
A NEW DUAL-PETROV–GALERKIN METHOD FOR THIRD AND
HIGHER ODD-ORDER DIFFERENTIAL EQUATIONS:

APPLICATION TO THE KDV EQUATION∗

JIE SHEN†

SIAM J. NUMER. ANAL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 41, No. 5, pp. 1595–1619

Abstract. A new dual-Petrov–Galerkin method is proposed, analyzed, and implemented for
third and higher odd-order equations using a spectral discretization. The key idea is to use trial
functions satisfying the underlying boundary conditions of the differential equations and test func-
tions satisfying the “dual” boundary conditions. The method leads to linear systems which are sparse
for problems with constant coefficients and well conditioned for problems with variable coefficients.
Our theoretical analysis and numerical results indicate that the proposed method is extremely accu-
rate and efficient and most suitable for the study of complex dynamics of higher odd-order equations.
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1. Introduction. Over the last thirty years, spectral methods have been playing
an increasingly important role in scientific and engineering computations. Most work
on spectral methods is concerned with elliptic and parabolic-type equations; there
has also been active research on spectral methods for hyperbolic problems (see, for
instance, [11, 7, 14] and the references therein). However, there is only a limited body
of literature on spectral methods for dispersive, namely, third and higher odd-order,
equations. In particular, relatively few studies are devoted to third and higher odd-
order equations in finite intervals. This is partly due to the fact that direct collocation
methods for higher odd-order boundary problems lead to very much higher condition
numbers—more precisely, of order N2k, where N is the number of modes and k is the
order of the equation—and often exhibit unstable modes if the collocation points are
not properly chosen (see, for instance, [17, 21]).

In a sequence of papers [22, 23, 25, 26], the author constructed efficient spectral-
Galerkin algorithms for elliptic equations in various situations. In this paper, we
extend the main idea for constructing efficient spectral-Galerkin algorithms—using
compact combinations of orthogonal polynomials, which satisfy essentially all the un-
derlying homogeneous boundary conditions, as basis functions—to third and higher
odd-order equations. Since the main differential operators in these equations are not
symmetric, it is quite natural to employ a Petrov–Galerkin method.

The key idea of the new spectral dual-Petrov–Galerkin method is the innovative
choice of the test and trial functional spaces. More precisely, we choose the trial
functions to satisfy the underlying boundary conditions of the differential equations,
and we choose the test functions to satisfy the “dual” boundary conditions.

Recently, Ma and Sun [19, 20] studied an interesting Legendre–Petrov–Galerkin
method for third-order equations. The main difference between this paper and [19, 20]
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lies in the choice of the test and trial function spaces and their basis functions. The
critical feature of test and trial spaces used here is that they allow us to integrate by
parts freely without introducing any additional boundary terms. With this property
and our choice of using “compact combinations” (minimal interactions) of Legendre
polynomials as basis functions for the test and trial spaces, we obtain linear systems
which are compactly sparse for problems with constant coefficients and well condi-
tioned (i.e., the condition number is independent of the number of unknowns) for
problems with variable coefficients. This is rather remarkable considering the fact
that the problems at hand are nonsymmetric and involve high-order derivatives.

Together with the so-called Chebyshev–Legendre approach [10, 24], i.e., using
the Legendre formulation and Chebyshev–Gauss–Lobatto points, our method has a
quasi-optimal computational complexity and is well conditioned to permit the use
of very large numbers of modes without suffering from large round-off errors, which
are necessary for simulations of very complex dynamics of challenging scientific and
engineering problems.

The new spectral dual-Petrov–Galerkin method not only leads to quasi-optimal
numerical algorithms; it is also equivalent to a natural weighted variational formula-
tion for third and higher odd-order equations. By showing that the basis functions for
the trial (and test) spaces form a sequence of orthogonal polynomials in a weighted
Sobolev space, we are able to establish optimal error estimates in appropriate weighted
Sobolev spaces.

The paper is organized as follows. In sections 2 and 3, we study the third-order
and fifth-order equations, respectively. As an example of application, we consider the
Korteweg–de Vries (KDV) equation on a finite interval in section 4. In section 5, we
discuss miscellaneous issues/extensions of the spectral dual-Petrov–Galerkin methods.
In section 6, we present various numerical results exhibiting the accuracy and efficiency
of our numerical algorithms. We end the paper with a few concluding remarks.

We now introduce some notation. Let ω(x) be a positive weight function on
I = (−1, 1). One usually requires that ω ∈ L1(I). However, in this paper, we shall
be interested mainly in the case ω �∈ L1(I). We shall use the weighted Sobolev spaces
Hm
ω (Ω) (m = 0,±1, . . . ) whose norms are denoted by ‖ ·‖m,ω. In particular, the norm

and inner product of L2
ω(Ω) = L2

ω(Ω) are denoted by ‖ · ‖ω and (·, ·)ω, respectively.
To account for homogeneous boundary conditions, we define

Hm
0,ω(Ω) = {v ∈ Hm

ω (Ω) : v(±1) = v′(±1) = · · · = v(m−1)(±1) = 0}, m = 1, 2, . . . .

The subscript ω will be omitted from the notation in the case where ω ≡ 1.
We denote by c a generic constant that is independent of any parameters and

functions. In most cases, we shall simply use the expression A � B to mean that
there exists a generic constant c such that A ≤ cB.

Let Lk be the kth degree Legendre polynomial. We now recall some basic prop-
erties of Legendre polynomials (cf. [27]) which will be used in this paper.

∫ 1

−1

Lk(x)Lj(x)dx =
2

2k + 1
δkj ;(1.1)

Ln(x) =
1

2n+ 1
(L′

n+1(x) − L′
n−1(x)), n ≥ 1;(1.2)
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L′
n(x) =

n−1∑
k=0

k+n odd

(2k + 1)Lk(x);(1.3a)

L′′
n(x) =

n−2∑
k=0

k+n even

(
k +

1

2

)
(n(n+ 1) − k(k + 1))Lk(x);(1.3b)

Ln(±1) = (±1)n,(1.4a)

L′
n(±1) =

1

2
(±1)n−1n(n+ 1),(1.4b)

L′′
n(±1) = (±1)n(n− 1)n(n+ 1)(n+ 2)/8.(1.4c)

2. Third-order equations.

2.1. Dual-Petrov–Galerkin method. Consider the model third-order equa-
tion

αu− βux − γuxx + uxxx = f, x ∈ I = (−1, 1),

u(±1) = ux(1) = 0,
(2.1)

where α, β, γ are given constants. Without loss of generality, we consider only ho-
mogeneous boundary conditions, for nonhomogeneous boundary conditions u(−1) =
c1, u(1) = c2, and ux(1) = c3 can be handled easily by considering v = u − û,
where û is the unique quadratic polynomial satisfying the nonhomogeneous boundary
conditions.

Denoting by PN the space of polynomials of degree ≤ N , we set

VN = {u ∈ PN : u(±1) = ux(1) = 0}, V ∗
N = {u ∈ PN : u(±1) = ux(−1) = 0}.

(2.2)

For any constants a and b, let ωa,b(x) = (1 − x)a(1 + x)b. We also define

V = {u : u ∈ H1
0 (I), ux ∈ L2

ω−2,0(I)}, V ∗ = {u : u ∈ H1
0 (I), ux ∈ L2

ω0,−2(I)}.
(2.3)

It is clear that VN ⊂ V and V ∗
N ⊂ V ∗.

We consider the following Legendre dual-Petrov–Galerkin approximation for (2.1):
Find u

N
∈ VN such that

α(u
N
, v

N
) − β(∂xuN

, v
N

) + γ(∂xuN
, ∂xvN

) + (∂xuN
, ∂2
xvN

) = (f, v
N

) ∀v
N
∈ V ∗

N ,

(2.4)

where (u, v) =
∫
I
uvdx, ∂xu, and ∂2

xu denote du
dx and d2u

dx2 , respectively.
Notice that for any u

N
∈ VN we have ω−1,1u

N
∈ V ∗

N . Thus the above dual-
Petrov–Galerkin formulation is equivalent to the following weighted spectral-Galerkin
approximation: Find u

N
∈ VN such that

α(u
N
, v

N
)ω−1,1 − β(∂xuN

, v
N

)ω−1,1 + γ(∂xuN
, ω1,−1∂x(v

N
ω−1,1))ω−1,1

+ (∂xuN
, ω1,−1∂2

x(v
N
ω−1,1))ω−1,1 = (f, v

N
)ω−1,1 ∀v

N
∈ VN ,

(2.5)

where (u, v)ω−1,1 =
∫
I
uvω−1,1dx.

We shall see that the dual-Petrov–Galerkin formulation (2.4) is most suitable for
implementation, while the weighted Galerkin formulation (2.5) is more convenient for
error analysis.
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2.2. Basis functions and projection operators. As suggested in [22, 24],
one should choose compact combinations of orthogonal polynomials as basis func-
tions to minimize the bandwidth and the condition number of the coefficient matrix
corresponding to (2.5). Let {pk} be a sequence of orthogonal polynomials. As a gen-
eral rule, for one-dimensional differential equations with m boundary conditions, one
should look for basis functions in the form

φk(x) = pk(x) +

m∑
j=1

a
(k)
j pk+j(x),(2.6)

where a
(k)
j (j = 1, . . . ,m) are chosen so that φk(x) satisfy the m homogeneous bound-

ary conditions.
Using (1.4), one verifies readily that

φk(x) = Lk(x) − 2k + 3

2k + 5
Lk+1(x) − Lk+2(x) +

2k + 3

2k + 5
Lk+3(x) ∈ Vk+3,

ψk(x) = Lk(x) +
2k + 3

2k + 5
Lk+1(x) − Lk+2(x) − 2k + 3

2k + 5
Lk+3(x) ∈ V ∗

k+3.

(2.7)

Therefore, for N ≥ 3, we have

VN = span{φ0, φ1, . . . , φN−3};

V ∗
N = span{ψ0, ψ1, . . . , ψN−3}.

(2.8)

Next, we discuss the properties of {φk} and {ψk} and related projection operators
in L2

ω−2,−1 and L2
ω−1,−2 . Since the procedures for L2

ω−2,−1 and L2
ω−1,−2 are completely

parallel, we shall describe only the results for L2
ω−2,−1 . One can obtain the corre-

sponding results for L2
ω−1,−2 by making a change of variable x→ −x.

Lemma 2.1. Let {φk} be defined as in (2.7). Then∫
I

φkφjω
−2,−1dx = 0, k �= j,(2.9)

and {φk} form a complete orthogonal basis in L2
ω−1,1 .

Furthermore, φk satisfies the following Sturm–Liouville equation:

Aφk := −(1 − x)2(1 + x)∂x
{

(1 − x)−1∂xφk(x)
}

= (k + 1)(k + 3)φk(x).(2.10)

Proof. By construction, pk(x) := φk(x)ω−2,−1 is a polynomial of degree ≤ k.
Thanks to the orthogonality of the Legendre polynomials,∫

I

φkφjω
−2,−1dx =

∫
I

pkφjdx = 0 ∀k < j.

Hence {φk} is a sequence of orthogonal polynomials in L2
ω−2,−1 . One can verify that

φk(x) is proportional to (1−x)2(1+x)J2,1
k (x). Thus {φk} forms a complete orthogonal

basis in L2
ω−2,−1 since {J2,1

k } forms a complete orthogonal basis in L2
ω2,1 .

It is clear that Aφk(x) is a polynomial of degree ≤ k+3 and ∂x{(1−x)−1∂xφk(x)}
is a polynomial of degree ≤ k. Hence∫

I

Aφk(x)φj(x)ω−2,−1dx = −
∫
I

∂x{(1 − x)−1∂xφk(x)}φjdx

= −
∫
I

∂x{(1 − x)−1∂xφj(x)}φkdx = 0 ∀j < k.
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Therefore, Aφk must be proportional to φk; i.e., Aφk = λkφk. By comparing the
coefficients of xk+3, we find that λk = (k + 1)(k + 3).

Now, let π
N

be the L2
ω−2,−1 -orthogonal projector L2

ω−2,−1 → VN defined by

(u− π
N
u, vN )ω−2,−1 = 0 ∀vN ∈ VN .(2.11)

We also define

Bmω−2,−1(I) = {u ∈ L2
ω−2,−1(I) : ∂lxu ∈ L2

ωl−2,l−1(I), 1 ≤ l ≤ m}.(2.12)

Then, we have the following error estimates.
Theorem 2.1.

‖∂lx(u− π
N
u)‖ωl−2,l−1 � N l−m‖∂mx u‖ωm−2,m−1 ∀u ∈ Bmω−2,−1 , 0 ≤ l ≤ m.

Proof. We recall that for a, b > −1, the Jacobi polynomials satisfy the following
relations:

∂lxJ
a,b
k (x) = κa,bk,lJ

a+l,b+l
k−l (x), a, b > −1, k ≥ l,(2.13)

where

κa,bk,l =
Γ(k + l + a+ b+ 1)

2lΓ(k + a+ b+ 1)
;

∫
I

Ja,bk (x)Ja,bj (x)ωa,bdx = γa,bk δkj ,(2.14)

where

γa,bk =
2a+b+1Γ(k + a+ 1)Γ(k + b+ 1)

(2k + a+ b+ 1)Γ(k + 1)Γ(k + a+ b+ 1)
.

We shall extend the definition of the Jacobi polynomials to (a, b) = (−2,−1) such
that the relations (2.13)–(2.14) are still valid. To this end, we define

J−1,0
k (x) = −1

2
(1 − x)J1,0

k−1(x), k ≥ 1,

J−2,−1
k (x) =

1

2
(k − 2)

∫ x

−1

J−1,0
k−1 (t)dt, k ≥ 3.

(2.15)

One derives immediately that {J−1,0
k } are mutually orthogonal in L2

ω−1,0 . Note that

{Lk−1 − Lk} are also mutually orthogonal in L2
ω−1,0 . Hence J−1,0

k is proportional to
{Lk−1 − Lk}. One can also derive from the properties of Legendre polynomials that
J−2,−1
k (±1) = ∂xJ

−2,−1
k (1) = 0. We then derive from (1.2) and (2.15) that J−2,−1

k

must be proportional to φk−3. Hence {J−2,−1
k } are mutually orthogonal in L2

ω−2,−1 .

Moreover, one can verify that J−1,0
k and J−2,−1

k satisfy the relations (2.13)–(2.14).
For any u ∈ L2

ω−2,−1 , we write

u(x) =

∞∑
k=3

ũkJ
−2,−1
k (x) with ũk = (u, J−2,−1

k )ω−2,−1/‖J−2,−1
k ‖2

ω−2,−1 .
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Hence u− π
N
u =

∑∞
k=N+1 ũkJ

−2,−1
k . Let us define

CN,l,m = max
k>N

(κ−2,−1
k,l )2γl−2,l−1

k−l
(κ−2,−1
k,m )2γm−2,m−1

k−m
.(2.16)

Then, by using (2.13)–(2.14), we find

‖∂lx(u− π
N
u)‖2

ωl−2,l−1 =

∞∑
k=N+1

ũ2
k(κ−2,−1

k,l )2‖J l−2,l−1
k−l ‖2

ωl−2,l−1

≤ CN,l,m

∞∑
k=N+1

ũ2
k(κ−2,−1

k,m )2‖Jm−2,m−1
k−m ‖2

ωm−2,m−1

≤ CN,l,m‖∂mx u‖2
ωm−2,m−1 .

(2.17)

The desired results follow from the above inequality and the fact that

CN,l,m � N2(l−m).

2.3. Error estimates. Let us first prove the following generalized Poincaré in-
equalities.

Lemma 2.2. ∫
I

u2

(1 − x)4
dx ≤ 4

9

∫
I

u2
x

(1 − x)2
dx ∀u ∈ VN ,∫

I

u2

(1 − x)3
dx ≤

∫
I

u2
x

1 − x
dx ∀u ∈ VN .

(2.18)

Proof. Let u ∈ VN and h ≤ 2. Then, for any constant q, we have

0 ≤
∫
I

(
u

1 − x
+ qux

)2
1

(1 − x)h
dx

=

∫
I

(
u2

(1 − x)2+h
+ q

(u2)x
(1 − x)1+h

+ q2
u2
x

(1 − x)h

)
dx

= (1 − (1 + h)q)

∫
I

u2

(1 − x)2+h
dx+ q2

∫
I

u2
x

(1 − x)h
dx.

We obtain the first inequality by taking h = 2 and q = 2
3 and the second inequality

with h = 1 and q = 1.

Remark 2.1. We note that with a change of variable x→ −x in the above lemma,
we have corresponding inequalities for u ∈ V ∗

N .

Lemma 2.3.

1

3
‖ux‖2

ω−2,0 ≤ (ux, (uω
−1,1)xx) ≤ 3‖ux‖2

ω−2,0 ∀u ∈ VN .(2.19)

Proof. For any u ∈ VN , we have uω−1,1 ∈ V ∗
N . Thanks to the homogeneous

boundary conditions built into the spaces VN and V ∗
N , all the boundary terms from

the integration by parts of the third-order term would vanish. Therefore, using the
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identity ∂kxω
−1,1(x) = 2 k!

(1−x)k+1 and Lemma 2.2, we find

(ux, (uω
−1,1)xx) = (ux, uxxω

−1,1 + 2uxω
−1,1
x + uω−1,1

xx )

=
1

2

∫
I

(
(u2
x)xω

−1,1 + (u2)xω
−1,1
xx + 4u2

xω
−1,1
x

)
dx

=

∫
I

(
3

2
u2
xω

−1,1
x − 1

2
u2ω−1,1

xxx

)
dx

= 3

∫
I

u2
x

(1 − x)2
dx− 6

∫
I

u2

(1 − x)4
dx ≥ 1

3

∫
I

u2
x

(1 − x)2
dx.

The desired results follow immediately from the above.
Before we proceed with the error estimates, we make the following simple but

important observation.
Lemma 2.4. Let π

N
be defined in (2.11). Then

(∂x(u− π
N
u), ∂2

xvN
) = 0 ∀u ∈ V, v

N
∈ V ∗

N .

Proof. The result is a direct consequence of (2.11), the identity

(∂x(u− π
N
u), ∂2

xvN
) = −(u− π

N
u, ω2,1∂3

xvN
)ω−2,−1 ,

and the fact that ω2,1∂3
xvN

∈ VN .
Let us denote ê

N
= π

N
u− u

N
and e

N
= u− u

N
= (u− π

N
u) + ê

N
.

Theorem 2.2. For any α, β ≥ 0 and − 1
3 < γ < 1

6 , there exists a unique solution
for the system (2.4). Furthermore, for u ∈ Bmω−2,−1 , we have

α‖e
N
‖ω−1,1 +N−1‖(e

N
)x‖ω−1,0 � (1 + |γ|N)N−m‖∂mx u‖ωm−2,m−1 , m ≥ 1.

Proof. We derive from (2.1), (2.5), and Lemma 2.4 that

α(e
N
, v

N
)ω−1,1 − β(∂xeN , vN

)ω−1,1 + γ(∂xeN , ω
1,−1∂x(v

N
ω−1,1))ω−1,1

+ (∂xêN , ω
1,−1∂2

x(v
N
ω−1,1))ω−1,1 = 0 ∀v

N
∈ VN .

(2.20)

Taking v
N

= ê
N

in the above and using Lemma 2.3 and the identities

− (vx, v)ω−1,1 = −1

2

∫
I

(v2)xω
−1,1dx = ‖v‖2

ω−2,0 ∀v ∈ VN ,

(vx, (vω
−1,1)x) = (vx, vxω

−1,1 + 2vω−2,0) = ‖vx‖2
ω−1,1 − 2‖v‖2

ω−3,0 ∀v ∈ VN ,

(2.21)

we obtain

α‖ê
N
‖2
ω−1,1 + β‖ê

N
‖2
ω−2,0 + γ‖(ê

N
)x‖2

ω−1,1 − 2γ‖ê
N
‖2
ω−3,0 +

1

3
‖(ê

N
)x‖2

ω−2,0

≤ −α(u− π
N
u, ê

N
)ω−1,1 + β(∂x(u− π

N
u), ê

N
)ω−1,1

− γ(∂x(u− π
N
u), ∂x(ê

N
ω−1,1)).

The right-hand side can be bounded by using Lemma 2.2, the Cauchy–Schwarz in-
equality, and the fact that ω−1,2 ≤ 2ω−1,1 ≤ 2ω−2,0:

(u− π
N
u, ê

N
)ω−1,1 ≤ ‖ê

N
‖ω−1,1‖u− π

N
u‖ω−1,1 ≤ 2‖ê

N
‖ω−1,1‖u− π

N
u‖ω−2,−1 ,

((u− π
N
u)x, êN )ω−1,1 = (u− π

N
u, ∂xêNω

−1,1 + 2ê
N
ω−2,0)

� ‖u− π
N
u‖ω−2,−1‖∂xêN ‖ω−2,0 ,

((u− π
N
u)x, (êNω

−1,1)x) = ((u− π
N
u)x, (êN )xω

−1,1 + 2ê
N
ω−2,0)

≤ ‖(u− π
N
u)x‖ω−1,0‖(ê

N
)x‖ω−2,0 .
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For 0 ≤ γ < 1
6 , we choose δ sufficiently small such that 1

3 − 2γ − δ > 0. Combining
the above inequalities, using the inequality

ab ≤ εa2 +
1

4ε
b2 ∀ε > 0,(2.22)

and dropping some unnecessary terms, we get

α

2
‖ê

N
‖2
ω−1,1 +

(
1

3
− 2γ − δ

)
‖(ê

N
)x‖2

ω−2,0

� ‖u− π
N
u‖2

ω−2,−1 + γ‖(u− π
N
u)x‖2

ω−1,0

� (1 + γN2)N−2m‖∂mx u‖ωm−2,m−1 .

The last inequality follows from Theorem 2.1.
For − 1

3 < γ < 0, we choose δ sufficiently small such that 1
3 + γ − δ > 0, and we

derive similarly

α

2
‖ê

N
‖2
ω−1,1 +

(
1

3
+ γ − δ

)
‖(ê

N
)x‖2

ω−2,0 � (1 + |γ|N2)N−2m‖∂mx u‖ωm−2,m−1 .

The desired results follow from the triangular inequality, Theorem 2.1, and the
fact that ‖u‖ω−1,0 ≤ 2‖u‖ω−1,0 .

Remark 2.2. Note that the error estimate in the above theorem is optimal for
γ = 0 but suboptimal for γ �= 0.

2.4. Linear system and its coefficient matrices. Hence, by setting

u
N

=

N−3∑
k=0

ũkφk, ū = (ũ0, ũ1, . . . , ũN−3)t,

f̃k = (f, ψk), f̄ = (f̃0, f̃1, . . . , f̃N−3)t,

mij = (φj , ψi), pij = −(φ′j , ψi), qij = (φ′j , ψ
′
i), sij = (φ′j , ψ

′′
i ),

(2.23)

the linear system (2.4) becomes

(αM + βP + γQ+ S)ū = f̄ ,(2.24)

where M, P, Q, and S are (N − 2) × (N − 2) matrices with entries mij , pij , qij , and
sij , respectively.

Thanks to the orthogonality of the Legendre polynomials, we have mij = 0 for
|i− j| > 3. Therefore, M is a seven-diagonal matrix. We note that the homogeneous
“dual” boundary conditions satisfied by φj and ψi allow us to integrate by parts freely
without introducing additional boundary terms; namely, we have

sij = (φ′j , ψ
′′
i ) = (φ′′′j , ψi) = −(φj , ψ

′′′
i ).

Thanks to the compact form of φj and ψi, we have sij = 0 for i �= j. So S is
a diagonal matrix. Similarly, we see that P is a pentadiagonal matrix and Q is a
tridiagonal matrix. It is an easy matter to derive that

sii = 2(2i+ 3)2.(2.25)

Nonzero elements of M, P, Q can be easily determined from the properties of Legendre
polynomials. Hence the linear system (2.24), under the condition of Theorem 2.2, can
be easily formed and inverted.
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3. Fifth-order equations. In this section, we shall consider an example of fifth-
order equations. We shall follow essentially the same procedures as in the previous
section and will omit some repetitive details.

3.1. Dual-Petrov–Galerkin method. Consider the model fifth-order equa-
tion:

αu+ βuxxx − uxxxxx = f, x ∈ I = (−1, 1),

u(±1) = ux(±1) = uxx(1) = 0,
(3.1)

where α and β are given constants. For the sake of simplicity and with the fifth-order
KDV equation in mind, we included only zeroth- and third-order linear terms in the
equation. Other linear terms as well as nonhomogeneous boundary conditions can be
treated as in the previous section.

Similarly to the third-order equation, we define

WN = {u ∈ PN : u(±1) = ux(±1) = uxx(1) = 0},
W ∗
N = {u ∈ PN : u(±1) = ux(±1) = uxx(−1) = 0}.(3.2)

We also define

W = {u : u ∈ H2
0 (I), uxx ∈ L2

ω−2,0},
W ∗ = {u : u ∈ H2

0 (I), uxx ∈ L2
ω0,−2}.

(3.3)

It is clear that WN ⊂W and W ∗
N ⊂W ∗.

We consider the following Legendre dual-Petrov–Galerkin approximation for (3.1):
Find u

N
∈WN such that

α(u
N
, v

N
) − β(∂2

xuN
, ∂xvN

) + (∂2
xuN

, ∂3
xvN

) = (f, v
N

) ∀v
N
∈W ∗

N .(3.4)

Once again, the above dual-Petrov–Galerkin formulation is equivalent to the fol-
lowing weighted spectral-Galerkin approximation: Find u

N
∈WN such that

α(u
N
, v

N
)ω−1,1 − β(∂2

xuN
, ω1,−1∂x(v

N
ω−1,1))ω−1,1

+ (∂2
xuN

, ω1,−1∂3
x(v

N
ω−1,1))ω−1,1 = (f, v

N
)ω−1,1 ∀v

N
∈WN .

(3.5)

Note in particular that W ⊂ V and W ∗ ⊂ V ∗. Hence the results proved in the
previous section are still valid here.

3.2. Basis functions and projection operators. The construction of suitable
basis functions for WN and W ∗

N follows the general principle (2.6); i.e., we look for

Φk = Lk + a
(k)
1 Lk+1 + a

(k)
2 Lk+2 + a

(k)
3 Lk+3 + a

(k)
4 Lk+4 + a

(k)
5 Lk+5(3.6)

such that Φk ∈ W . Using (1.4) and after some simplifications, we find that {a(k)
j }

satisfy the following relations:

a
(k)
2 + a

(k)
4 = −1,

(k + 2)(k + 3)a
(k)
2 + (k + 4)(k + 5)a

(k)
4 = −k(k + 1),

(3.7)

and

a
(k)
1 + a

(k)
3 + a

(k)
5 = 0,

(k + 1)(k + 2)a
(k)
1 + (k + 3)(k + 4)a

(k)
3 + (k + 5)(k + 6)a

(k)
5 = 0,

(k + 1)2(k + 2)2a
(k)
1 + (k + 3)2(k + 4)2a

(k)
3 + (k + 5)2(k + 6)2a

(k)
5 = gk,

(3.8)
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where gk = −k2(k + 1)2 − (k + 2)2(k + 3)2a
(k)
2 − (k + 4)2(k + 5)2a

(k)
4 .

One derives immediately from (3.7) that

a
(k)
2 = −2(2k + 5)

2k + 7
, a

(k)
4 =

2k + 3

2k + 7
.(3.9)

We can then determine a
(k)
1 , a

(k)
3 , a

(k)
5 by solving the 3 × 3 system (3.8).

It is easy to verify that

Ψk = Lk − a
(k)
1 Lk+1 + a

(k)
2 Lk+2 − a

(k)
3 Lk+3 + a

(k)
4 Lk+4 − a

(k)
5 Lk+5 ∈W ∗.(3.10)

Hence, for N ≥ 5, we have

WN = span{Φ0,Φ1, . . . ,ΦN−5};

W ∗
N = span{Ψ0,Ψ1, . . . ,ΨN−5}.

(3.11)

We define

L2
ω−3,−2(I) = L2

ω−3,−2(I) ∩W, L2
ω−2,−3(I) = L2

ω−2,−3(I) ∩W ∗(3.12)

equipped with the norm of ‖ · ‖ω−3,−2 and ‖ · ‖ω−2,−3 , respectively. We shall only
summarize the results for L2

ω−3,−2 below. The corresponding results for L2
ω−2,−3 are

obtained by using the transform x → −x. The proofs are essentially the same as in
the previous section.

Lemma 3.1. Let {Φk} be defined as in (3.6). Then∫
I

ΦkΦjω
−3,−2dx = 0, k �= j,(3.13)

and {Φk} forms a complete orthogonal basis in L2
ω−3,−2 .

Furthermore, Φk satisfies the following Sturm–Liouville equation:

BΦk := −(1 − x)3(1 + x)2∂x
{

(1 − x)−2(1 + x)−1∂xΦk(x)
}

= (k + 1)(k + 5)Φk(x).

(3.14)

Now, let Π
N

be the L2
ω−3,−2 -orthogonal projector L2

ω−3,−2 →WN defined by

(u− Π
N
u, vN )ω−3,−2 = 0 ∀vN ∈WN .(3.15)

We define

Hm
ω−3,−2(I) = {u ∈ L2

ω−3,−2(I) : ∂lxu ∈ L2
ωl−3,l−2(I), 1 ≤ l ≤ m}.(3.16)

Theorem 3.1.

‖∂lx(u− Π
N
u)‖ωl−3,l−2 � N l−m‖∂mx u‖ωm−3,m−2 ∀u ∈ Hm

ω−3,−2 , 0 ≤ l ≤ m.

Proof. Let us define

J−3,−2
k (x) =

1

2
(k − 4)

∫ x

−1

J−2,−1
k−1 (t)dt, k ≥ 5.(3.17)

One can show that J−3,−2
k (±1) = ∂xJ

−3,−2
k (±1) = ∂2

xJ
−3,−2
k (1) = 0. Since J−2,−1

k

is proportional to φk−3, we then derive from (1.2) and (3.17) that J−3,−2
k must be

proportional to Φk−5 so {J−3,−2
k } are mutually orthogonal in L2

ω−3,−2 . Moreover, one

can verify that J−3,−2
k satisfies the relations (2.13)–(2.14). Thus the desired results

follow from the same arguments as those in Theorem 2.1.
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3.3. Error estimates. We first prove the following generalized Poincaré in-
equalities.

Lemma 3.2.∫
I

u2

(1 − x)6
dx ≤ 4

25

∫
I

u2
x

(1 − x)4
dx ≤ 16

225

∫
I

u2
xx

(1 − x)2
dx ∀u ∈WN ,(3.18)

and ∫
I

u2
x

(1 − x)4
dx ≤ 1

7

∫
I

u2
xx

(1 − x)2
dx+ 2

∫
I

u2

(1 − x)6
dx ∀u ∈WN .(3.19)

Proof. The proof is similar to that of Lemma 2.2. Letting u ∈ WN , for any
constant q,

0 ≤
∫
I

(
u

1 − x
+ qux

)2
1

(1 − x)4
dx =

∫
I

(
u2

(1 − x)6
+ q

(u2)x
(1 − x)5

+ q2
u2
x

(1 − x)4

)
dx

= (1 − 5q)

∫
I

u2

(1 − x)6
dx+ q2

∫
I

u2
x

(1 − x)4
dx.

We obtain the first part of (3.18) by taking q = 2
5 . The second part is a direct

consequence of Lemma 2.2 since ux ∈ VN .
For (3.19), we consider the following relation with any constants q and r:

0 ≤
∫
I

(
u

(1 − x)2
+ q

ux
1 − x

+ ruxx

)2
1

(1 − x)2
dx

= (1 − 5q + 20r)

∫
I

u2

(1 − x)6
dx+ (q2 − 2r − 4qr)

∫
I

u2
x

(1 − x)4
dx+ r2

∫
I

u2
xx

(1 − x)2
dx.

We obtain (3.19) by taking q = 3
2 and r = 1

2 .
Lemma 3.3.

5

7

∫
I

u2
xx

(1 − x)2
dx ≤ (∂2

xu, ∂
3
x(uω−1,1)) ≤ 203

15

∫
I

u2
xx

(1 − x)2
dx ∀u ∈WN .(3.20)

Proof. For any u ∈ WN , we set u = Φ(1 − x) with Φ(±1) = Φx(±1) = 0. Then,
by integrating by parts and using the fact that all boundary terms are zero, we find

(∂2
xu,∂

3
x(uω−1,1)) = −(∂3

xu, ∂
2
x(uω−1,1)) = −(Φxxx(1 − x) − 3Φxx,Φxx(1 + x) + 2Φx)

=

∫
I

{
−1

2
(Φ2

xx)x(1 − x2) + 3Φ2
xx(1 + x) + 3(Φ2

x)x + 2Φxx(Φx(1 − x))x

}
dx

= 5

∫
I

Φ2
xxdx = 5

∫
I

{
∂2
x

(
u

1 − x

)}2

dx.

Expanding ∂2
x( u

1−x ) and integrating by parts, we get

∫
I

{
∂2
x

(
u

1 − x

)}2

dx =

∫
I

u2
xx

(1 − x)2
dx− 6

∫
I

u2
x

(1 − x)4
dx+ 24

∫
I

u2

(1 − x)6
dx.

(3.21)

We conclude by applying (3.18) and (3.19) to the above.
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Let Π
N

be defined in (3.15). By definition, we have

(∂2
x(u− Π

N
u), ∂3

xvN
) = (u− Π

N
u, ω3,2∂5

xvN
)ω−3,−2 = 0 ∀u ∈W, v

N
∈W ∗

N .(3.22)

Letting u and u
N

be, respectively, the solution of (3.1) and (3.4), we denote
ê
N

= Π
N
u− u

N
and e

N
= u− u

N
= (u− Π

N
u) + ê

N
.

Theorem 3.2. For any α, β ≥ 0, there exists a unique solution for the system
(3.4). Furthermore, for u ∈ Hm

ω−2,−1 , we have

α‖e
N
‖ω−1,1 + βN−1‖(e

N
)x‖ω−2,0 +N−2‖(e

N
)xx‖ω−1,0

� (1 + βN)N−m‖∂mx u‖ωm−3,m−2 , m ≥ 2.

Proof. We derive from (3.1), (3.5), and (3.22) that

α(e
N
, v

N
)ω−1,1 − β(∂2

xeN , ∂x(v
N
ω−1,1)) + (∂2

xêN , ∂
3
x(v

N
ω−1,1)) = 0 ∀v

N
∈WN .

Taking v
N

= ê
N

in the above and using Lemmas 2.3 and 3.3, we obtain

α‖ê
N
‖2
ω−1,1 +

β

9
‖(ê

N
)x‖2

ω−2,0 +
5

7
‖(ê

N
)xx‖2

ω−2,0

≤ −α(u− Π
N
u, ê

N
)ω−1,1 + β(∂2

x(u− Π
N
u), ∂x(ê

N
ω−1,1))

= −α(u− Π
N
u, ê

N
)ω−1,1

− β(∂x(u− Π
N
u), (∂2

xêNω
−1,1 + 4∂xêNω

−2,0 + 4ê
N
ω−3,0)).

Using the Cauchy–Schwarz inequality, we bound the right-hand side as follows:

(u− Π
N
u, ê

N
)ω−1,1 ≤ ‖ê

N
‖ω−1,1‖u− Π

N
u‖ω−1,1 � ‖ê

N
‖ω−1,1‖u− Π

N
u‖ω−3,−2 ;

and thanks to Lemma 2.2,

((u− Π
N
u)x,(∂

2
xêNω

−1,1 + 4∂xêNω
−2,0 + 4ê

N
ω−3,0))

� ‖(u− Π
N
u)x‖ω−2,−1(‖∂2

xêN ‖ω0,3 + ‖∂xêN ‖ω−2,1 + ‖ê
N
‖ω−4,1)

� ‖(u− Π
N
u)x‖ω−2,−1(‖∂2

xêN ‖ω−2,0 + ‖∂xêN ‖ω−2,0).

Using (2.22) and combining the above inequalities, we arrive at

α

2
‖ê

N
‖2
ω−1,1 +

β

18
‖∂xêN ‖2

ω−2,0 +
5

14
‖∂2
xêN ‖2

ω−2,0

� ‖u− Π
N
u‖2

ω−3,−2 + β‖(u− Π
N
u)x‖2

ω−2,−1

� (1 + βN2)N−2m‖∂mx u‖ωm−3,m−2 .

The last inequality follows from Theorem 3.1.
We can then conclude from the above inequality and the triangular

inequality.
Remark 3.1. Similarly as in the previous section, the error estimate in the above

theorem is optimal for β = 0 but suboptimal for β �= 0.

3.4. Linear system and its coefficient matrices. Similarly to the third-order
equation, we set

u
N

=

N−5∑
k=0

ũkΦk, ū = (ũ0, ũ1, . . . , ũN−5)t,

f̃k = (f,Ψk), ū = (f̃0, f̃1, . . . , f̃N−5)t,

mij = (Φj ,Ψi), M = (mij)i,j=0,1,... ,N−5,

pij = −(Φ′′
j ,Ψ

′
i), P = (pij)i,j=0,1,... ,N−5,

sij = (Φ′′
j ,Ψ

′′′
i ), S = (sij)i,j=0,1,... ,N−5

(3.23)
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so that the linear system (3.4) becomes

(αM + βP + S)ū = f̄ .(3.24)

Obviously, M is an eleven nonzero diagonal matrix, and with integration by parts, we
find that P is a pentadiagonal matrix and S is a diagonal matrix. Repeatedly using
(1.2), we can derive that

sii = 2(2i+ 3)(2i+ 5)(2i+ 7)(2i+ 9)a
(i)
5 .(3.25)

Nonzero elements of M and P can be determined accordingly using (1.2) and (1.3).
Hence the linear system (3.24), under the condition of Theorem 3.1, can also be easily
inverted.

4. Application to the KDV equation. There is a vast body of literature on
various aspects of the KDV equation. Although most of these studies are concerned
with initial value problems, the initial-boundary value problems also received consid-
erable attention. The most natural initial-boundary value KDV equation is set in a
quarter-plane (see, for instance, [28, 16, 3, 2, 12, 13, 5] and the references therein).
The KDV equation on a finite spatial interval has also been considered by several
authors [20, 9, 4]. Here, as an example of application to nonlinear equations, we
consider the KDV equation on a finite interval:

αvt + βvx + γvvx + vxxx = 0, x ∈ (−1, 1), t ∈ (0, T ],

v(−1, t) = g(t), v(1, t) = vx(1, t) = 0, t ∈ [0, T ],

v(x, 0) = v0(x), x ∈ (−1, 1).

(4.1)

The positive constants α, β, and γ are introduced to accommodate the scaling of
the spatial interval. The existence and uniqueness of the solution for (4.1) can be
established as in [9, 4]. Beside its own interests, (4.1) can also be viewed as a legitimate
approximate model for the KDV equation on a quarter-plane before the wave reaches
the right boundary.

Let us first reformulate (4.1) as an equivalent problem with homogeneous bound-

ary conditions. To this end, let v̂(x, t) = (1−x)2
4 g(t), and write v(x, t) = u(x, t) +

v̂(x, t). Then u satisfies the following equation with homogeneous boundary condi-
tions:

αut + a(x, t)u+ b(x, t)ux + γuux + uxxx = f, x ∈ (−1, 1), t ∈ (0, T ],

u(±1, t) = ux(1, t) = 0; t ∈ [0, T ],

u(x, 0) = u0(x) = v0(x) − v̂(x, 0), x ∈ (−1, 1),

(4.2)

where a(x, t) = γ
2 (x− 1)g(t), b(x, t) = β + γv̂(x, t), and f(x, t) = −αv̂t(x, t).

For a given ∆t, we set tk = k∆t and let u0
N

= π
N
u0 and u1

N
∈ VN be an appro-

priate approximation of u(·, t1), for instance; we can compute u1
N

using one step of a
semi-implicit first-order scheme so that for u ∈ C3(0, T ;L2

ω2,2(I)) ∩ C(0, T ;Bmω−2,−1),
we have

‖u1
N
− π

N
u(·, t1)‖ω−1,1 � ∆t2 +N−m.(4.3)

Let M be such that |u(x, t)| ≤ M for x ∈ [−1, 1] and t ∈ [0, T ]. We define a
cut-off function

H(x) =



x, |x| ≤ 2M,

2M, x > 2M,

−2M, x < −2M.

(4.4)
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It is easy to verify that

|H(x) −H(y)| ≤ |x− y| ∀x, y.(4.5)

We consider first a modified Crank–Nicolson leap-frog dual-Petrov–Galerkin approx-
imation:

α

2∆t
(uk+1

N
− uk−1

N
, v

N
)ω−1,1 +

1

2
(∂x(uk+1

N
+ uk−1

N
), ∂2

x(v
N
ω−1,1))

= (f(·, tk), v
N

)ω−1,1 +
γ

2
(H(uk

N
)uk

N
, ∂x(v

N
ω−1,1))

− (a uk
N
, v

N
)ω−1,1 + (uk

N
, ∂x(bv

N
ω−1,1)) ∀v

N
∈ VN .

(4.6)

We denote êk
N

= π
N
u(·, tk)−uk

N
, ẽk

N
= u(·, tk)−π

N
u(·, tk), and ek

N
= u(·, tk)−uk

N
.

Theorem 4.1. We assume u ∈ C3(0, T ;L2
ω2,2(I))∩C(0, T ;Bmω−2,−1) with m > 1.

Then the scheme (4.6) is unconditionally stable, and the following error estimates
hold:

‖en+1
N

‖ω−1,1 � ∆t2 +N−m, 0 ≤ n ≤ [T/dt] − 1,(
∆t

n∑
k=1

‖∂x(ek+1
N

+ ek−1
N

)‖2
ω−1,0

) 1
2

� ∆t2 +N1−m, 1 ≤ n ≤ [T/dt] − 1.

Proof. Let Ek (k = 1, 2, . . . ) be the truncation error defined by

α

2∆t
(u(·, tk+1) − u(·, tk−1)) + a(·, tk)u(·, tk) + b(·, tk)ux(·, tk) + γu(·, tk)∂xu(·, tk)

+
1

2
∂3
x(u(·, tk+1) + u(·, tk−1)) − f(·, tk) = Ek(·).

(4.7)

Comparing (4.6) with (4.7) and using Lemma 2.4, we have

α

2∆t
(êk+1

N
− êk−1

N
, v

N
)ω−1,1 +

1

2
(∂x(êk+1

N
+ êk−1

N
), ∂2

x(v
N
ω−1,1))

=
γ

2
(u(·, tk)2 −H(uk

N
)uk

N
, ∂x(v

N
ω−1,1))

− (a (êk
N

+ ẽk
N

), v
N

)ω−1,1 +
1

2
((êk

N
+ ẽk

N
), ∂x(bv

N
ω−1,1))

+ (Ek, v
N

)ω−1,1 − α

2∆t
(ẽk+1

N
− ẽk−1

N
, v

N
)ω−1,1 ∀v

N
∈ VN .

(4.8)

Let A = maxx∈[−1,1], t∈[0,T ] |a(x, t)| and B = maxx∈[−1,1], t∈[0,T ](|b(x, t)| + |∂xb(x, t)|).
We now take v

N
= 2∆t(êk+1

N
+ êk−1

N
) in (4.8) and bound the right-hand side terms

using repeatedly the Cauchy–Schwarz inequality and Lemma 2.2 as follows:

−2∆t(a (êk
N

+ ẽk
N

), êk+1
N

+ êk−1
N

)ω−1,1 ≤∆tA(‖ẽk
N
‖2
ω−1,1 + ‖êk

N
‖2
ω−1,1 + ‖êk+1

N
+ êk−1

N
‖2
ω−1,1),

2∆t(Ek, êk+1
N

+ êk−1
N

)ω−1,1 ≤ 2∆t‖Ek‖ω2,2‖êk+1
N

+ êk−1
N

‖ω−4,0

≤ c∆t‖Ek‖2
ω2,2 +

∆t

36
‖∂x(êk+1

N
+ êk−1

N
)‖2
ω−2,0 .

Let us denote ẼkN = 1
2∆t (ẽ

k+1
N − ẽk−1

N ). Similarly as above, we have

− α

2∆t
(ẽk+1
N − ẽk−1

N , êk+1
N

+ êk−1
N

)ω−1,1 ≤ c∆t‖ẼkN‖2
ω2,2 +

∆t

36
‖∂x(êk+1

N
+ êk−1

N
)‖2
ω−2,0 .
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By the assumption |u(x, t)| ≤M for all x and t, we have

|u(·, tk)2 −H(uk
N

)uk
N
| = |u(·, tk)(H(u(·, tk)) −H(uk

N
)) +H(uk

N
)(u(·, tk) − uk

N
)|

≤ 2M |u(·, tk) − uk
N
| ≤ 2M(|ẽk

N
| + |êk

N
|).

Hence,

γ∆t(u(·, tk)2 −H(uk
N

)uk
N
, ∂x(êk+1

N
+ êk−1

N
)ω−1,1)

≤ γ∆t‖u(·, tk)2 −H(uk
N

)uk
N
‖ω0,2‖∂x(êk+1

N
+ êk−1

N
)‖ω−2,0

≤ c∆t(‖ẽk
N
‖2
ω−2,−1 + ‖êk

N
‖2
ω−1,1) +

∆t

36
‖∂x(êk+1

N
+ êk−1

N
)‖2
ω−2,0 ,

To handle the remaining terms, we recall the following Hardy inequalities:∫ b

a

[
1

t− a

∫ t

a

ψ(s)ds

]2
(t− a)αdt ≤ 4

1 − α

∫ b

a

ψ2(t)(t− a)αdt,

∫ b

a

[
1

b− t

∫ b

t

ψ(s)ds

]2

(b− t)αdt ≤ 4

1 − α

∫ b

a

ψ2(t)(b− t)αdt,(4.9)

which hold for all measurable functions φ on (a, b) with a < b and α < −1.

Let (a, b) = (−1, 0), α = 0, and φ(t) =
∫ t
−1
ψ(s)ds. We find∫ 0

−1

1

(1 − t)3(1 + t)
φ2(t)dt ≤

∫ 0

−1

1

(t+ 1)2
φ2(t)dt ≤ 4

∫ 0

−1

(φt)
2dt.

Let (a, b) = (0, 1), α = −1, and φ(t) =
∫ 1

t
ψ(s)ds. We find∫ 1

0

1

(1 − t)3(1 + t)
φ2(t)dt ≤

∫ 1

0

1

(1 − t)3
φ2(t)dt ≤ 2

∫ 1

0

(φt)
2 1

1 − t
dt.

Combining the above two inequalities, we obtain∫
I

φ2ω−3,−1dx ≤ 4

∫
I

(φx)2ω−1,0dx,(4.10)

which holds for all φ such that φ(±1) = 0 and
∫
I
(φx)2ω−1,0dx <∞.

Thanks to Lemma 2.2 and (4.10),

γ∆t(u(·, tk)2 −H(uk
N

)uk
N
, (êk+1

N
+ êk−1

N
) ∂xω

−1,1)

≤ 2γ∆t‖u(·, tk)2 −H(uk
N

)uk
N
‖ω−1,1‖(êk+1

N
+ êk−1

N
)‖ω−3,−1

≤ c∆t(‖ẽk
N
‖2
ω−2,−1 + ‖êk

N
‖2
ω−1,1) +

∆t

36
‖∂x(êk+1

N
+ êk−1

N
)‖2
ω−2,0 .

Similarly, we have

∆t((êk
N

+ ẽk
N

), ∂x(b(êk+1
N

+ êk−1
N

)ω−1,1)) = ∆t((êk
N

+ ẽk
N

), b ∂x(êk+1
N

+ êk−1
N

)ω−1,1)

+ ∆t((êk
N

+ ẽk
N

), b (êk+1
N

+ êk−1
N

) ∂xω
−1,1) + ∆t(êk

N
+ ẽk

N
, ∂xb (êk+1

N
+ êk−1

N
)ω−1,1)

≤ cB∆t(‖ẽk
N
‖2
ω−2,−1 + ‖êk

N
‖2
ω−1,1) +

∆t

36
‖∂x(êk+1

N
+ êk−1

N
)‖2
ω−2,0 .

Combining the above inequalities into (4.8) and using Lemma 2.3, we obtain

α(‖êk+1
N

‖2
ω−1,1 − ‖êk−1

N
‖2
ω−1,1) +

∆t

36
‖∂x(êk+1

N
+ êk−1

N
)‖2
ω−2,0

≤ c∆t(‖Ek‖2
ω2,2 + ‖ẼkN‖2

ω2,2 + ‖êk+1
N

‖2
ω−1,1 + ‖êk

N
‖2
ω−1,1 + ‖êk−1

N
‖2
ω−1,1 + ‖ẽk

N
‖2
ω−2,−1).

We can then apply the standard discrete Gronwall lemma to the above inequality to
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get

‖ên+1
N

‖2
ω−1,1 +

∆t

36

n∑
k=1

‖∂x(êk+1
N

+ êk−1
N

)‖2
ω−2,0 � ‖ê0

N
‖2
ω−1,1 + ‖ê1

N
‖2
ω−1,1

+ ∆t

n∑
k=1

(‖ẽk
N
‖2
ω−2,−1 + ‖Ek‖2

ω2,2 + ‖ẼkN‖2
ω2,2), 1 ≤ n ≤ [T/∆t] − 1.

Using the triangular inequality, we derive that

‖en+1
N

‖2
ω−1,1 � ‖ê0

N
‖2
ω−1,1 + ‖ê1

N
‖2
ω−1,1 + ‖ẽn+1

N
‖2
ω−1,1

+ ∆t

n∑
k=1

(‖ẽk
N
‖2
ω−2,−1 + ‖Ek‖2

ω2,2 + ‖ẼkN‖2
ω2,2)

and

∆t

36

n∑
k=1

‖∂x(ek+1
N

+ ek−1
N

)‖2
ω−1,0 � ‖ê0

N
‖2
ω−1,1 + ‖ê1

N
‖2
ω−1,1

+ ∆t

n∑
k=1

(‖ẽk
N
‖2
ω−2,−1 + ‖Ek‖2

ω2,2 + ‖ẼkN‖2
ω2,2 + ‖∂x(ẽk+1

N
+ ẽk−1

N
)‖2
ω−1,0).

We can then conclude from the assumptions and Theorem 2.1.

Next, we consider the standard Crank–Nicolson leap-frog weighted Galerkin ap-
proximation:

α

2∆t
(uk+1

N
− uk−1

N
, v

N
)ω−1,1 +

1

2
(∂x(uk+1

N
+ uk−1

N
), ∂2

x(v
N
ω−1,1))

= −(a uk
N
, v

N
)ω−1,1 + (uk

N
, ∂x(bv

N
ω−1,1))

+ (f(·, tk), v
N

)ω−1,1 +
γ

2
((uk

N
)2, ∂xvN

ω−1,1 + v
N
∂xω

−1,1) ∀v
N
∈ VN .

(4.11)

Corollary 4.1. Under the conditions of Theorem 4.1, there exists c0 such that
for ∆tN ≤ c0, the two schemes (4.6) and (4.11) are equivalent.

Proof. We need only to show that the scheme (4.6) reduces to (4.11) under the
condition that ∆tN ≤ c0. Indeed, using the estimate in Theorem 4.1, the inverse
inequality ‖u‖L∞ � N2‖u‖ω0,1 for all u ∈ PN (see Lemma 4.1 below), and the as-
sumptions on u, we find that there exists c0 such that for ∆tN ≤ c0 we have

‖uk
N
‖L∞ ≤ ‖u(·, tk)‖L∞ + ‖ẽk

N
‖L∞ + ‖êk

N
‖L∞

≤M + ‖ẽk
N
‖L∞ +N2‖êk

N
‖ω0,1

≤M + ‖ẽk
N
‖L∞ + cN2(∆t2 +N−m) ≤ 2M.

Hence (4.6) and (4.11) are equivalent.

The following lemma is a special case of Theorem 2.1 in [15]. For the reader’s
convenience, we provide an elementary proof below.

Lemma 4.1.

‖u‖L∞ � N2‖u‖ω0,1 ∀u ∈ PN .
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Proof . Let J0,1
k be the kth degree Jacobi polynomial of index (0, 1). We recall

that (cf. [27])

‖J0,1
k ‖L∞ = k + 1, ‖J0,1

k ‖ω0,1 =

√
2

k + 1
.(4.12)

For any u ∈ PN , we write u(x) =
∑N
k=0 ukJ

0,1
k (x). Then

‖u‖2
L∞ ≤ (N + 1)2

(
N∑
k=0

|uk|
)2

≤ (N + 1)3
N∑
k=0

|uk|2

≤ 1

2
(N + 1)4

N∑
k=0

|uk|2 2

k + 1
=

1

2
(N + 1)4‖u‖2

ω0,1 .

Remark 4.1. In practice, the nonlinear term is usually computed using the pseu-
dospectral approach (cf. [11, 7]), which is discussed in the next section. It is not
difficult to show that the results in Theorem 4.1 apply to the pseudospectral scheme
(see [20] for a similar result).

Remark 4.2. We note that the result obtained here for the third-order KDV equa-
tion (4.2) can be extended to the fifth-order KDV equation, which has also attracted
considerable attention (see, for instance, [18]).

5. Miscellaneous issues. We discuss in this section several extensions and
practical issues related to the dual-Petrov–Galerkin method. We note, in particular,
that the dual-Petrov–Galerkin method can be used with any spatial discretization
method based on a variational formulation such as the finite-element method.

5.1. Other higher odd-order equations. We have discussed in detail the
Legendre dual-Petrov–Galerkin method for third- and fifth-order equations. It is
evident that the method can be directly applied to other higher odd-order equations
of the form

2m∑
j=0

aju
(j)(x) + u(2m+1)(x) = 0, m ≥ 3,(5.1)

with the boundary conditions

u(±1) = u′(±1) = · · · = u(m−1)(±1) = 0, u(m)(1) = 0.(5.2)

Other boundary conditions and/or variable coefficients can be treated following the
discussion below.

5.2. Other boundary conditions. It must be noted that our dual-Petrov–
Galerkin approach is quite flexible and can be used for other unconventional boundary
conditions. For instance, Colin and Ghidaglia [9] studied the KDV equation

ut +
2

L
(ux + uux) +

8

L3
uxxx = 0, x ∈ (−1, 1), t > 0,(5.3)

with the boundary conditions

u(−1) = g(t), ux(1) = uxx(1) = 0.(5.4)
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Note that we have scaled the interval from (0, L), which was used in [9], to (−1, 1).

Let us denote

XN = {u ∈ PN : u(−1) = 0, ux(1) = uxx(1) = 0}.(5.5)

Then the “dual” space is

X∗
N = {v ∈ PN : vx(−1) = v(−1) = 0, vxx(1) = 0}.(5.6)

There exist unique coefficients {a(k)
j , ã

(k)
j } such that

φk = Lk +

3∑
j=1

a
(k)
j Lk+j ∈ XN , k = 0, 1, . . . , N − 3,

ψk = Lk +

3∑
j=1

ã
(k)
j Lk+j ∈ X∗

N , k = 0, 1, . . . , N − 3.

(5.7)

Then, the Legendre dual-Petrov–Galerkin method for (5.3)–(5.4) is to find u
N

=

v
N

+ (1−x)3
8 g(t) with v

N
∈ XN such that

(∂tuN
, ψj) +

2

L
(∂xuN

+ u
N
∂xuN

, ψj) + (∂xuN
, ∂2
xψj) = 0, j = 0, 1, . . . , N − 3.(5.8)

One can prove results which are similar to Theorem 4.1 for this problem.

5.3. Problems with variable coefficients: Pseudospectral method in
modal basis. Let us consider, as an example, the following third-order equation:

a(x)u− b(x)ux + uxxx = f, x ∈ I = (−1, 1),

u(±1) = ux(1) = 0.
(5.9)

The pseudospectral dual-Petrov–Galerkin method for (5.9) is to find u
N

∈ VN such
that

(a(x)u
N
, v

N
)N − (b(x)u′

N
, v

N
)N + (u′

N
, v′′

N
)N = (f, v

N
)N ∀v

N
∈ V ∗

N ,(5.10)

where

(u, v)N =

N∑
k=0

u(xk)v(xk)ωk(5.11)

is the discrete inner product of u and v associated with the Legendre–Gauss–Lobatto
quadrature (cf. [7]). We recall that

(u, v)N = (u, v) ∀uv ∈ P2N−1.(5.12)

Let us denote ψ̃i = 1
(φ′

i
,ψ′′

i
)ψi = 1

2(2i+3)2ψi. Then we have

(φ′j , ψ̃
′′
i )N = (φ′j , ψ̃

′′
i ) = δij , 0 ≤ i, j ≤ N − 3.
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Hence, by setting

u
N

=

N−3∑
k=0

ũkφk, ū = (ũ0, ũ1, . . . , ũN−3)t,

f̃k = (f, ψ̃k)N , f̄ = (f̃0, f̃1, . . . , f̃N−3)t,

mij = (a(x)φj , ψ̃i)N , pij = −(b(x)φ′j , ψ̃i)N ,

(5.13)

the linear system (5.10) becomes

(M + P + I)ū = f̄ .(5.14)

It is clear that the matrices M and P are full and their formation involves N3

operations as well as the inversion of (5.14). Hence a direct approach is advisable only
if one uses a small or moderate number of modes. Otherwise, an iterative method
can be efficiently implemented as follows:

• Note that a conjugate gradient type iterative method does not require the
explicit formation of the matrix; only the action of the matrix upon a given
vector is needed at each iteration. Although the formation of M and P
involves N3 operations, their action on a given vector ū, i.e., Mū and Pū,
can be computed in O(N2) operations.

• The number of operations can be further reduced to a quasi-optimalO(N logN)
if we use the following Chebyshev–Legendre dual-Petrov–Galerkin method (cf.
[10, 24]): Find u

N
∈ VN such that

(IcN (a(x)u
N

), v
N

)N − (IcN (b(x)u′
N

), v
N

)N + (u′
N
, v′′

N
)N = (f, v

N
)N ∀v

N
∈ V ∗

N ,

where IcN is the interpolation operator based on the Chebyshev–Gauss–Lobatto
points, while (·, ·)N is still the discrete inner product of u and v associated
with the Legendre–Gauss–Lobatto quadrature. Hence the only difference be-
tween (5.3) and (5.10) is that a(x)u

N
and b(x)u′

N
in (5.10) are replaced by

IcN (a(x)u
N

) and IcN (b(x)u′
N

). Thanks to the fast Fourier transform (FFT)
and the fast Chebyshev–Legendre transform [1, 24], the Legendre coefficients
of IcN (a(x)u

N
) and IcN (b(x)u′

N
) can be computed in O(N logN) operations

given the Legendre coefficients of u
N

(see [24] for details).
• Under reasonable assumptions on a(x) and b(x), the matrix M+P +I is well

conditioned; i.e, its condition number is independent of N . We now provide
a heuristic argument for this statement.
Since φkω

−1,1 ∈ V ∗, there exists unique {hkj} such that

φkω
−1,1 =

N−3∑
j=0

hkjψj , k = 0, 1, . . . , N − 3.

Hence we have

〈Hū, ū〉 =


N−3∑
j=0

ũjφ
′
j ,

N−3∑
k,j=0

ũjhkjψ
′′
j



N

=


N−3∑
j=0

ũjφ
′
j ,

N−3∑
j=0

ũj(φjω
−1,1)′′


 = (∂xuN

, ∂2
x(u

N
ω−1,1))
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and

〈HMū, ū〉 =


a(x)

N−3∑
j=0

ũjφj ,

N−3∑
k,j=0

ũjhkjψj



N

=


a(x)

N−3∑
j=0

ũjφj ,

N−3∑
j=0

ũjφjω
−1,1



N

= (a(x)u
N
, u

N
ω−1,1)N ,

where 〈v̄, v̄〉 :=
∑N−3
j=0 v2

j is the inner product in l2.
Let us assume that 0 ≤ a(x) ≤ a1. Then, thanks to (2.2) and (2.3), we derive
from the above that there exists a constant a2 independent of N such that

〈Hū, ū〉 ≤ 〈H(M + I)ū, ū〉 ≤ a2〈Hū, ū〉.
Hence the condition number of M + I, in the norm ‖v̄‖H := 〈Hv̄, v̄〉 1

2 , is
independent of N . Under assumptions similar to those in Theorem 2.2, one
can also establish that the condition number of M + P + I is independent
of N . This statement is confirmed by our numerical results (see the next
section).

Therefore, a conjugate gradient type iterative method like BICGSTAB or CGS for
(5.14) will converge in a small and fixed number (i.e., independent of N) of steps. In
short, the Chebyshev–Legendre dual-Petrov–Galerkin method for (5.9) can be solved
in a quasi-optimal O(N logN) operation.

Since the unknowns are coefficients of the spectral expansion, instead of the nodal
values of the approximate solution at the collocation points, we refer to the above as
the pseudospectral dual-Petrov–Galerkin method in modal basis. The modal basis
presents at least three distinct advantages compared with the nodal basis:

• As demonstrated in sections 2 and 3 (see also [22, 23, 24]), for problems
with constant coefficients, using an appropriate modal basis leads to sparse
matrices.

• With the nodal basis, the choice of quadrature rules/collocation points plays
an important role and should be made in accordance with the underlying
differential equations and boundary conditions (see, for instance, [17] and the
references therein). For example, the Gauss–Lobatto points are not suitable
for third-order equations (cf. [21]). With the modal basis, since the use of
the quadrature rule is merely to approximate the integrals in the variational
formulation, the choice of quadrature rules/collocation points is not impor-
tant. Therefore, for the third-order equation (5.9), we can still use the usual
Gauss–Lobatto quadrature.

• Most importantly, using an appropriate modal basis leads to well-conditioned
matrices as we explained above.

6. Numerical results. We present in this section some numerical results illus-
trating the nice properties of our dual-Petrov–Galerkin method.

6.1. Third- and fifth-order linear equations. Let us first look at the con-
ditioning of our dual-Petrov–Galerkin method. We list in Table 6.1 the condition
numbers of M + P + I in (5.14) with various a(x) and b(x). Notice that in all cases,
the condition numbers are small and, more importantly, independent of N .

We list in Table 6.2 the condition numbers of αM + βP + S in (3.24) scaled by
the diagonal matrix S with various α and β. Once again, the condition numbers are
small and independent of N .
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Table 6.1
Condition numbers of (5.14).

a(x) = 1 a(x) = 10 a(x) = 50 a(x) = sinx a(x) = 10 exp(x)
N b(x) = 0 b(x) = 0 b(x) = 0 b(x) = 2x− 1 b(x) = cosx
16 1.119 2.218 7.219 1.188 2.393
64 1.119 2.218 7.219 1.188 2.393
128 1.119 2.218 7.219 1.188 2.393

Table 6.2
Condition numbers of (3.24) scaled by S.

α = 1 α = 100 α = 100 α = 1 α = 0
N β = 0 β = 0 β = 100 β = −100 β = 1
16 1.006 2.421 2.005 3.342 1.009
64 1.006 2.421 2.005 3.342 1.009
128 1.006 2.421 2.005 3.342 1.009
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Fig. 6.1. L2-errors for the third- and fifth-order equations.

Next, we look at the accuracy of our dual-Petrov–Galerkin method. We take
a(x) = sinx and b(x) = 2x−1 in (2.4) and let the exact solution of (2.4) be cos(16πx).
We plot in Figure 6.1 (left) the log10 of the L2-error against N2. For the fifth-order
equation (3.1), we take α = β = 1 and the exact solution to be sin3(3πx). The log10 of
the L2-error against N2 is presented in Figure 6.1 (right). The straight lines in these
plots indicate that the L2-errors converge like exp(−cN2), a typical supergeometric
convergence for analytic functions by spectral methods (cf. [6]).

6.2. KDV equation. Now, we present some numerical tests for the KDV equa-
tion. We first consider the initial value KDV problem

ut + uux + uxxx = 0, u(x, 0) = u0(x),(6.1)

with the exact soliton solution

u(x, t) = 12κ2sech2(κ(x− 4κ2t− x0)).

Since u(x, t) converges to 0 exponentially as |x| → ∞, we can approximate the initial
value problem (6.1) by an initial-boundary value problem for x ∈ (−M,M) as long
as the soliton does not reach the boundaries.

We take κ = 0.3, x0 = −20, M = 50, and ∆t = 0.001 so that for N � 160, the
time discretization error is negligible compared with the spatial discretization error.
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Fig. 6.2. Exact solution for the KDV equation: Left, time evolution; right, maximum error vs. N.
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Fig. 6.3. Interaction of five solitary waves.

On the left of Figure 6.2, we plot the time evolution of the approximate solution,
and on the right, we plot the maximum errors in the semi-log scale at t = 1 and
t = 50. Note that the straight lines indicate that the errors converge like exp(−cN),
which is typical for solutions that are infinitely differentiable but not analytic. The
excellent accuracy for this known exact solution indicates that the KDV equation on a
finite interval can be used to effectively simulate the KDV equation on a semi-infinite
interval before the wave reaches the boundary.

In the following tests, we fix M = 150, ∆t = 0.02, and N = 256.

Example 1: Interaction of five solitons. We start with the initial condition

u0(x) =

5∑
i=1

12κ2
i sech2(κi(x− xi))

with

κ1 = .3, κ2 = .25, κ3 = .2, κ4 = .15, κ5 = .1,
x1 = −120, x1 = −90, x3 = −60, x4 = −30, x5 = 0.

In Figure 6.3 (left), we plot the time evolution of the solution in the (x, t) plane. We
also plot the initial profile and the profile at the final step (t = 600) in Figure 6.3
(right). We observe that the soliton with higher amplitude travels with faster speed,



DUAL-PETROV–GALERKIN METHODS 1617

−150

−100

−50

0

50

100

150

0

50

100

150

−1

0

1

2

−150 −100 −50 0 50 100 150
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 6.4. Solitary waves generated by an initial Gaussian profile.
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Fig. 6.5. Solitary waves generated by a square pulse (in time) at the left boundary.

and the amplitudes of the five solitary waves are well preserved at the final time. This
indicates that our scheme has an excellent conservation property.

Example 2: Solitary waves generated by an initial Gaussian profile. We
start with the initial condition u0(x) = exp(−1.5x2). We plot the time evolution of
the solution on the left in Figure 6.4 and the profile at the final step (t = 150) on the
right. The initial Gaussian profile has evolved into four separated solitary waves by
the time t = 150.

Example 3: Solitary waves generated by a square pulse (in time) at
the left boundary. In this example, we take u0(x) = 0 but set

u(0, t) =

{
5, 0 ≤ t ≤ 5,

0, t > 5.

One may think of this situation as a dam of height five unit length that releases water
for five unit time and is then shut off. We plot the time evolution of the solution on the
left in Figure 6.5 and the profile at the final step (t = 500) on the right. The square
pulse (in time) at the boundary generates a cascade of solitary waves as time evolves.
This interesting phenomenon was first observed by Chu, Xiang, and Baransky in [8]
(see also [12]).
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7. Concluding remarks. We presented in this paper a new dual-Petrov–
Galerkin method for third and higher odd-order equations. The key idea is to use
test functions satisfying boundary conditions which are the “dual” of those for the
trial functions. The resulting linear systems are sparse for problems with constant
coefficients and well conditioned for problems with variable coefficients. By exploring
the orthogonal properties of the test and trial basis functions in weighted Sobolev
spaces, we were able to establish optimal error estimates for typical third-order and
fifth-order linear equations and for a KDV equation on a finite interval. Obviously,
the technique can be extended to other higher odd-order equations.

When combined with a Chebyshev–Legendre approach, our dual-Petrov–Galerkin
method has a quasi-optimal computational complexity and is extremely accurate and
efficient as illustrated by our numerical examples. Hence the method is most suitable
for the study of complex dynamics of higher odd-order equations.

Finally, we note that the orthogonal polynomials {φk} and {Φk} introduced

in this paper can be viewed as extensions of the Jacobi polynomials Ja,bk (x) with
(a, b) = (−2,−1) and (a, b) = (−3,−2), respectively. They appear to be the most
natural basis functions for, respectively, the third- and fifth-order equations (with the
specified boundary conditions) considered in this paper. The extension of the Jacobi
polynomials to more general (a, b) with a, b < −1 and their applications to spec-
tral methods for other types of partial differential equations, including, in particular,
hyperbolic systems, will be investigated in a forthcoming paper.
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