.1. Since (cy, ex) is connected there is yx € (cx, ex) [ 0(null(py, ) C null(p) () E.
Since each of the sequences ¢, and e converges to y so does yg. O

The following two results apply to the K-theory sheaf of a separable continuous field of
C*-algebras over [0, 1] with all fibres stably isomorphic to O.

Theorem 7.3. The set null(S) is nonempty if and only if the set null(p) is nonempty for
some nonzero p € §[0,1]. For each p € S[0,1], the boundary points of null(p) are in the
closure of null(S).

Proof. The lemma above, together with the Baire Category Theorem, shows that the set
(@ull(p,) N E) = ((\null(p,)) N E = null(S) N E
n n

is dense in F and hence nonempty. In particular, null(S) is nonempty and for each p,
Jd(null(p)) C E = null(S) N E C null(S). O

A subset Z of [0, 1] is called half-open if for each x € Z, there is ¢ > 0 such that either
g #(x—¢e,x] CZor @ #[x,x+e) CZ. Consequently if Z # &, then Z is a countable
disjoint union of subintervals of [0,1] of types [a,b], [a,b), (a,b], or (a,b) with a < b. In
particular Z is the closure of its interior Z°.

Proposition 7.4. The set null(S) is half open. For each p € S[0,1], the boundary points
of null(p) are in the closure of null(S)°.

Proof. Denote the complement set of null(S) by supp(S). Note that = € supp(S) if and
only if there is p € S[0,1] such that p(z) # 0. In order to prove the lemma, it is enough
to prove that if x € [0,1] and if there exist an increasing sequence {z,} and a decreasing
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sequence {y,} in supp(S) both convergent to x, then z € supp(S). Let us assume that
0<z<l1 Ifz=0o0rz=1, only one of these sequences will be considered.

Let {p,} and {g,} be sequences in S[0, 1] such that p,(z,) # 0 and g, (y,) # 0. We are
going to construct p € S[0,1] such that p(z) # 0. Since the stalk of S at x is nonzero,
there is a closed subinterval V' = [a, 8] with = € V° and an element py € S(V) such that
pv(z) # 0.

On the other hand, we may assume that p,(z) = 0 for any p,. Otherwise, one of the
{pn} will be the desired element. By Corollary 6.4, for each p,, the set null(p,) is open.
Denote by U,, the maximal open subinterval of null(p,) containing x. Then U,, = (ay, by,)
or U, = (an,1]. Since p,(x,) # 0, we have that z, ¢ U, and hence z,, < a,. Since z,
converges to x, there is n such that x,, € V. Therefore, [a,, 5] C V. By Lemma 7.1, there
is ¢, € (ap, ) such that py is zero on (ay,, ¢,]. By Corollary 6.4, we can glue the restriction
of py to [®23¢ (] with the restriction of p,, to [0, ¢,], since both these elements vanish on
[4nd€n ¢,]. The outcome is an element p’ € S[0, 3] such that p'(x) = py(z) # 0. Arguing
in a similar way, one shows that there is 3’ € (x, 3] such that the restriction of p’ to [0, 3']
extends to some p € S[0,1]. In particular p(z) # 0.

The cases x = 0 and x = 1 are treated in a similar way. O
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