
Eddie Price Proof that we have all the solutions Summer 2016

Here, we give a detailed proof that if y1 and y2 are solutions to L[y] = y′′ + py′ + qy = 0
and if the Wronskian of y1 and y2 is nonzero, then all solutions of L[y] = 0 are of the form
c1y1 + c2y2.

Proof.

Showing the Solutions form a Vector Space.

First, we know from Linear Algebra that continuous functions form a real vector space. Next,
we show that solutions to L [y] = 0 form a subspace of this vector space. By the existence
and uniqueness theorem, there exist solutions to this differential equation (also, since the
equation is homogeneous, y = 0 is a solution). Hence, the set of solutions is nonempty. Each
solution is also guaranteed to be twice differentiable on some interval I, so the solutions must
then also be continuous on that same interval I (for if they were not continuous at some
point in I, they would also not be differentiable there). Thus, the set of solutions of L[y] = 0
is a nonempty subset of C(I), the vector space of continuous functions on the interval I
(where the coefficient polynomials p and q are continuous on I).

It remains to show that solutions are closed under addition and closed under scalar mul-
tiplication. Both of these are proven by the Principle of Superposition. Let φ1 and φ2 be
solutions. Then, by the Principle of Superposition, c1φ1 + c2φ2 is a solution for any real
numbers c1 and c2. Choosing c1 = c2 = 1 shows that φ1 + φ2 is a solution, so the set of
solutions is closed under addition. Moreover, choosing c2 = 0 and c1 = c for any real number
c, we see that cφ1 is a solution, so the set of solutions is closed under scalar multiplication.
Thus, the set of solutions to L [y] = 0 is a subspace of C (I), and hence, is in and of itself a
vector space.

Showing the Vector Space of Solutions to L[y] = 0 has dimension 2.

The Existence and Uniqueness Theorem states that given two initial conditions, we can find
a unique solution to the initial value problem. The number of initial conditions correlates to
the number of arbitrary constants included in the general solution.

In more detail: If the dimension were only 1, all solutions would be of the form c1y1 for some
function y1. We only need one initial condition to determine the value of c1. In other words,
y(t0) = y0 is enough to determine the value of c1. We could then choose our second initial
condition as follows: choose any real number a except do not allow a

c1
= y′1 (t0). We choose

our second initial condition to be y′ (t0) = a. It is then the case that c1y1 does not satisfy
this second initial condition, and so it does not satisfy the initial value problem. This means
that there are some initial value problems which do not have solutions. This contradicts
the existence part of the existence and uniquess theorem. Hence, our assumption that the
dimension is 1 leads to a contradiction. This means that the dimension is greater than 1.
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If the dimension were n ≥ 3, then all solutions would be of the form c1y1 + ... + cnyn for
some functions y1, ..., yn. Given two initial conditions, we would be able to remove two of
the arbitrary constants. We would then be left with n− 2 arbitrary constants. Since n ≥ 3,
we would have at least 1 arbitrary constant left in our solution. Of course, we could choose
that to be any value. Thus, we would have infinitely many solutions to the initival value
problem, which contradicts the uniqueness part of the existence and uniqueness theorem.
This means that the dimension is less than 3.

Thus, the only possibility is that the dimension is exactly 2.

Showing that a nonzero Wronskian implies that the solutions are linearly independent.

Recall that if a vector space has dimension 2 and a set of 2 vectors is shown to be linearly
independent, then it must be the case that the set of vectors is a basis for the vector space.

If y1 and y2 are solutions to L[y] = 0 and have nonzero Wronskian, it must be the case that
y1 and y2 are linearly independent. To show this, we show that if y1 and y2 are linearly
dependent, then they have Wronskian equal to 0.

If y1 and y2 are linearly dependent, then there exist nonzero scalars c1 and c2 such that
c1y1 + c2y2 = 0. We can solve for y2, giving us then that y2 = − c1

c2
y1.

Then y′2 = − c1
c2
y′1. In particular, the Wronskian of y1 and y2 is

y1y
′
2 − y′1y2 = y1

(
−c1
c2
y′1

)
− y′1

(
−c1
c2
y1

)
= 0

Therefore, if two solutions are linearly dependent, then they must have Wronskian equal to
0, so if the Wronskian is not equal to 0, then they are linearly independent.

This shows that if y1 and y2 are solutions to L[y] = y′′ + py′ + qy = 0 and if the Wronskian
of y1 and y2 is nonzero, then y1 and y2 form a basis of the solution space for the differential
equation. In particular, y1 and y2 form a spanning set of the solution space, so all solutions
of L[y] = 0 are linear combinations of y1 and y2; i.e., they are of the form c1y1 + c2y2. �
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