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Abstract. Parallel to the first two authors’ earlier classification of separable unital one-

parameter continuous fields of Kirchberg algebras with torsion free K-groups supported

in one dimension, one-parameter separable unital continuous fields of AF-algebras are

classified by their ordered K0-sheaves. We prove Effros-Handelman-Shen type theorems for

separable unital one-parameter continuous fields of AF-algebras and Kirchberg algebras.
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1. Introduction

One-parameter separable unital continuous fields of Kirchberg algebras with torsion free
Ki-groups and trivial Ki+1-groups (i ∈ {0, 1} fixed) were classified in [2] by their Ki-sheaves.
Using the semi-projectivity of the Kirchberg algebras with finitely generated torsion free
K0-groups and trivial K1-groups, these continuous fields were shown by the authors to
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be inductive limits of fields with finitely many singular points (the so-called elementary
fields). Using the classification results of Kirchberg and Phillips for Kirchberg algebras, a
uniqueness theorem and an existence theorem for elementary fields were proved, and hence
a classification theorem for inductive limit continuous fields was obtained.

In this note, we shall show that we can use a similar procedure to get a classification
of separable unital one-parameter continuous fields of AF-algebras. More precisely, noting
that finite dimensional C*-algebras are semi-projective, we apply the methods of [2] to
represent any separable unital continuous field of AF-algebras as an inductive limit of
continuous fields of finite dimensional C*-algebras with finitely many singularities. Very
much parallel to [2], we obtain a classification of one-parameter separable unital continuous
fields of AF-algebras by their ordered K0-sheaves pointed by the class of the unit.

The K0-presheaves of continuous fields of C*-algebras over [0, 1] are always continuous
in the sense that, if S is a such presheaf, then for any closed subinterval [a, b] and any
decreasing sequence of closed intervals ([ai, bi])i=∞i=1 with

⋂i=∞
i=1 [ai, bi] = [a, b], the canonical

map from the inductive limit lim−→ S[ai, bi] to S[a, b] is an isomorphism. Moreover, the stalk
Sx is isomorphic to the K0-group of the fibre algebra at x. If A is a unital continuous field
of stably finite C*-algebras over [0, 1], then the projection map from A onto any fibre is
strictly positive at the level of the ordered K0-groups.

The continuity condition is a key ingredient for Effros-Handelman-Shen type theorems
for both one-parameter continuous fields of AF-algebras and one-parameter continuous
fields of Kirchberg algebras with trivial K1-groups (see Theorem 5.7 and Theorem 5.8). In
the AF case, the strict positivity condition is equally important. More precisely, if a sheaf
S of pointed ordered groups on [0, 1] satisfies the continuity condition and if it is strictly
positive and any stalk is a dimension group, then there is a separable unital continuous field
of AF-algebras the K0-sheaf of which is isomorphic to S. The statement of the theorem
for continuous fields of Kirchberg algebras is similar, except that positivity plays no role.
In the proof of these theorems, we use the continuity condition (and the strict positivity
condition in the AF case) to decompose the given sheaf into an inductive limit of sheaves
with finitely many singular points. Any morphism of such (elementary) sheaves lifts to a
morphism of elementary continuous fields. Thus, the inductive limit of these elementary
fields of C*-algebras has the given sheaf as its K0-sheaf.

In the last part of the paper, we study the K0-sheaves of separable one-parameter con-
tinuous fields whose fibres are unital hereditary sub-C*-algebras of O∞. These sheaves can
be viewed as sheaves of integer valued functions satisfying certain properties (see Corollary
6.4). The set of their zero points is studied in detail.
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2. Continuous fields of C*-algebras and the invariant

Definition 2.1 ([3]). Let C be a class of C*-algebras and let T be a locally compact
topological space. A continuous field A of C*-algebras over T with fibres in C is a family
(A(t))t∈T of C*-algebras in C, together with a set Γ ⊂

∏
t∈T A(t) of vector fields such that:

(1) Γ is a ∗-subalgebra of
∏
t∈T A(t);

(2) For any t ∈ T , the set {x(t) : x ∈ Γ} is dense in A(t);
(3) For any x ∈ Γ, the function t 7→ ||x(t)|| is continuous;
(4) Let x ∈

∏
t∈T A(t) be a vector field; if, for any t ∈ T and every ε > 0, there exists

x′ ∈ Γ such that ||x(s)−x′(s)|| < ε for all s in some neighbourhood of t, then x ∈ Γ.

The subset Γ0(A) of x ∈ Γ such that t 7→ ||x(t)|| vanishes at infinity on T , with norm

||x|| = sup
t∈T
||x(t)||

is a C*-algebra, called the C*-algebra of the continuous field A. Γ0(A) is a continuous
C(X)-algebra in the sense of Kasparov as well as a continuous C*-bundle in the sense of
[1].

In this paper we will be concerned mainly with continuous fields over the unit interval, i.e.
one-parameter continuous fields. Abusing the terminology, we will use the same notation
for a continuous field and for its C*-algebra.

2.1. Sheaves of groups. Let U be a category of closed subintervals of [0, 1] where the
morphisms are the inclusions maps. We assume that {V ◦ : V ∈ U} is a basis for the
topology of [0, 1] and if V1, V2 ∈ U and V1 ∩ V2 6= ∅ then both V1 ∪ V2 and V1 ∩ V2 are in
U . For example we take U to be the category of all dyadic intervals. Some of the intervals
of U can have zero length.

Let V be the full subcategory of U consisting of intervals of positive length (nondegenerate
intervals). A presheaf of groups on [0, 1] is a contravariant functor S from V to the category
of groups. A morphism V ⊂ V ′ is taken by S to the restriction map πV

′
V : S(V ′)→ S(V ).

Let V, V ′ ∈ V be such that V ∩ V ′ ∈ V. The restriction maps induce a natural map

(2.1) S(V ∪ V ′)→ {(f, g) ∈ S(V )⊕ S(V ′) : πVV ∩V ′(f) = πV
′

V ∩V ′(g)}.

A presheaf S is a sheaf if the above map is bijective for all V, V ′.

Definition 2.2. A presheaf S is continuous if for any decreasing sequence of closed subin-
tervals (Vi)∞i=1 whose intersection

⋂∞
i=1 Vi = V is in V, the inductive limit lim−→S(Vi) is

canonically isomorphic to S(V ). If in addition S satisfies the pullback condition (2.1), then
we say that S is a continuous sheaf.

The stalk of S at a point x ∈ [0, 1], denoted by Sx, is defined as the inductive limit of
the groups S(V ) with x in the interior of V . The restriction map S(V ) → Sx is denoted
by πx. A continuous presheaf S extends naturally to a contravariant functor S ′ on U if we
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set S ′({x}) = Sx. This extension is unique if we require that S ′ be continuous in the sense
that lim−→S

′(Ui) is canonically isomorphic to S ′(U) for any decreasing sequence (Ui)∞i=1 of
elements of U whose intersection

⋂∞
i=1 Ui = U is nonempty. The functor S ′ will be also

called a presheaf, or an extended presheaf if we want to emphasize that it is also defined on
degenerate intervals. In the sequel we shall identify any continuous presheaf S on V with
its continuous extension S ′ to U .

Remark 2.3. Let us note that if S is a continuous presheaf, then we have evaluation maps
πx : S[a, b] → Sx for every x ∈ [a, b] and not only for the points x in (a, b). Indeed, by
continuity, any element f ∈ S[a, b] lifts to an element f ′ ∈ S(V ) for some neighbourhood
V ∈ V of [a, b] and the element πx(f ′) is independent of f ′. If S is a continuous presheaf,
it is easy to verify that the pullback condition (2.1) is equivalent to requiring that for each
a < c < b with [a, c], [c, b] ∈ V the restriction maps induce an isomorphism

S[a, b] ∼= {(f, g) ∈ S[a, c]⊕ S[c, b] : π[a,c]
c (f) = π[c,b]

c (g)}.(2.2)

We are going to give an equivalent description of continuous sheaves on [0, 1]. Let
(Gx)x∈[0,1] be a family of abelian groups. Suppose that for each U ∈ V a subgroup
F(U) ⊂

∏
x∈U Gx is given. The elements of F(U) are functions and hence there is a

natural restriction map F(U) →
∏
x∈V Gx, f 7→ f |V , whenever V ⊂ U. Consider the

following conditions:
(i) If V ⊂ U and f ∈ F(U), then f |V ∈ F(V );
(ii) For any x ∈ [0, 1] and any a ∈ Gx, there is a neighbourhood U ∈ V of x and there is

f ∈ F(U) such that f(x) = a;
(iii) For any U ∈ V and f ∈ F(U), the null set of f , null(f) = {x ∈ U : f(x) = 0} is

open in U ;
(iv) F [a, b] ∼= {(f, g) ∈ F [a, c]⊕F [c, b] : f(c) = g(c)} (canonically), for a < c < b.

We shall view the family of groups U 7→ F(U) together with the corresponding restriction
maps as a presheaf on V.

Proposition 2.4. If the conditions (i) through (iv) are satisfied, then F is a continuous
sheaf whose stalk at x is Gx. Conversely, any continuous sheaf of abelian groups on [0, 1]
is obtained in this manner, up to an isomorphism.

Proof. For the sake of simplicity we assume that V consists of all nondegenerate closed
subintervals of [0, 1]. (⇒) F is clearly a presheaf. To compute its stalks, we observe
that the canonical map Fx → Gx is surjective by the condition (ii) and injective by the
condition (iii). Let 0 < a < b ≤ 1. We are going to show that the canonical map
θ : lim−→F [a− 1/n, b]→ F [a, b] is bijective. The general continuity of F is verified by similar
arguments. Let f ∈ F [a, b]. By the condition (ii) there is g ∈ F [a− 1/n, a+ 1/n] for some
n such that g(a) = f(a). By the condition (iv) the restriction g to [a− 1/n, a] glues with f
to give rise to an element h ∈ F [a− 1/n, b] whose restriction to [a, b] is equal to f . Thus θ
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is surjective. Let h ∈ F [a− 1/n, b] be such that its restriction to [a, b] is the zero function.
By the condition (iii), null(h) is open in [a−1/n, b] and hence h must vanish on [a−1/m, b]
for some m ≥ n. Therefore θ is injective.

(⇐) Given a continuous sheaf S on [0, 1] we set Gx = Sx. For U ∈ V and s ∈ S(U) we
define ŝ ∈

∏
x∈U Gx by ŝ(x) = πx(s) and set F(U) = {ŝ : s ∈ S(U)}. We leave it for the

reader to verify that the family {F(U)} satisfies the conditions (i) through (iv) and that
the correspondence S(U) 7→ F(U) is bijective. �

Let A be a continuous field over X. For any closed subset X ′ of X, the restriction of A
to X ′ is a continuous field of C*-algebras over X ′. Denote by A(X ′) the C*-algebra of this
continuous field. Then there is a canonical *-homomorphism πXX′ : A(X)→ A(X ′). Let U
be a basis for the topology of X consisting of closed subsets. If we set S(U) = K0(A(U)),
with restriction maps K0(πUV ) : K0(A(U)) → K0(A(V )), V ⊂ U , then S is a presheaf on
U . Sometimes we will write S(U) = KA(U). If A is a one-parameter continuous field of
C*-algebras with trivial K1-group, and U consists of non-degenerate closed subintervals,
then S is in fact a sheaf on U by Proposition 4.1 of [2]. In this case, we shall refer to it as
the K0-sheaf of A. This is the invariant to be studied in this paper. See Section 4 of [2] for
a background discussion.

3. A classification of continuous fields of AF-algebras

Let A be a separable unital continuous field of AF-algebras over [0, 1]. Since finite
dimensional C*-algebras are semiprojective, we can use the same arguments as in [2] to
show that A is an inductive limit of continuous fields of finite dimensional C*-algebras,
with finitely many singularities.

3.1. Basic building blocks. We study certain elementary unital continuous fields of finite
dimensional C*-algebras which serve as basic building blocks in the study of continuous
fields of AF-algebras.

Let 0 = a0 < a1 < · · · < a2m < a2m+1 = 1 be a partition of [0, 1]. Let us set Yi =
[a2i, a2i+1] , Zi = [a2i+1, a2i+2], Y = [a0, a1]∪ [a2, a3]∪ ...∪ [a2m, a2m+1], and Z = [a1, a2]∪
[a3, a4] ∪ .... ∪ [a2m−1, a2m]; thus Y ∩ Z = {a1, a2, ..., a2m}. For the sake of brevity let us
refer to the above cover as {Y,Z}.

Let {Ei}mi=0, {Fi}m−1
i=0 be finite dimensional C*-algebras, and let {γi,i : Fi → Ei}m−1

i=0 and
{γi,i+1 : Fi → Ei+1}m−1

i=0 be two sets of unital *-monomorphisms. One can form two simple
continuous fields by setting

E =
m⊕
i=0

C(Yi, Ei) and F =
m−1⊕
i=0

C(Zi, Fi).
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Let G denote the restriction of E to Y ∩ Z and let π : E → G be the corresponding
restriction map. There is a unital *-homomorphism η : F → G defined by

(f0, · · · , fm−1) 7→ (γ0,0(f0(a1)), γ0,1(f0(a2)), · · · , γm−1,m−1(fm−1(a2m−1)), γm−1,m(fm−1(a2m))).

We then can define a unital continuous field PD with finitely many singularities, as the
pull-back of the diagram D:

E
π // G F

ηoo .

More precisely, PD is defined by

{(e, f) ∈ E ⊕ F ;π(e) = η(f)}.

Since the maps γi,j are unital and injective, PD is a unital continuous field of finite dimen-
sional C*-algebras over [0, 1] which has Fi as fibres on Zi, and has Ei as fibres on Yi \ Z.
Moreover, it is locally simple except possibly at the singular points {a1, · · · , a2m}.

As in [2], a diagram D as above is called admissible. If A is a continuous field of C*-
algebras over [0, 1], we denote by DA the diagram

A(Y ) π // A(Y ∩ Z) A(Z)πoo

whose pull-back is isomorphic to A. Note that in order to simplify notation we denote by the
same symbol π the various restriction maps such as πYY ∩Z or πZY ∩Z . A is called elementary
if there is an admissible diagram D and a unital morphism of diagrams ι : DA→ D

A(Y ) π //

ιY

��

A(Y ∩ Z)

ιY ∩Z

��

A(Z)πoo

ιZ

��
E

π // G F
ηoo

which induces a *-isomorphism A→ PD. We call ι : DA→ D a fibred presentation of A.
Let A and B be two unital continuous fields of C*-algebras with A elementary. A fibred

morphism Φ from A to B consists of a fibred presentation of A, ι : DA → D, together
with unital morphisms of continuous fields φY , φY ∩Z , φZ such that the following diagram
commutes

A(Y ) π //

ιY

��

A(Y ∩ Z)

ιY ∩Z

��

A(Z)πoo

ιZ

��
E

π //

φY

��

G

φY ∩Z

��

F
ηoo

φZ

��
B(Y ) π // B(Y ∩ Z) B(Z)πoo

.

A fibred homomorphism induces a morphism of continuous fields Φ̂ : A → B. Denote by
HomD(A,B) the set of all fibred homomorphism from A to B corresponding to a given
fibred presentation of A, ι : DA → D.
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3.2. Inductive limit decomposition. Finite dimensional C*-algebras are semiprojective,
[4]. Using this fact, one can get inductive limit decompositions for continuous fields of AF-
algebras, by arguments similar to those of Theorem 6.1 and Theorem 6.2 of [2].

Let A be a C*-algebra. Let a ∈ A and F ,G ⊂ A. For ε > 0, we write a ∈ε F if there is
b ∈ F such that ||a− b|| < ε, and write F ⊂ε G if a ∈ε G for any a ∈ F .

Theorem 3.1. Let A be a unital continuous field of AF-algebras over [0, 1]. For any fi-
nite subset F ⊂ A and any ε > 0, there is an elementary unital continuous field A1 of
finite dimensional C*-algebras with a fibred presentation ι : DA1 → D, and a unital fibred
morphism Φ ∈ HomD(A1, A) such that F ⊂ε Φ̂(A1).

Proof. We shall find points 0 = a0 < a1 < · · · < a2m+1 = 1 and finite dimensional C*-
algebras Ei, Fj (0 ≤ i ≤ m, 0 ≤ j ≤ m − 1) such that if we set Yi = [a2i, a2i+1], Zj =
[a2j+1, a2j+2] and E =

⊕
i C(Yi, Ei), F =

⊕
j C(Zj , Fj), Y =

⋃
Yi, Z =

⋃
Zj , then there

are unital fibrewise injective *-homomorphisms φ : E → A(Y ), ψ : F → A(Z) of continuous
fields such that

πZY ∩Z(ψ(F )) ⊂ πYY ∩Z(φ(E))

and

πY (F) ⊂ε φ(E), πZ(F) ⊂ε ψ(F ).

If A1 is the pull-back of the map φ and ψ, and D is defined by

E
π // G F

ηoo

where G = E(Y ∩ Z) and η is obtained as the composition

F (Z)
πZ

Y ∩Z // F (Y ∩ Z)
γ // E(Y ∩ Z) = G

where γ(f) = (φ−1ψ)|Y ∩Z(f), then as in [2], there is a fibred homomorphism Φ ∈ HomD(A1, A)
induced by the pair φ, ψ, which satisfies the theorem.

We are going to construct E,F, φ and ψ. For any x ∈ [0, 1], since A(x) is a unital AF-
algebra, there is a finite dimensional unital sub-C*-algebra Fx ⊂ A(x) such that πx(F) ⊂ε/4
Fx. Let H be a finite subset of Fx such that for any a ∈ F there is ha ∈ H such that
||ha − πx(a)|| < ε/4. Since Fx is semiprojective and since A is a continuous field, there
is a closed neighbourhood Ux of x and a fibrewise injective unital *-homomorphism ηx :
Fx → A(Ux) such that ||πxηx(h) − h|| < ε/4 for any h ∈ H. Therefore, we have that
||πx(ηx(ha)) − πx(a)|| < ε/2 for all a ∈ F . Since A is a continuous field of C*-algebras,
after passing to a smaller neighbourhood, we have that ||ηx(ha) − πUx(a)|| < ε/2 for any
a ∈ F . In particular, πUx(F) ⊂ε/2 ηx(Fx).

By compactness of [0, 1], there are points 0 = y0 < y1 < · · · < ym = 1, finite dimensional
C*-algebras Fj (0 ≤ j ≤ m − 1), fibrewise injective unital *-homomorphisms ηj : Fj →
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A[yj , yj+1], and finite sets Fj of Fj such that

π[yj ,yj+1](F) ⊂ε/2 ηj(Fj) for all 0 ≤ j ≤ m− 1.

Since each Fj is a finite dimensional C*-algebra, there exist finite subsets Gj ⊂ Fj and
δj > 0 such that for any fibrewise injective unital *-homomorphism φ from Fj to a unital
C*-algebra B with φ(Gj) ⊂δj B′ where B′ is a unital sub-C*-algebra of B, there is a
fibrewise injective unital *-homomorphism ψ from Fj to B′ with ||φ(a) − ψ(a)|| ≤ ε/2 for
any a ∈ Fj .

Repeating the argument from above for each fibre A(yi), there are mutually disjoint
closed intervals Yi = [a2i, a2i+1] (0 ≤ i ≤ m), such that Yi is a neighbourhood of yi,
and such that there are finite dimensional C*-algebras Ei and fibrewise injective unital
*-homomorphisms φi : Ei → A(Yi) such that πYi(F) ⊂ε φi(Ei) and π[yj ,yj+1]∩Yi

(ηj(Gj)) ⊂δj
φi(Ei) for any i and j ∈ {i− 1, i}. Consider the continuous field

B = {a ∈ A : πx(a) ∈ πx(φi(Ei)), for x ∈ Yi, 0 ≤ i ≤ m}.

By construction, ηj(Gj) ⊂δj B[yj , yj+1] for all j. Therefore, there are fibrewise injective
unital *-homomorphisms ψj : Fj → B[yj , yj+1] such that

||ψj(a)− ηj(a)|| < ε/2 for any a ∈ Fj .

Set Zj = [a2j+1, a2j+2] ⊂ [yj , yj+1]. The sets (Zj) are mutually disjoint and πZj∩Yiψj(Fj) ⊂
πZj∩Yiφi(Ei) whenever Zj∩Yi 6= ∅. Extend the maps φi : Ei → A(Yi) and ψj : Fj → A(Zj)
to (necessarily injective) morphisms of continuous fields of C*-algebras, and define φ, ψ as
above. Then φ, ψ, Y and Z satisfy the requirements at the beginning of the proof, as
desired. �

The theorem above gives us a local approximation of continuous fields of AF-algebras
by elementary fields of finite dimensional C*-algebras. Using the same arguments as in
the proof of Theorem 6.2 of [2], one can prove the following semiprojectivity property for
elementary continuous fields of finite dimensional C*-algebras: Let D be an admissible
diagram with components Ei and Fj finite dimensional C*-algebras and based on a closed
cover Y,Z and X. Let

E
π //

φY

��

G

φY ∩Z

��

F
ηoo

φZ

��
A(Y ) π // A(Y ∩ Z) A(Z)πoo

be a commutative diagram with vertical maps unital morphisms of continuous fields of
C*-algebras. Then, for any finite sets FE ⊂ E, FF ⊂ F and any ε > 0 there are finite sets
GE ⊂ E, GF ⊂ F and δ > 0 such that for any sub-continuous-field C*-algebra B ⊂ A with
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φ(GE) ⊂δ B(Y ) and ψ(GF ) ⊂δ B(Z), there is a commutative diagram

E
π //

φ′Y
��

G

φ′Y ∩Z
��

F
ηoo

φ′Z
��

B(Y ) π // B(Y ∩ Z) B(Z)πoo

such that ||φ(e)− φ′(e)|| < ε for all e ∈ FE and ||ψ(f)− ψ′(f)|| < ε for all f ∈ FF .
The proof of the above property is a repetition of the proof of Theorem 6.2 of [2], and

we omit it here. With this semiprojective property together with Theorem 3.1, we have
the following inductive limit decomposition theorem.

Theorem 3.2. Let A be a unital separable continuous field of AF-algebras over [0, 1].
There are an inductive system (Ak) of unital elementary continuous fields of finite di-
mensional C*-algebras and unital fibred morphisms Φk ∈ HomDk

(Ak, Ak+1) and Φk,∞ ∈
HomDk

(Ak, A) such that Φ̂k+1,∞ ◦ Φ̂k = Φ̂k,∞ and the maps (Φ̂k,∞) induce an isomorphism
lim−→(Ak, Φ̂k) ∼= A.

3.3. A classification theorem.

Lemma 3.3. Let A be a unital separable continuous field of AF-algebras over [0, 1]. The
C*-algebra A[a, b] has stable rank one for any [a, b]. In particular, A[a, b] is stably finite
and has cancellation of projections.

Proof. By Theorem 3.1, A can be approximated locally by elementary continuous fields of
AF-algebras. These approximating fields have stable rank one as seen by applying [5] to
various extensions of stable rank one C*-algebras. It follows that A[a, b] also has stable
rank one. �

The following lemma plays role similar to that of Corollary 3.3 of [2].

Lemma 3.4. Let A be a finite dimensional C*-algebra. Let B be a unital continuous field
of AF-algebras over Z = [z1, z2]. Suppose that there are unital continuous field morphisms
φ, ψ : C(Z,A)→ B, and unitaries ui ∈ U(B(zi)) and v ∈ U(B) satisfying

uiψzi(a)u∗i = φzi(a) for all a ∈ C(Z,A), i = 1, 2 and v ψ v∗ = φ.

Then, for any finite subset F ⊂ C(Z,A) any ε > 0, there is u ∈ U(B) such that uzi = ui
and

||uψ(a)u∗ − φ(a)|| < ε for all a ∈ F .

Proof. Since ψ and φ are continuous field morphisms, we may assume that F is in the unit
ball of A. From the given assumptions we deduce immediately that

[v∗zi
ui, ψzi(a)] = 0 for all a ∈ A.
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Consider the end-point z1 and let z ∈ (z1, z2). The relative commutant R of the finite
dimensional algebra ψz1(A) in the AF-algebras B(z1) is AF. Therefore there is a continuous
path of unitaries ω : [0, 1]→ U(R) such that ω(0) = v∗z1u1 and ω(1) = 1. By the homotopy
lifting property of the fibration πz1 : U(B[z1, z])→ U(B(z1)), there is a continuous path of
unitaries Ω : [0, 1] → U(B[z1, z]) such that Ω(1) = 1 and πz1Ω(t) = ω(t) for all t ∈ [0, 1].
After decreasing z if necessary we may arrange that

‖[Ω(t), π[z1,z]ψ(a)]‖ < ε, for all t ∈ [0, 1] and a ∈ F .

Let h : [z1, z]→ [0, 1] be an affine increasing homeomorphism. Then the formula

u′x =

{
πxΩ(h(x)) if x ∈ [z1, z]
1 otherwise

defines a unitary u′ in B such that and u′z1 = v∗z1u1 and

||[u′, ψ(a)]|| < ε for any a ∈ F .

Repeating the same argument at the end-point z2, we obtain a unitary u′′ with similar
properties. Then w = u′u′′ is a unitary in B such that wzi = v∗zi

ui, i = 1, 2, and

||[w,ψ(a)]|| < ε for any a ∈ F .

Consider the unitary u = vw ∈ U(B). We have that uzi = ui, i = 1, 2, and

||uψ(a)u∗ − φ(a)|| ≤ ||v(wψ(a)w∗ − ψ(a))v∗||+ ||vψ(a)v∗ − φ(a)|| < ε

for any a ∈ F , as desired. �

Lemma 3.5. Let A be a finite dimensional C*-algebra and let D be a AF-algebra. Let B
be a unital C*-algebra with cancellation of projections and let π : B → D be a surjective
*-homomorphism. Let σ : A → D be a unital *-homomorphism. Suppose that there is a
positive morphism α : K0(A) → K0(B) such that α[1A] = [1B] and π∗α = σ∗. Then there
is a unital *-homomorphism ϕ : A→ B such that ϕ∗ = α and πϕ = σ.

Proof. Since A is finite dimensional and since B has cancellation of projections there is a
unital *-homomorphism ψ : A → B such that ψ∗ = α. Therefore (πψ)∗ = σ∗. Since D is
AF, we must have πψ = uσ u∗ for some unitary u ∈ U(D). Since u is homotopic to 1D in
U(D), u lifts to a unitary v ∈ U(B). We conclude that ϕ = v∗ ψ v is the desired lifting of
σ. �

By a fibred K0-morphism from A to B, corresponding to a given fibred presentation
ι : DA → D of A, we mean a triple of positive maps α = (αY , αY ∩Z , αZ), where αY
has components αi : K0(E(Yi)) → K0(B(Yi)), αZ has components αj : K0(F (Zj)) →
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K0(B(Zj)), and αY ∩Z has components αi,j : K0(E(Yi ∩ Zj))→ K0(B(Yi ∩ Zj)), such that
these maps preserve the class of the units and the following diagram is commutative:

K0(A(Y ))
π∗ //

ι∗
��

K0(A(Y ∩ Z))

ι∗
��

K0(A(Z))
π∗oo

ι∗
��

K0(E)
π∗ //

αY

��

K0(G)

αY ∩Z

��

K0(F )
η∗oo

αZ

��
K0(B(Y ))

π∗ // K0(B(Y ∩ Z)) K0(B(Z))
π∗oo

Let us summarize the above diagram by the notation

K0(DA)
K0(ι)

// K0(D) α // K0(DB).

The set of fibred K0-morphisms from A to B corresponding to a given fibred presentation
ι : DA→ D of A is denoted by Hom(K0(D),K0(DB)).

Parallel to Theorem 8.1 of [2], we have the following existence and uniqueness theorem.

Theorem 3.6. Let A and B be unital continuous fields of C*-algebras over [0, 1] with
fibres AF-algebras. Assume that A is elementary with fibred presentation ι : DA → D.
For any K0-fibred positive morphism α ∈ Hom(K0(D),K0(DB)) which preserves the class
of the unit, there is a fibred morphism Ψ ∈ HomD(A,B) such that K0(Ψ) = α. If Φ ∈
HomD(A,B) is another fibred morphism satisfying K0(Φ) = α, then Φ is approximately
unitarily equivalent to Ψ.

Proof. By assumption, the components of α are such that

αY ∩Z(K0(E(Yi ∩ Zi))) ⊂ K0(B(Yi ∩ Zj)),

αY (K0(E(Yi))) ⊂ K0(B(Yi)), and αZ(K0(F (Zj))) ⊂ K0(B(Zj)).

Let αEi and αFj denote the corresponding components of αY and αZ . Also let αi,j :
K0(Ei) → K0(B(Yi ∩ Zj)) denote the component of αY ∩Z corresponding to Yi ∩ Zj 6= ∅.
Since the fibres of B are AF-algebras, there are unital *-homomorphisms ψi,j : Ei →
B(Yi ∩ Zj) such that K0(ψi,j) = αi,j . By Lemma 3.3, B(Yi) has cancellation of projec-
tions. Therefore by Lemma 3.5 there is a unital *-homomorphism ψEi : Ei → B(Yi), which
then can be extended to a morphism of continuous fields ψEi : C(Yi, Ei) → B(Yi), with
K0(ψEi ) = αEi and ψEi extending simultaneously the maps ψi,i−1 ◦πYi∩Zi−1 and ψi,i ◦πYi∩Zi .
Arguing in a similar way, for each Zj there is a unital morphism ψFj : C(Zj , Fj) → B(Zj)
which extends simultaneously the maps ψj,j ◦ ηj,j and ψj+1,j ◦ ηj,j+1, and K0(ψFj ) = αFj .
Then ψY = (ψEi ) and ψZ = (ψFj ) and ψY ∩Z = (ψi,j) is the desired lifting of α.

We now show the uniqueness part of the theorem. Let Ψ and Φ be as in the statement,
and use the same notation for each component of Ψ and Φ. Since Ei is a finite dimensional
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C*-algebra and the range C*-algebras have cancellation of projections, φEi and φFj are
unitarily equivalent to ψEi and ψFj respectively. Denote by ui ∈ B(Yi) and vj ∈ B(Zj) the
intertwining unitaries. Their restrictions to Yi∩Zj may not equal. But this can be handled
in the same way as the argument of Theorem 8.1 of [2] with Lemma 3.4 playing the role of
Corollary 3.3 of [2]. This gives the uniqueness part of the theorem. �

With the decomposition theorem 3.2, and the existence and uniqueness theorem 3.6, we
have the following classification theorem.

Theorem 3.7. Let A,B be separable unital continuous fields of AF-algebras over [0, 1].
Any isomorphism of K0-sheaves α : KA → KB such that α[0,1]([1A]) = [1B] lifts to an
isomorphism A ∼= B of continuous fields of C*-algebras. The lifting is unique up to approx-
imate unitary equivalence.

Proof. The proof is entirely similar to the proof of Theorem 8.2 of [2]; hence we omit it. �

4. On K0-presheaves of one-parameter continuous fields of C*-algebras

4.1. Continuity properties of presheaves. Let A be a unital separable continuous field
C*-algebra over [0, 1]. For any closed subinterval [a, b], if we define S[a, b] = K0(A[a, b]),
then S (also denoted by KA ) is a presheaf with restriction homomorphisms induced by
the restriction homomorphisms of A. For any decreasing sequence of closed subintervals
([ai, bi])∞i=1 with

⋂∞
i=1 [ai, bi] = [a, b], there is a canonical homomorphism

φ : lim−→(S[ai, bi], φi,i+1)→ S[a, b]

where φi,i+1 is the restriction homomorphism from the abelian group S[ai, bi] to the abelian
group S[ai+1, bi+1], and lim−→(S[ai, bi], φi,i+1) is the inductive limit of (S[ai, bi], φi,i+1) in the
category of countable abelian groups.

Lemma 4.1. The homomorphism φ above is an isomorphism. Moreover, if we denote by
V the limit of the positive cones of S[ai, bi], the map φ induces an isomorphism from V to
the positive cone of S[a, b]. The statement also holds if [a, b] reduces to a point; that is, if
ai, bi converge to x, then the canonical map φ : lim−→S[ai, bi]→ K0(A(x)) is an isomorphism.
Thus the stalk Sx is canonically isomorphic to K0(A(x)).

Proof. This follows from the usual stability properties of projections since the C*-algebra
A[a, b] is isomorphic to the inductive limit C*-algebra lim−→A[ai, bi]. �

Let A be a continuous field of C*-algebras over [0, 1], and denote by S = KA the K0-
presheaf of A. There is a representation Φ of S induced by (πx)x∈[0,1]: For any [a, b],
define

Φ : K0(A[a, b]) 3 f 7→ ([πx](f))x∈[a,b] ∈
∏

x∈[a,b]

K0(A(x)).(4.1)
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Lemma 4.2. Let A be a unital continuous field of C*-algebras over [0, 1] such that K1(A(x)) =
0 for all x ∈ [0, 1]. Then the representation Φ is faithful. In other words, for any
f ∈ K0(A[a, b]), if Φ(f) = 0, then f = 0 in K0(A[a, b]).

Proof. Since K1(A(x)) = 0 for all x, the K0-presheaf of A is in fact a sheaf by Proposition 4.1
of [2]. If Φ(f) = 0 for an element f ∈ K0(A[a, b]), by Lemma 4.1, there is a neighbourhood
Ux of x such that [πUx ](f) = 0. By the compactness of [0, 1] and the fact that the K0-
presheaf is a sheaf, we conclude that f = 0 in K0(A[a, b]). �

4.2. Ordered K0-sheaves of one-parameter continuous fields of AF-algebras.

Lemma 4.3. Let A be a unital continuous field of AF-algebras over [0, 1]. Let 0 ≤ a < b <

c ≤ 1, and let p ∈ A[a, b] and q ∈ A[b, c] be projections with [πb(p)] = [πb(q)]. Then there is
a projection e in A[a, c] such that [π[a,b](e)] = [p] and [π[b,c](e)] = [q].

Proof. Since [πb(p)] = [πb(q)] and A(b) is a unital AF-algebra, there is a unitary u ∈ A(b)
such that uπb(q)u∗ = πb(p). Since U(A(b)) is path connected, u lifts to a unitary v ∈ A[b, c].
Since the projections p and vqv∗ assume the same value in A(b), they glue together to a
projection e ∈ A[a, c] with the desired properties. �

This lemma together with the fact that any continuous field of AF-algebras has stable
rank one (therefore, any positive element in K0-group comes from a projection) shows that
the ordered K0-presheaf is a sheaf of ordered groups (see also Lemma 3.3). Moreover, we
have that

Proposition 4.4. An element f ∈ K0(A[a, b]) is positive if and only if Φ(f) is pointwise
positive.

Proof. It is simple to verify that if f is positive then Φ(f) is pointwise positive. Thus it
suffices to prove the converse.

Write f = [p1] − [p2] for projections p1 and p2 in Mm(A[a, b]). For any x ∈ [a, b], we
assert that there is a neighbourhood Ux of x, and a projection p ∈ MN (A(Ux)) (for some
N) such that [p] = [πUx ](f). Since [πx](f) ∈ K+

0 (A(x)), there is a partial isometry vx in
Mm(A(x)) such that

vxv
∗
x = πx(p2) and v∗xvxπx(p1) = v∗xvx.

Since A is a continuous field, there exist a neighbourhood Ux of x and a partial isometry v
in Mm(AUx), such that

||vv∗ − πUx(p2)|| < 1 and ||v∗vπUx(p1)− v∗v|| < 1/4,

from which it follows that πUx(p2) is unitarily equivalent to vv∗ and

||πUx(p1) v∗v πUx(p1)−v∗v|| ≤ ||πUx(p1) v∗v πUx(p1)−πUx(p1)v∗v||+||πUx(p1)v∗v−v∗v|| < 1/2.
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Therefore, there is a projection in the hereditary sub-C*-algebra of Mm(A(Ux)) generated
by the projection πUx(p1) which is unitarily equivalent to v∗v. Thus, πUx(p2) is Murray-von
Neumann equivalent to a subprojection of πUx(p1). This proves the assertion.

By the compactness of [0, 1], there is a partition 0 = a0 < a1 < · · · < an = 1 and m such
that there is a projection pi in each Mm(A[ai, ai+1]) such that [pi] = [π[ai,ai+1]](f). Applying
Lemma 4.3 repeatedly, we obtain a projection p such that [π[ai,ai+1](p)] = [πai,ai+1 ](f) which
implies [p] = f (since the K0-presheaf is a sheaf), as desired. �

Recall ([6]) that an ordered group (G,G+) (we assume that 0 ∈ G+) has the Riesz
decomposition property if for any positive elements a, b, and c with a ≤ b + c, there exist
positive elements 0 ≤ b′ ≤ b and 0 ≤ c′ ≤ c such that a = b′ + c′. We write a > b if a− b ∈
G+ \ {0}. An ordered group (G,G+) is called unperforated if for any element a, na ∈ G+

for some natural number n implies a ∈ G+. Note that any unperforated ordered group is
torsion free (na = 0 ⇒ a ≥ 0; however na = 0 ⇒ n(−a) = 0 ⇒ −a ≥ 0). A unperforated
ordered group with the Riesz decomposition property is referred as a dimension group. We
say a morphism f : G → G′ of ordered groups is strictly positive if f(a) > 0 whenever
a > 0.

Any totally ordered group has the Riesz decomposition property. Ordered K0-groups of
AF-algebras are dimension groups. However, the ordered K0-group of a unital continuous
field of AF-algebras may fail to have the Riesz decomposition property. For example, the
splitting interval algebra

S := {f ∈ M2(C[0, 1]); f(0) ∈ C⊕ C, f(1) ∈ C⊕ C}

is a continuous field over [0, 1] with fibre M2(C) between 0 and 1, and C⊕C at 0 or 1. The
K0-group of S does not have the Riesz decomposition property ([8]).

Nevertheless, if the K0-group of each fibre C*-algebra is totally ordered, then the K0-
group of the global C*-algebra is also totally ordered. In particular, it has the Riesz
decomposition property.

Proposition 4.5. Let A be a unital separable continuous fields of AF-algebras over [0, 1].
If K0(A(x)) is totally ordered, then the ordered group K0(A[a, b]) is totally ordered for any
subinterval [a, b]. Moreover, the map [πx] : K0(A)→ K0(A(x)) is injective for any x ∈ [0, 1].

Proof. We may assume that [a, b] = [0, 1]. For any projections p and q in A[0, 1], define the
sets

U := {x ∈ [0, 1]; [πx(p)] > [πx(q)]}, V := {x ∈ [0, 1]; [πx(p)] < [πx(q)]},
and

W := {x ∈ [0, 1]; [πx(p)] = [πx(q)]}.
Since K0(A(x)) is totally ordered for any x, one has that U, V,W are mutually disjoint and

U ∪ V ∪W = [0, 1].
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Note that if e is a projection in A such that [ex] 6= 0 for some x, then [ey] 6= 0 for all y in
some neighbourhood of x. Therefore, arguing as in Proposition 4.4, we see that the subsets
U, V,W are open subsets of [0, 1]. Since [0, 1] is connected, only one of them is nonempty,
and hence it is equal to [0, 1]. If U or V is nonempty then [p] > [q] or [p] < [q] by
Proposition 4.4. If W is nonempty and hence W = [0, 1], one has that [p] = [q] by Lemma
4.2. Therefore, we always have that [p] ≥ [q] or [p] ≤ [q]. Moreover, if [πx(p)] = [πx(q)] for
some x ∈ [0, 1], then one has that W = [0, 1] and hence [p] = [q]. Therefore the map [πx]
is injective, as desired. �

In general, the map [πx] is not injective as illustrated by the case of the splitting interval
algebra mentioned. On the other hand, if A is a unital continuous field of stably finite
C*-algebras, then the map [πx] is always strictly positive.

Recall that a C*-algebra A is stably finite if for any projections e and f in a matrix
algebra over A such that e ≤ f and e is Murray-von Neumann equivalent to f , one has
e = f .

Proposition 4.6. Let A be a unital continuous field of stably finite C*-algebras over [0, 1].
Then A is stably finite and the map [πx] : K0(A) → K0(A(x)) is strictly positive for any
x ∈ [0, 1], i.e. if g > 0 then [πx](g) > 0.

Proof. Let v be a partial isometry in some matrix algebra over A such that vv∗ ≤ v∗v.
Then πx(v)πx(v∗) ≤ πx(v∗)πx(v) holds at each fibre. Since A(x) is stably finite, we have
that πx(v)πx(v∗) = πx(v∗)πx(v) for all x ∈ [0, 1]. Therefore πx(vv∗ − v∗v) = 0 for all
x ∈ [0, 1], and hence vv∗ = v∗v. Thus A is stably finite.

Let p be a projection in Mm(A). If [πx0(p)] = 0 in K0(A(x0)) for some x0 ∈ [0, 1], since
A(x0) is stably finite, one has that πx0(p) = 0. Since p is a projection, we also have that
||πx(p)|| = 0 or 1 for any x ∈ [0, 1]. By the continuity of the field, ||πx(p)|| is continuous
with respect to x. Since [0, 1] is connected, this implies that πx(p) = 0 for all x ∈ [0, 1] and
hence p = 0, as desired. �

5. The range of the invariant

5.1. Elementary covers. An elementary cover C of an interval [0, 1] is a full subcategory
of U satisfying the following conditions. C has finitely many objects grouped into three
coloured families {Yi}i∈I , {Zj}j∈J ,{yij} where the intervals in each family are mutually
disjoint, Yi and Zj have positive length and yij = Yi ∩ Zj . It is convenient to regard Yi
and yij as being coloured with the colour Y and Zj coloured with the colour Z. The typical
example of an elementary cover C arises from a set of points 0 = x0 < x1 < ... < xn = 1
by setting Y0 = [x0,x1], Z1 = [x1, x2], y01 = x1, etc. An elementary diagram D of ordered
groups is a contravariant functor from an elementary cover C to the category of countable
ordered groups with the property that the image D(ι) of any morphism ι between any
two objects of the same colour is the identity map. We regard the group D(X) as having
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the some colour as X. Equivalently, if for each pair of adjacent intervals Yi and Zj , we set
Ei = D(Yi), Fj = D(Zj), then we must have D({yij}) = Ei and D simplifies to the diagram

(5.1) Ei Ei Fj
ψjioo

We say that an elementary cover C′ refines C if the intervals of C′ are obtained by dividing
some of the intervals of C into three subintervals of positive length and changing the colour
of the interval in the middle of each trisection. If D is an elementary diagram defined on
C, we can extend D canonically to a diagram DC′ on C′ by setting DC′(X ′) = D(X) for
all new intervals X ′ in C′ (including those of length zero) contained in an interval X of C.
The new morphisms added to DC′ are all equalities. If C has just one element [0, 1] and
D[0, 1] = G we will let GC

′
or even G stand for DC′ .

Let D1, D2 be elementary diagrams defined on covers C1, C2 such that C1 refines C2. A
morphism of diagrams D1 → D2 is by definition a morphism of functors DC21 → D2. Note
that both functors DC21 and D2 are defined on the same category C2.

One can replace [0, 1] by any interval U = [a, b] in the above setting. If U = [a, b] ⊂ [0, 1],
the restriction of D to U , denoted by DU , is defined as follows. If X is an object of C, then
X ∩U is an object of CU , the category on which DU is defined and DU (X ∩U) = D(X) as
coloured groups.

If D is a diagram of ordered groups on [a, b], we denote by P (D) its pullback. With the
above notation, P (D) consists of elements ((ei)i∈I , (fj)j∈J) such that ei ∈ Ei, fj ∈ Fj , and
ψji(fj) = ei for all pairs of adjacent intervals Yi and Zj .

Via the operations of restrictions and pullbacks, each diagram D defines a continuous
sheaf D̂ of countable ordered groups on [0, 1]. Indeed, for each U = [a, b] ⊂ [0, 1] we set
D̂(U) = P (DU ). Then one verifies immediately that the restriction maps P (DU )→ P (DV ),
defined for V ⊂ U by dropping from the collection ((ei)i∈I , (fj)j∈J) those elements ei and
fj for which Yi and respectively Zj does not intersect V , satisfy the required properties.

If S is a sheaf of ordered groups on [0, 1], we denote by S|C its restriction to C. Let
α : D → S|C be a morphism of functors. In other words we have a commutative diagram

Ei

αi

��

Ei

αij

��

Fj
ψjioo

αi

��
S(Yi) πxij

// Sxij S(Zj).πxij

oo

Then α induces a morphism of sheaves α̂ : D̂ → S. Indeed for each U ⊂ [0, 1] as above α
induces a morphism αU : DU → S|CU . Recall that the objects of CU are of the form X ∩ U
where X is an object of C. The component of αU corresponding to the object X ∩ U is
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DU (X ∩ U) D(X)
α|X // S(X)

πX∩U// S(X ∩ U)

By passing to pullbacks αU gives a morphism of groups α̂U : D̂(U)→ S(U).

5.2. Inductive limit representations of sheaves. A morphism of ordered groups α :
G→ H is called strictly positive if α(g) > 0 whenever g > 0.

Definition 5.1. A sheaf S of ordered groups is called strictly positive if for any closed
interval Z and any point z ∈ Z, the morphism πz : S(Z) → Sz is strictly positive. An
elementary diagram of finitely generated dimension groups is called strictly positive if all
its morphisms are strictly positive. With notation as in (5.1), this means precisely that all
the morphisms ψji : Fj → Ei are strictly positive.

Throughout the remainder of this section we shall assume that S is a continuous and
strictly positive sheaf of countable ordered groups on [0, 1] and that its stalks are dimension
groups. Moreover we shall assume that S is pointed in the sense that a positive nonzero
element ν ∈ S[0, 1] has been chosen.

Let us recall that any finitely generated dimension group is isomorphic to Zk for some
k ≥ 0.

Definition 5.2. Let G be a finitely generated dimension group and let Z = [a, b] ⊂ [0, 1].
Let ι : G→ S(Z) be a strictly positive homomorphism. A simple interpolant of ι consists of
a point z ∈ Z, a finitely generated dimension group F , and strictly positive homomorphisms
η : F → S(Z) and θ : G→ F , such that the diagram

G

θ ��?
??

??
??

?
ι // S(Z)

F

η

==zzzzzzzz

commutes and Ker(πzι) = Ker(θ). A simple interpolant for ι : G → S(Z) as above is
denoted by (G,Z, z, θ, η, F ). We shall say that a simple interpolant is open provided that
a < z if a 6= 0 and z < b if b 6= 1.

An interpolant for a strictly positive morphism ι : G → S[a, b] consists of a strictly
positive elementary diagram D of finitely generated dimension groups, with cover C of
[a, b], together with morphisms θ : GC → D and η : D → S|C such that the diagram

GC

θ   A
AA

AA
AA

A
ι // S|C

D
η

>>}}}}}}}}
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commutes, and for each X ∈ C which does not reduce to a point,

G

θX !!D
DD

DD
DD

DD
πX ι // S(X)

D(X)

ηX

;;vvvvvvvvv

is a simple interpolant of πXι for some point x ∈ X.
We say that an interpolant is open if the simple interpolants that correspond to the

initial component [a, c] and the final component [d, b] of C are both open.

The property of an interpolant of being open will be used in the process of gluing
interpolants described in Lemma 5.5.

Lemma 5.3. Let G be a finitely generated dimension group. For any strictly positive
homomorphism ι : G → S[a, b], any x ∈ [a, b], there exist a closed interval Z ⊂ [a, b] with
x ∈ Z̊ and a simple interpolant

G

θ ��?
??

??
??

?
πZ ι // S(Z)

F

η

==zzzzzzzz

of πZι such that Ker(πxι) = Ker(θ).

Proof. Since G is finitely generated, we may assume that G = Zn, for some n, with the
usual order. Since S and ι are strictly positive, the homomorphism πxι : G → Sx is also
strictly positive. Since Sx is a dimension group, by Theorem 3.1 of [7], there are a finitely
generated dimension group F and strictly positive homomorphisms θ : G→ F , η′ : F → Sx
such that the diagram

G

θ ��?
??

??
??

?
πxι // Sx

F

η′

>>~~~~~~~~

commutes and Ker(πxι) = Ker(θ).
Using the definition of Sx, we find a closed neighbourhood V of x in [a, b] such that

the map η′ lifts to a positive homomorphism η : F → S(V ). Moreover, since G is finitely
generated, there is closed interval Z ⊂ V with x ∈ Z̊ such that the restriction of ηθ − πV ι
to Z vanishes. We conclude the proof by replacing η by πZη and observing that this map
must be strictly positive since it is a lifting of a strictly positive map η′ and since S is
strictly positive. �

Remark 5.4. Let (G,Z, z, θ, η, F ) be a simple interpolant for ι : G → S(Z) as in Defini-
tion 5.2. Arguing as in the proof of Lemma 5.3 and using the continuity of S one verifies
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immediately that there is a closed neighbourhood Zε of Z and strictly positive liftings
ιε : G → S(Zε) and ηε : F → S(Zε) of ι and η such that (G,Zε, z, θ, ηε, F ) is a simple
interpolant of ιε. This is called a local extension of the given interpolant.

Lemma 5.5. Let C` be an elementary cover of [x`, x] and let Cr be an elementary cover of
[x, xr]. Let

(5.2) G`

θ`   A
AA

AA
AA

A
ι` // S|C`

D`
η`

=={{{{{{{{

and

(5.3) Gr

θr
  B

BB
BB

BB
B

ιr // S|Cr

Dr
ηr

==zzzzzzzz

be two open interpolants, and let G be a finitely generated dimension group with strictly
positive homomorphisms α` : G→ G` and αr : G→ Gr such that πxι`α` = πxι

rαr.
There exists an open interpolant

(5.4) GC
θ
// D

η
// S|C

for the morphism α : G → S[x`, xr] induced by the pair ι`α`, ιrαr such that the restric-
tions of C to [x`, x] and [x, xr] refine C` and Cr respectively, and if C`new := C|[x`,x] and
Crnew := C|[x,xr], then there are morphisms D`|C`

new
→ D|C`

new
, Dr|Cr

new
→ D|Cr

new
, such that

the diagrams
D|C`

new
η|C`

new

##H
HH

HH
HH

HH

G`

θ|C`
new

<<zzzzzzzzz
θ`
// D`|C`

new

OO

η`

// S|C`
new

and
D|Cr

new

η|Cr
new

$$I
IIIIIIII

Gr

θ|Cr
new

<<xxxxxxxxx θr
// Dr|Cr

new

OO

ηr

// S|Cr
new

commute.
Moreover, suppose that D1 is a strictly positive elementary diagram on the interval [x`, xr]

with cover C1: [x`, x] ∪ {x} ∪ [x, xr] and objects and maps

K` K` Kr
ψoo ,
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and suppose that there are morphisms µ` : K` → G`, µr : Kr → Gr such that πxι`µ`ψ =
πxι

rµr, so that the pair ι`µ`, ιrµr induces a morphism of functors η
1

: D1 → S|C1. Then
the interpolant (5.4) can be chosen such that there is a morphism µ

1
: D1 → D satisfying

η
1

= η ◦ µ
1

and the diagram

(5.5) DC1 (X)

µ
1 $$I

IIIIIIII

η
1 // S|X

D(X)

η

<<xxxxxxxx

is an interpolant for all nondegenerate intervals X of C.

Proof. We are going to describe a procedure for gluing the two given open interpolants.
Since this procedure is local, we may assume without loss of generality that the interpolants
(5.2) and (5.3) are simple. Denote by V ` = [x`, x] and V r = [x, xr]. Using our earlier
notation, the two simple interpolants for ι` and ιr are

(G`, V `, z`, θ`, η`, F `) and (Gr, V r, zr, θr, ηr, F r),

where z` < x < zr by the openness assumption. These interpolants admit local exten-
sions across x corresponding to a common ε > 0, as noted in Remark 5.4. Let us set
V = (V `)ε ∩ (V r)ε. Consider the map ιε : F ` ⊕ F r → S(V ), ιε(a, b) = πV (η`)ε(a) +
πV (ηr)ε(b). By Lemma 5.3, after shrinking ε if necessary, there is a simple interpolant
(F ` ⊕ F r, V, x, γ, ηH , H) for ιε, where V = [s`, sr] and x` < z` < s` < x < sr < zr < xr.
Denoting by γ` and γr the restrictions of γ to F ` and F r respectively, we have the following
commutative diagram:

H

ηH

��

F `

γ`
<<yyyyyyyyy

πV (η`)ε

// S(V ) F r
πV (ηr)ε
oo

γr
bbEEEEEEEEE

We define a cover C of [x`, xr] by setting Y = V = [s`, sr] and Z` = [x`, s`], Zr = [sr, xr].
Then we define a strictly positive elementary diagram D on C as follows. Its objects are
D(Y ) = D(Y ∩ Z`) = D(Y ∩ Zr) = H, D(Z`) = F ` and D(Zr) = F r. Its morphisms are
γ` : F ` → H, γr : F r → H and the identity maps; see the diagram following (5.11).

Next we define a morphism of functors η : D → S|C by

η
Z` = πZ`η`, η

Zr = πZrηr, η
Y

= ηH , η
Y ∩Z` = πs`ηH , η

Y ∩Zr = πsrηH .

We need to check that η is a morphism of functors. That reduces to the following equalities:

πs`ηHγ
`(f) = πs`πZ`η`(f), for all f ∈ F `,

πsrηHγ
r(f) = πsrπZrηr(f), for all f ∈ F r.
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Let us only verify the first equality, since the second equality can be verified in a similar
way. For any f ∈ F `, we have

πs`ηHγ
`(f) = πs`πV (η`)ε(f) = πs`η`(f) = πs`πZ`η`(f).

Define a morphism of functors θ : GC → D by

θZ` = θ`α`, θZr = θrαr, θY = γ`θ`α`, θY ∩Z` = γ`θ`α`, θY ∩Zr = γrθrαr.

Let us verify that θ is a morphism of functors. It suffices to check

γ`θ`α`(g) = γrθrαr(g) for any g ∈ G.

Indeed, since πxι`α`(g) = πxι
rαr(g), one has that πxη`θ`α`(g) = πxη

rθrαr(g), and hence
πxι

ε(θ`α`(g),−θrαr(g)) = 0. Since (F `⊕F r, V, x, γ, ηH , H) is a simple interpolant, ker(πxιε) =
ker(γ). Thus from γ(θ`α`(g),−θrαr(g)) = 0 we obtain that γ`θ`α`(g) = γrθrαr(g).

Let us verify that

(5.6) GC
θ
// D

η
// S|C

is an interpolant of G. First we verify

ηHγ`θ`α`(g) = πV α(g)

where α : G → S[x`, xr] is the homomorphism induced by ι`α` and ιrαr. Let us verify it
pointwise. If z ∈ [s`, x], then

πzπV α(g) = πzι
`α`(g) = πzη

`θ`α`(g) = πzπV (η`)εθ`α`(g) = πzη
Hγ`θ`α`(g).

Using γ`θ`α`(g) = γrθrαr(g), a similar argument also shows that

πzπV α(g) = πzη
Hγ`θ`α`(g)

for any z ∈ [x, sr]. Next we verify the kernel conditions corresponding to Z` = [x`, s`],
Zr = [sr, xr] and Y = [s`, sr]:

(5.7) ker(θ`α`) = ker(πz`πZ`ι`α`) = ker(πz`ι`α`)

(5.8) ker(θrαr) = ker(πzrπZr ιrαr) = ker(πzr ιrαr)

(5.9) ker(γ`θ`α`) = ker(πxι`α`) = ker(πxιrαr) = ker(γrθrαr)

The kernel condition for the interpolant (5.2) amounts to ker(θ`) = ker(πz`ι`) and this
clearly implies (5.7). Similarly, (5.8) follows from (5.3). Next we observe that the first half
of (5.9) is equivalent to ker(γ`θ`α`) = ker(πxη`θ`α`), since ι` = η`θ`. The desired equality
follows since ker(γ`) = ker(πxη`) from the construction of the simple interpolant for ιε.
One argues in a similar way to justify the second half of (5.9).
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In the same way, one verifies that the restrictions of η to C`new := C ∩ [x`, x] and Crnew :=
C ∩ [x, xr] give two interpolants

(5.10) (G`)C
`
new

θ
// D|C`

new

η
// S|C`

new
,

(5.11) (Gr)C
r
new

θ
// D|Cr

new

η
// S|Cr

new
.

These two interpolants are assembled together in the following diagram:

G

α`

��

G

α`

��

G

αr

��

G

αr

��
G`

θ`

��

G`

γ`θ`

��

Gr

γrθr

��

Gr

θr

��
F `

γ`

//

π
Z`η

`

��

H

π
s`ηH

��

H

ηH

��

H

πsrηH

��

F r
γr

oo

πZrηr

��
S[x`, s`] π

s`

// Ss` S[s`, sr]π
s`

oo
πsr

// Ssr S[sr, xr]
πsr

oo

This proves the first part of the lemma. For the second part, because of the locality of our
construction, we may also assume that the interpolants (5.2) and (5.3) are simple.

Suppose now that D1 is a diagram as in the statement. The morphism of functors
η

1
: D1 → S|C1 is illustrated by the commutative diagram

K`

ι`µ`

��

K`

��

Kr
ψoo

ιrµr

��
S[x`, x] πx

// Sx S[x, xr]
πx

oo

Since πxι`µ`ψ(gr) = πxι
rµr(gr) for any gr ∈ Kr, we obtain that πxη`θ`µ`ψ(gr) = πxη

rθrµr(gr)
for any gr ∈ Kr, and hence πx((η`)ε ⊕ (ηr)ε)(θ`µ`ψ(gr),−θrµr(gr)) = 0. Since (F ` ⊕
F r, V, x, γ, ηH , H) is a simple interpolant, we have that γ(θ`µ`ψ(gr),−θrµr(gr)) = 0, and
hence γ`θ`µ`ψ = γrθrµr. Therefore, we have the following commutative diagram:
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K`

θ`µ`

��

K`

γ`θ`µ`

��

Kr

γrθrµr

��

ψoo Kr

θrµr

��
F `

γ`

//

π
Z`η

`

��

H

π
s`ηH

��

H

ηH

��

H

πsrηH

��

F r
γr

oo

πZrηr

��
S[x`, s`] π

s`

// Ss` S[s`, sr]π
s`

oo
πsr

// Ssr S[sr, xr]
πsr

oo

In fact, the diagram expands to the larger diagram

K`

θ`µ`

��

K`

γ`θ`µ`

��

K`

γ`θ`µ`

��

K`

γ`θ`µ`

��

Kr

γrθrµr

��

ψoo Kr

γrθrµr

��

Kr

θrµr

��
F `

ψ`

//

π
Z`η

`

��

H

π
s`ηH

��

H

π
[s`,x]

ηH

��

H

πxηH

��

H

π[x,sr ]ηH

��

H

πsrηH

��

F r
ψr

oo

πZrηr

��
S[x`, s`] π

s`

// Ss` S[s`, x]π
s`

oo
πx

// Sx S[x, sr]
πx

oo
πsr

// Ssr S[sr, xr]
πsr

oo

Thus we have a morphism µ1 : D1 → D such that η
1

= η ◦ µ
1
. Arguing as in the first

part of the proof one checks that the columns of the previous diagram corresponding to
nondegenerate intervals are interpolants. Here one works with the elementary cover C that
consists of [x`, s`], [s`, x], [x, sr] and [sr, xr]. This proves the second part of the lemma. �

Lemma 5.6. Let G be a finitely generated dimension group with a strictly positive mor-
phism ι : G→ S[a, b]. Then there is an open interpolant

GC
ι //

θ   A
AA

AA
AA

A
S|C

D
η

>>}}}}}}}}
.

Proof. By applying Lemma 5.3 and using the compactness of [a, b] we find points a = y0 <

· · · < ym = b and open simple interpolants

I(k) = (G,Zk, zk, θk, ηk, F k)

for πZkι, where Zk = [yk−1, yk], k = 1, ...,m. Then we glue together the simple interpolants
I(k), k = 1, ...,m by applying the first part of Lemma 5.5. �

Theorem 5.7. Let S be a continuous and strictly positive sheaf of countable ordered groups
on [0, 1]. If the stalks of S are dimension groups, then S is the K0-sheaf of a continuous
field of AF-algebras over [0, 1] with [1A] = ν for a given nonzero element ν ∈ S[0, 1]+.
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Proof. We shall construct inductively a sequence of elementary diagrams (Dn) with covers
(Cn) of [0, 1] and morphisms Ψn,n+1 : Dn → Dn+1 and Ψn,∞ : Dn → S|Cn Ψn+1,∞◦Ψn,n+1 =
Ψn,∞ such that the induced map

Λ : lim−→ (D̂n, Ψ̂n,n+1)→ S

is an isomorphism of sheaves. Then one lifts each Dn to a diagram D′n of finite dimensional
C*-algebras and each morphism Ψn,n+1 to Ψ′n,n+1 ∈ HomD′n(D′n,D′n+1), as in Subsec-
tion 3.1. In other words, K0(D′n) = Dn and K0(Ψ′n,n+1) = Ψn,n+1. The unital morphisms
γi,j (of D′n) are liftings of strictly positive maps and hence they are injective. Therefore
the pullbacks An of D′n are unital continuous fields. By continuity of K-theory it follows
that the K0-sheaf of lim−→(An, Ψ̂′n,n+1) is isomorphic to S.

Let us now turn to the construction of Dn, Ψn,n+1 and Ψn,∞. By an elementary set
theoretic argument, there is a sequence of rational intervals [an, bn] in [0, 1] and for each
n ≥ 1 a positive element sn ∈ S[an, bn] such that for each interval [a, b] with rational
endpoints and each positive element s ∈ S[a, b], there is n ≥ 1 such that [a, b] = [an, bn],
and s = sn.

The diagrams Dn and the various morphisms are constructed inductively such that
[an, bn] is a union of components of Cn, all the components of Cn have length ≤ 1/n,
and for each n and each nondegenerate interval X ∈ Cn+1, the commutative diagram

(5.12) DCn+1
n (X)

Ψn,∞ //

Ψn,n+1

&&MMMMMMMMMM
S|X

Dn+1(X)

Ψn+1,∞
::vvvvvvvvv

is an interpolant. Moreover we arrange that sn+1 is in the image of Ψ̂n+1,∞.
To construct D1 we apply Lemma 5.6 to ι1 : G = Z s1 ↪→ S[a1, b1] and find an interpolant

of ι1 on [a1, b1]. Then we extend the morphism η that appears in this interpolant to a
morphism Ψ1,∞ : D1 → S on [0, 1] by gluing of simple interpolants. It is then clear that
s1 ∈ Image(Ψ̂1,∞) by the first part of Lemma 5.5.

Suppose now that D1,...,Dn and the morphisms Ψj,∞, 1 ≤ j ≤ n and Ψj,j+1, 1 ≤ j < n

were constructed. We must construct Dn+1 and the morphisms Ψn,n+1 and Ψn+1,∞.
Let C′n be a refinement of Cn such that [an+1, bn+1] is a union of components of C′n. Let us

denote by Xk the components of C′n which are not points and set F k = DC
′
n
n (Xk). For each

Xk, denote by ηk : F k → S(Xk) the corresponding component of Ψn,∞. For each k, define
elements tk ∈ S(Xk) by tk = sn+1|Xk if [an+1, bn+1] ∩Xk = Xk and tk = 0 otherwise. For
each k consider the map ιk : Gk := Ztk ⊕ F k → S(Xk), ιk(mtk, fk) = mtk + ηk(fk).
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Applying Lemma 5.6, we obtain an interpolant

(Gk)Cn+1,k
ιk //

θn+1,k

%%LLLLLLLLLL
S|Cn+1,k

Dn+1,k

η
n+1,k

::ttttttttt
.

By Lemma 5.5, the above interpolants based on the diagrams {Dn+1,k} can be glued
together to get an elementary diagram Dn+1 on [0, 1] and a morphism

(5.13) Ψn+1,∞ : Dn+1 → S|Cn+1 .

Moreover, by the second part of Lemma 5.5, there is a morphism Ψn,n+1 : DCn+1
n → Dn+1

such that Ψn+1,∞ ◦Ψn,n+1 = Ψn,∞ and such that (5.12) is an interpolant.
We must show that the map Λ is bijective. The surjectivity is verified as follows. It

suffices to show that for any n, one has that sn ∈ Im(Λ). But this is clear since sn ∈
Im(Φ̂n,∞) by construction.

Let us now verify that Λ is injective. Let s ∈ Dn[a, b] be such that Λ(s) = 0. We are going
to show that for each x ∈ [a, b] there is a neighbourhood W of x and there is m ≥ n such
that Ψ̂n,m(s) vanishes on W in D̂m(W ). From the compactness of [a, b] this will eventually
imply that Ψ̂n,m(s) = 0 in D̂m[a, b] for some m ≥ n. If s is as above, by continuity of S
we may assume that there is δ > 0 such that s extends to V = [a − δ, b + δ] ∩ [0, 1] and
that Λ(s) vanishes on V . Let x ∈ [a, b]. Since the intervals of Cn have length ≤ 1/n, after
increasing n and replacing s by Ψ̂n,m(s) if necessary, we may arrange that [x− ε, x+ ε] ⊂
Xk ∪ Xk+1 ⊂ [x − δ, x + δ], for some 0 < ε < δ, where Xk and Xk+1 are consecutive
intervals in the elementary diagram Cn of Dn.

The restriction of s to Xk ∪Xk+1 is of the form (fk, fk+1) , where f i ∈ F i = Dm(Xi),
i = k, k + 1. Let ηi : F i → S(Xi), i = k, k + 1, denote the corresponding compo-
nents of Ψn,∞. Then Ψ̂n,∞(s) is equal to the element of S(Xk ∪Xk+1) given by the pair
(ηk(fk), ηk+1(fk+1)) ∈ S(Xk)⊕ S(Xk+1), and hence ηi(f i) = 0, i = k, k + 1. Since (5.12)
is an interpolant, so also is

Dn(Xi)
ηi

//

Ψn,n+1

&&NNNNNNNNNNN
S|Xi

Dn+1|Cn+1∩Xi

Ψn+1,∞
88rrrrrrrrrr

i = k, k + 1, since Cn+1 is finer than Cn. Therefore Ψn,n+1(f i) = 0 for i = k, k + 1 and
hence Ψn,n+1(s) is zero on the interval Xk ∪Xk+1 which contains [x− ε, x+ ε].

Therefore, the map

Λ : lim−→ (D̂n, Ψ̂n,n+1)→ S
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is an isomorphism. For a given nonzero element ν ∈ S[0, 1]+, we can assume that there
are nonzero elements νn ∈ D̂n[0, 1]+ such that the sequence (νn) is sent to ν. Then, one
lifts each diagram Dn to an elementary diagram D′n of finite dimensional C*-algebras with
[1An ] = νn where An is the pullback of D′n, and lifts each morphism Ψn,n+1 to Ψ′n,n+1 ∈
HomD′n(D′n,D′n+1). Then, lim−→(An, Ψ̂′n,n+1) is a continuous field of AF-algebras, and satisfies
the requirements of the theorem. �

5.3. K0-sheaves of one-parameter continuous fields of certain Kirchberg alge-
bras. Let C denote the class of Kirchberg algebras satisfying the UCT with torsion free
K0-group and trivial K1-group. The separable unital continuous fields of C*-algebras on
[0, 1] with fibres in C are shown to be classified by their K0-sheaves pointed by the class of
the unit; see [2].

In analogy with Theorem 5.7, we have the following Effros-Handelman-Shen type theo-
rem for this class of continuous fields:

Theorem 5.8. A pointed sheaf S of countable abelian groups over [0, 1] is isomorphic to
the K0-sheaf of a continuous field over [0, 1] of Kirchberg algebras with trivial K1-group if
and only if S is continuous. If, moreover, the stalks of S are torsion free abelian groups,
then the fibres of A can be chosen to be in the class C.

Proof. The proof of the first part of the theorem is contained implicitly in the proof of
Theorem 5.7. The finite dimensional algebras are replaced by Kirchberg algebras and the
ordered abelian groups are replaced by abelian groups. The second part of the theorem
follows from the classification theorem of Kirchberg and Phillips. �

6. Examples

6.1. Fields whose fibres are matrix algebras. Here, we use Theorem 5.7 to give a
concise classification of the one-parameter unital separable continuous fields of matrix al-
gebras.

Let us call a function f : [0, 1] → N∗ = {1, 2, 3, ...} d-continuous if for each x ∈ [0, 1]
the set {y ∈ [0, 1] : f(y) is divisible by f(x)} is open. In other words f is d-continuous
if and only if it is continuous with respect to the (non-Hausdorff) topology of N∗ with
basis {nN∗ : n ∈ N∗}. For a continuous field A of matrix algebras let us denote by fA
the dimension function f(x) = dim(A(x)), where dim(A(x)) denotes the size of the matrix
algebra A(x), i.e., dim(Mn(C)) = n for any natural number. We shall use the same notation
in the rest of the paper.

Theorem 6.1. The map A 7→ fA is a bijection from the isomorphism classes of one-
parameter unital separable continuous fields of matrix algebras to the set of all d-continuous
functions [0, 1]→ N∗.
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Proof. Let V be the family of non-degenerate subintervals of [0, 1] and let (fU )U∈V be a
family of functions fU : U → N∗ satisfying the following conditions:

(i) If V ⊂ U , then fU |V = nfV for some integer n > 0.
(ii) Each x ∈ [0, 1] has a neighbourhood U such that fU (x) = 1.
(iii) If U = [a, b], V = [b, c] and pfU (b) = qfV (b) for some positive integers p, q and the

function g on [a, c] is defined by

g(x) =

{
pfU (x) if x ∈ [a, b]
qfV (x) if x ∈ [b, c]

then g = nfU∪V for some integer n > 0. Using Proposition 2.4 one verifies immediately
that the ordered groups S(U) = ZfU , and the maps φUV : S(U)→ S(V ), V ⊂ U , φUV (kfU ) =
kfU |V , form a strictly positive continuous sheaf. Using Proposition 4.5 one shows that if A
is a continuous field as in the statement of the theorem, then its K0-sheaf is isomorphic to
a sheaf S as above with [1A] corresponding to nf[0,1] for some n ∈ N∗. This isomorphism is
obtained by considering the images of K0(A(U)) in

∏
x∈U K0(A(x)) =

∏
x∈U Z. Conversely,

if S is as above and n ≥ 1 then by Theorem 5.7, S is isomorphic to the K0-sheaf associated
to a unital separable one-parameter continuous field A of matrix algebras with [1A] = nf[0,1].

In the second part of the proof we show that a sheaf S defined by a family (fU )U∈V sat-
isfying the conditions (i), (ii) and (iii) is uniquely determined by the d-continuous function
α := f[0,1]. For x ∈ [0, 1] let U be a neighbourhood of x given by (ii) such that fU (x) = 1.
By (i) we have that α|U = nfU for some integer n and hence that α|U = α(x)fU . It follows
that α(x) divides all numbers α(y) for y ∈ U and so α is d-continuous. For U ∈ V let dU
denote the greatest common divisor of the elements of the set α(U), dU = gcd(α(U)). We
assert that

(6.1) fU =
α|U
dU

.

First we show that d[0,1] = 1. Set d[0,1] = d. Arguing as above we find 0 = a1 < a2 < ... <

am = 1 and points xi ∈ Ui = [ai−1, ai] such that α|Ui = α(xi)fUi = dkifUi for some ki ∈ N∗.
Since kifUi(ai) = ki+1fUi+1(ai) = 1

dα(ai), it follows by the condition (iii) that the sections
kifUi glue together to a global section g which satisfies α = dg. Since α is the generator of
S[0, 1] = Zα we must have d = 1. Arguing in a similar way one shows that gcd(fU (U)) = 1
for all U ∈ V. By the condition (i) for each U there is n such that α|U = nfU . Therefore
dU = gcd(α(U)) = gcd(nfU (U)) = n which proves (6.1).

In the last part of the proof we show that each d-continuous function f : [0, 1] → N∗

defines a sheaf S as above given by a family of functions (fU )U∈V satisfying the conditions
(i), (i) and (iii). To that purpose we set α = f

gcd(f [0,1] and let the functions fU be defined

by (6.1). Equivalently, fU = f
gcd(f(U) . If V ⊂ U then dU divides dV and hence (i) holds

with n = dV
dU

. To verify (ii) let us note that for x ∈ [0, 1], by the d-continuity of α there is a
neighbourhood U of x such that α(x) divides all the elements in α(U) and hence α(x) = dU .
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Therefore fU (x) = 1. To verify (iii), suppose that pfU (b) = qfV (b) for some p, q ∈ N∗. By
(6.1) this implies that pdV = qdU and hence pr = qs where dV = rdU∪V and dU = sdU∪V ,
since dU∪V = gcd{dU , dV }. It follows that s divides p, since r and s are relatively prime
and hence n = p

s ∈ N∗. Therefore if g is given by the same formula as in (iii), then for
x ∈ U

g(x) = p
α|U (x)
dU

=
p

s

α|U∪V (x)
dU∪V

= nfU∪V (x)

and similarly g(x) = nfU∪V (x) for x ∈ V .
Given fA as in the statement we set f[0,1] = fA

gcdfA[0,1] and then construct the correspond-
ing sheaf. Let us note that [1A] corresponds to the function fA in K0(A) = Zf[0,1]. �

Example 6.2. Here we construct explicitly a continuous field A corresponding to a given
d-continuous function f : [0, 1]→ N∗. The values assumed by f form a sequence n1, n2, ...

such that nk divides nk+1. Each set Ek := {x ∈ X : f(x) ≤ nk} is closed in [0, 1]
and Ek ⊂ Ek+1. Fix unital embeddings Mnk

⊂ Mnk+1
and define an increasing sequence

(Ak) of unital continuous fields on [0, 1] as follows. Set A1 = C([0, 1],Mn1), A2 = {f ∈
C([0, 1],Mn2) : f(x) ∈Mn1 ,∀x ∈ E1},...,

Ak = {f ∈ C([0, 1],Mnk
) : f(x) ∈Mni ,∀x ∈ Ei \ Ei−1, i = 1, 2, ..., k},

with the convention that E0 = ∅. Then the completion of
⋃∞
k=1Ak is a unital contin-

uous field of matrix algebras with dimension function fA = f . It is also clear that the
isomorphism classes of unital separable continuous field of matrix algebras over [0, 1] are in
bijection with pairs of sequences (Ek)k, (nk)k of the same length (finite or infinite) where
E1 ⊂ E2 ⊂ . . . are closed sets whose union is equal to [0, 1] and each number nk ∈ N∗

divides its successor nk+1.
A dimension function fA is not necessarily bounded. Indeed if we set I0 = [1

2 , 1] and
In = [ 1

2n+1 ,
1

2n ) for n ≥ 1, then the function fA defined by

fA(x) =

{
2n if x ∈ In,
1 if x = 0

is d-continuous and unbounded. With the notation from above, Ek = I0 ∪ ... ∪ Ik−1. Nev-
ertheless, fA must be constant on some open set as is shown by the following proposition.

Proposition 6.3. For any unital separable continuous field of matrix algebras over a com-
pact metrizable space X, there is a closed subspace U of X with nonempty interior such
that the restriction of the field to U is the trivial field.

Proof. Let A be a field as in the statement with unit e. Define f : X → N∗ by f(x) =
rank(e(x)) = dim(A(x)). We assert that this map is d-continuous. Indeed, fix x and set
n = rank(e(x)). If qx is a minimal projection of A(x), then qx lifts to a projection q ∈ A(U)
for some closed neighbourhood U of x such that πU (e) is equivalent to n ·q in matrices over
A(U) and so f(y) is divisible by n = f(x) for all x ∈ U .
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For any natural number n, define En := {x ∈ X : f(x) ≤ n}. The set En is closed by
the d-continuity of f and X =

⋃∞
n=1En. It follows by the Baire category theorem that

there is n such that (En)◦ 6= ∅. Consequently, after restricting A to a closed subspace of X
with nonempty interior, we may assume that the function f is bounded. If n = max f(X),
then the set Fn := {x ∈ X : f(x) = n} is nonempty and open since we also have
Fn = {x ∈ X : f(x) > n − 1}. Let Y be a closed subspace of Fn with nonempty interior.
Then A(Y ) is a separable unital continuous field with all fibres isomorphic to Mn and
therefore it is locally trivial by [9]. �

6.2. Fields whose fibres are unital hereditary sub-C*-algebras of O∞. As a coun-
terpart to continuous fields of matrix algebras in the stably finite case, we consider a special
class of unital continuous fields of unital hereditary sub-C*-algebras ofO∞, where O∞ is the
Cuntz algebra with K0(O∞) ∼= Z. For any integer n, let pn be a nonzero projection in O∞
such that [pn] = n, and denote byMn the unital hereditary sub-C*-algebra pnO∞pn. Note
that the (K0(Mn), [1]0) is then isomorphic to (Z, n). Up to isomorphism, these C*-algebras
are the only nonzero unital hereditary sub-C*-algebras of O∞. Since K0(O∞) ∼= Z, we can
again represent the K0-sheaf of a continuous field C*-algebra as integer valued functions,
and have the following result of Effros-Handelman-Shen type. For each U , let S(U) be a
set of maps from U to Z satisfying the following conditions:

(1) If V ⊂ U and f ∈ F(U), then f |V ∈ F(V );
(2) For any x ∈ [0, 1] there is a neighbourhood U ∈ U of x and there is f ∈ F(U) such

that f(x) = 1;
(3) For any U ∈ U and f ∈ F(U), the null set of f , null(f) = {x ∈ U : f(x) = 0} is

open in U ;
(4) F [a, b] ∼= {(f, g) ∈ F [a, c]⊕F [c, b] : f(c) = g(c)}, for a < c < b.

Corollary 6.4. A sheaf F on [0, 1] of countable abelian groups consisting of integer valued
functions is isomorphic to the K0-sheaf of a unital continuous field of hereditary sub-C*-
algebras of O∞ if and only if it satisfies the conditions (1) through (4) from above.

Proof. We have seen earlier that F is a continuous sheaf and that all continuous sheaves
with stalk Z are of this form, up to isomorphism; see Proposition 2.4. Thus the result
follows from Theorem 5.8. �

Comparing the corollary above with Theorem 5.8, we see that the nonzero integer valued
functions associated with a continuous field of unital hereditary sub-C*-algebras of O∞ may
vanish at certain points. For example, denote by φ the unital *-homomorphismM1 →M0

which induces the K0-map (Z, 1)→ (Z, 0), n 7→ 0. Then, the continuous field C*-algebra

A = {f ∈ C([0, 1],M0); f(x) ∈ Image(φ) if x ∈ [0, 1/2]}

is simple on [0, 1/2] with fibre M1 and simple on (1/2, 1] with fibre M0, and the function
Φ([1]) of A[0, 1] is 1 on [0, 1/2] and 0 on (1/2, 1].
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7. The null set of sheaves with integer fibres

Let S be a continuous sheaf of abelian groups on X = [0, 1] with all stalks isomorphic
to Z. In the following, we shall study the set of null sets of S in detail.

For any p ∈ S[0, 1], by Theorem 6.4, null(p) = {x ∈ [0, 1] : p(x) = 0} is an open subset
of [0, 1]. Denote by null(S) the set of the points where all the elements of S[0, 1] vanish:

null(S) :=
⋂

p∈S[0,1]

null(p).

Lemma 7.1. Let p 6= 0 be an element of S[0, 1] and let U = (a, b) be a maximal open
subinterval of null(p). Then, for any q in S[0, 1], there are c, d ∈ (a, b) such that q vanishes
on (a, c) ∪ (d, b). A similar statement holds if U = (a, 1] of U = [0, 1). Thus ∂(null(p)) ⊂
null(q).

Proof. For the first part we shall prove the existence of c. The existence of d is proved in
a similar way. Set m = p(a) ∈ Z and n = q(a) ∈ Z and note that m 6= 0 by maximality of
(a, b). Then (np−mq)(a) = 0 and hence np−mq vanishes on a neighbourhood V of a since
null(np −mq) is open. If c ∈ (a, b) ∩ V and x ∈ (a, c), then −mq(x) = (np −mq)(x) = 0
and hence q(x) = 0 since m 6= 0. The second part of the statement follows from the first
part, since any point in ∂(null(p)) is either equal to a boundary point of some maximal
open subinterval of null(p) or it is a limit point of the set of all such boundary points. �

Since S[0, 1] is at most countable, we can write S[0, 1] = {0, p1, p2, · · · , pn, · · · }. For
p ∈ S[0, 1], let us set supp(p) = {x ∈ [0, 1] : p(x) 6= 0}. It is a closed subset of [0, 1]. Note
that

[0, 1] = null(p) ∪ ∂(null(p)) ∪ supp(p)◦ = null(p) ∪ supp(p)◦

are partitions of [0, 1].
Suppose that there is a nonzero p ∈ S[0, 1] such that null(p) 6= ∅. Then ∂(null(p)) 6= ∅

since [0, 1] is connected. The set

E =
⋂
n

null(pn) = [0, 1] \
⋃
n

supp(pn)◦

is closed and nonempty since ∂(null(p)) ⊂ null(pn) for all n by Lemma 7.1 and therefore
∂(null(p)) ⊂ E.

Lemma 7.2. For any pn, the (relatively) open set null(pn)
⋂
E is dense in E.

Proof. Fix n. For any x ∈ E and V an open interval containing x we shall show that
null(pn)

⋂
E ∩ V 6= ∅. If x ∈ E◦, then there is an open interval (a, b) containing x such

that (a, b) ⊂ V ∩ E. On the other hand, x ∈ null(pn) by the definition of E and hence
null(pn) ∩ (a, b) 6= ∅. Thus null(pn)

⋂
E ∩ V 6= ∅ since (a, b) ⊂ E ∩ V .

If x /∈ E◦, then V intersects nontrivially the complement of E and hence V ∩supp(pm)◦ 6=
∅ for some m. Since x ∈ E, x ∈ null(pm) and hence V ∩null(pm) 6= ∅. Since V is connected,
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we cannot have V ⊂ null(pm)∪ supp(pm)◦ and so V ∩∂(null(pm)) 6= ∅. Therefore, in order
to show that x is in the closure of null(pn)

⋂
E, it is enough to show that any point y in any

boundary set ∂(null(pm)) can be approximated by points in null(pn)
⋂
E. We distinguish

two cases in this situation.
Case 1. pn(y) = 0. Then y ∈ null(pn)∩∂(null(pm)) ⊂ null(pn)

⋂
E since ∂(null(pm)) ⊂ E

by Lemma 7.1.
Case 2. pn(y) 6= 0. Since y ∈ E ⊂ null(pn) and hence x ∈ ∂(null(pn)), there is a

sequence (ck, dk) of maximal open subintervals of null(pn) such that either the sequence ck
is nonincreasing and converges to y or the sequence dk is nondecreasing and converges to
y. Let us assume that we are in the first situation with ck ↘ y. The other situation when
dk ↗ y is treated similarly. Set ek = ck+(dk−ck)/k. Suppose that (ck, ek) in contained in E
for infinitely many indices k. Then the midpoints yk of the corresponding intervals (ck, ek)
form a sequence of points in null(pn) ∩E which converges to y. Therefore we may assume
that each (ck, ek) intersects nontrivially the complement of E. Thus there is a sequence
n(k) such that (ck, ek)

⋂
supp(pn(k))◦ 6= ∅. We also have (ck, ek)

⋂
null(pn(k)) 6= ∅ by

Lemma 7.1. Since (ck, ek) is connected there is yk ∈ (ck, ek)
⋂
∂(null(pn(k))) ⊂ null(p)

⋂
E.

Since each of the sequences ck and ek converges to y so does yk. �

The following two results apply to the K-theory sheaf of a separable continuous field of
C*-algebras over [0, 1] with all fibres stably isomorphic to O∞.

Theorem 7.3. The set null(S) is nonempty if and only if the set null(p) is nonempty for
some nonzero p ∈ S[0, 1]. For each p ∈ S[0, 1], the boundary points of null(p) are in the
closure of null(S).

Proof. The lemma above, together with the Baire Category Theorem, shows that the set⋂
n

(null(pn) ∩ E) = (
⋂
n

null(pn)) ∩ E = null(S) ∩ E

is dense in E and hence nonempty. In particular, null(S) is nonempty and for each p,
∂(null(p)) ⊂ E = null(S) ∩ E ⊂ null(S). �

A subset Z of [0, 1] is called half-open if for each x ∈ Z, there is ε > 0 such that either
∅ 6= (x − ε, x] ⊂ Z or ∅ 6= [x, x + ε) ⊂ Z. Consequently if Z 6= ∅, then Z is a countable
disjoint union of subintervals of [0, 1] of types [a, b], [a, b), (a, b], or (a, b) with a < b. In
particular Z is the closure of its interior Z◦.

Proposition 7.4. The set null(S) is half open. For each p ∈ S[0, 1], the boundary points
of null(p) are in the closure of null(S)◦.

Proof. Denote the complement set of null(S) by supp(S). Note that x ∈ supp(S) if and
only if there is p ∈ S[0, 1] such that p(x) 6= 0. In order to prove the lemma, it is enough
to prove that if x ∈ [0, 1] and if there exist an increasing sequence {xn} and a decreasing
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sequence {yn} in supp(S) both convergent to x, then x ∈ supp(S). Let us assume that
0 < x < 1. If x = 0 or x = 1, only one of these sequences will be considered.

Let {pn} and {qn} be sequences in S[0, 1] such that pn(xn) 6= 0 and qn(yn) 6= 0. We are
going to construct p ∈ S[0, 1] such that p(x) 6= 0. Since the stalk of S at x is nonzero,
there is a closed subinterval V = [α, β] with x ∈ V ◦ and an element pV ∈ S(V ) such that
pV (x) 6= 0.

On the other hand, we may assume that pn(x) = 0 for any pn. Otherwise, one of the
{pn} will be the desired element. By Corollary 6.4, for each pn, the set null(pn) is open.
Denote by Un the maximal open subinterval of null(pn) containing x. Then Un = (an, bn)
or Un = (an, 1]. Since pn(xn) 6= 0, we have that xn /∈ Un and hence xn ≤ an. Since xn
converges to x, there is n such that xn ∈ V . Therefore, [an, β] ⊂ V . By Lemma 7.1, there
is cn ∈ (an, x) such that pV is zero on (an, cn]. By Corollary 6.4, we can glue the restriction
of pV to [an+cn

2 , β] with the restriction of pn to [0, cn], since both these elements vanish on
[an+cn

2 , cn]. The outcome is an element p′ ∈ S[0, β] such that p′(x) = pV (x) 6= 0. Arguing
in a similar way, one shows that there is β′ ∈ (x, β] such that the restriction of p′ to [0, β′]
extends to some p ∈ S[0, 1]. In particular p(x) 6= 0.

The cases x = 0 and x = 1 are treated in a similar way. �

Acknowledgments. The third author is indebted to Efren Ruiz for helpful discussions
during early stages of this project. He was supported by a PIMS Postdoctoral Fellowship
when he was at the University of Calgary, where part of this project were carried out.

References

[1] E. Blanchard and E. Kirchberg, Global Glimm halving for C∗-bundles, J. Operator Theory 52 (2004),

no. 2, 385–420

[2] M. Dadarlat and G. A. Elliott, One-parameter continuous fields of Kirchberg algebras, Comm. Math.

Phys. 274 (2007), no. 3, 795–819.

[3] J. Dixmier, C*-algebras, North-Holland Mathematical Library, vol. 15, North-Holland Publishing Co.,

Amsterdam-New York-Oxford, 1977.

[4] T. Loring, Lifting solutions to perturbing problems in C*-algebras, Fields Institute Monographs, vol. 8,

American Mathematical Society, Providence, 1997.

[5] G. Nagy, Some remarks on lifting invertible elements from quotient C∗-algebras, J. Operator Theory

21 (1989), no. 2, 379–386.

[6] M. Rørdam, F. Larsen, and N. J. Laustsen, An introduction to K-theory for C*-algebras, London

Mathematical Society Student Texts, no. 49, Cambridge University Press, 2000.

[7] C. L. Shen, On the classification of the ordered groups associated with the approximately finite-

dimensional C*-algebras, Duke Math. J. 46 (1979), no. 3, 613–633.

[8] H. Su, On the classification of C*-algebras of real rank zero: inductive limits of matrix algebras over

non-Hausdorff graphs, Mem. of Amer. Math. Soc. 114 (1995), no. 547.

[9] J. Tomiyama and M. Takesaki, Applications of fibre bundles to the certain class of C∗-algebras, To-

hoku Math. J. 13 (1961), no. 2, 498–522.



ONE-PARAMETER CONTINUOUS FIELDS OF KIRCHBERG ALGEBRAS. II 33

Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.

E-mail address: mdd@math.purdue.edu

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4

E-mail address: elliott@math.toronto.edu

Department of Mathematics, University of Oregon, Eugene, OR 97403, U.S.A.

E-mail address: zniu@uoregon.edu


