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History of Complex Numbers.

We will look at a very, very brief history of complex numbers in this document. Should
the reader wish to further pursue the topic of the history of complex numbers, a highly
recommended reference is Paul J. Nahin’s book An Imaginary Tale: The Story of

√
−1.

The history of mathematics is rife with controversy. The Pythagoreans supposedly killed
someone for showing that

√
2 could not be written as a fraction of whole numbers. The

number zero was banned in certain locations; negative numbers were shunned. Over time,
though, mathematicians eventually came to accept all of these different types of numbers -
but none of this acceptance was immediate.

When confronted with the question, “What is
√
−1?,” the answer was obvious: no such

number exists. All numbers are either positive, negative, or zero. The square of a positive
number is positive, the square of a negative number is positive, and the square of zero is
zero. Therefore, there is no number which squares to a negative number.

This was the viewpoint held by many for a long time. If a mathematician applied the
quadratic formula to a polynomial such as x2 + 1, they would obtain the square root of a
negative number. They simply claimed that the polynomial had no roots - and that was
fine! After all, if you graph this function, it never touches the x-axis.

Much like there is a quadratic formula which can be used to find the roots of quadratic
polynomials, there is also a cubic formula (and quartic formula too!) to find the roots
of cubic (and quartic) polynomials. These formulas involve some heavy-duty square roots.
When people would come across the square root of a negative number in these contexts, much
like in the quadratic case, they would simply ignore the result - there is no such number!

Italian mathematician Gerolamo Cardano decided to take a different approach with the
cubic formula. Cardano was not scared of negative numbers like others were, and when he
encountered the square root of a negative number, rather than simply saying such a number
was impossible and ending his investigation, he decided to treat it like a variable and continue
his investigation. He found that for many cubic polynomials, in using this approach, the
square roots of negative numbers would cancel each other out, and he would be left with a
real number - one which when plugged back into the original cubic polynomial would yield
zero - an actual real number root!

Mathematicians begrudgingly accepted that this technique worked, but still criticized it for
using numbers which were “impossible” or “imaginary” (this is how the name came to be -
and also how the name of the “real numbers” came to be, even though nowadays we know
that the imaginary/complex numbers are just as real as the real numbers!).
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Over time, many applications and interpretations for the imaginary numbers developed.
Many mathematicians proved some very interesting results with them. We will see one result
proven by Leonhard Euler. German mathematician Johann Carl Friedrich Gauss was perhaps
the most influential mathematician in terms of the acceptance of complex numbers. He
proved a great many theorems, including the Fundamental Theorem of Algebra (which states
that any polynomial of degree n has exactly n roots in the complex numbers, counted with
multiplicity). He coined the term “complex number,” and he developed a great foundation
for the study of functions of a complex variable.

In the real world, we cannot measure with complex numbers. Our measurements are at
best real numbers. This would make it seem like complex numbers would not be very useful
in the physical sciences. Throughout history, however, we have seen that using complex
numbers often allows us to obtain real number solutions to problems that were previously
unanswerable with only a theory of real numbers. This is a great power of the complex
numbers, and it is the way we will use complex numbers in this course. When the roots
of the characteristic polynomial are complex conjugates, we can use the theory of complex
numbers to help us uncover the real-valued solutions to such differential equations.

Working with Complex Numbers.

We begin with the question “What is an imaginary number?”. An imaginary number is a
number of the form ±

√
−c, where c is a positive real number. Often, rather than writing

±
√
−c, we write it as ±i

√
c. As such, all imaginary numbers can be written in the form bi

where b is a real number (not necessarily positive). Since
√
−1 = i, it follows that i2 = −1,

i3 = −i, and i4 = 1. Because of this, we then get i5 = i, i6 = −1, etc.

A complex number is a number of the form a + bi where a and b are real numbers. Given
a complex number z = a + bi, the real part of z is a, and the imaginary part of z is b (note
that the imaginary part is the real number b, not the imaginary number bi). A complex
number a + bi is purely real if b = 0 and is purely imaginary if a = 0. 0 is the only number
which is both purely real and purely imaginary.

Two complex numbers z = a + bi and w = c + di are equal if and only if their real parts are
equal and their imaginary parts are equal. i.e., z = w if and only if a = c and b = d.

Adding, subtracting, and multiplying two complex numbers together is pretty simple - we
treat i like a variable which has the additional property that i2 = −1. To add or subtract,
we combine like terms. To multiply, we distribute (FOIL).

Examples:

(1− 2i) + (3 + 4i) = (1 + 3) + (−2 + 4) i

= 4 + 2i
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(1− 2i) (3 + 4i) = 1 · 3 + 1 · 4i + (−2i) · 3 + (−2i) · 4i
= 3 + 4i− 6i− 8i2

= 3 + 4i− 6i− 8 · (−1)

= 3 + 4i− 6i + 8

= 3 + 8 + 4i− 6i

= 11− 2i

Given a complex number z = a+bi, there is an associated complex number z = a + bi = a−bi,
called the conjugate of z. Notice that for any complex number z, we have that z · z is purely
real (since z · z = a2 + b2). This fact will be very useful in division by complex numbers.

If z = z, then it must be the case that z is purely real. This is because z = z implies that
a + bi = a − bi. By the equality of complex numbers, this forces b = −b, which is only
possible if b = 0.

If z and w are complex numbers, and w 6= 0, then we can compute z
w

. We do this by
multiplying both the numerator and the denominator by w, which forces a purely real number
in the denominator.

Example:

1− 2i

3 + 4i
=

1− 2i

3 + 4i
· 3− 4i

3− 4i

=
−5− 10i

25

= − 5

25
− 10

25
i

= −1

5
− 2

5
i
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Another fact to notice is that if a polynomial has purely real coefficients and if the polynomial
has a non-real complex root z, then the conjugate z is also a root of the polynomial. This
follows from the following facts, which one can show quite easily by writing z = a + bi and
w = c + di:

F1. z · w = z · w
F2. z + w = z + w
F3. If a is purely real, then a = a.

Let p(x) = anx
n + ... + a1x + a0 be a polynomial where ai is purely real for each i. Now,

suppose that z is a non-real complex root of p(x). Then:

0 = p(z) = anz
n + ... + a1z + a0

Conjugating both sides, we get

0 = anzn + ... + a1z + a0
F2
= anzn + ... + a1z + a0
F1
= an (z)n + ... + a1 (z) + a0
F3
= an (z)n + ... + a1 (z) + a0

= p(z)

Since 0 = 0, we see that p(z) = 0, so z is also a root of p(x).

Some Maclaurin Series.

We review the following Maclaurin Series, as they will be used in class to show why Euler’s
formula should be true.

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ ...

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ ...

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ ...
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